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Abstract 

The analytical approach is presented for both symmetric and 
anti-symmetric local buckling of the thin-plate in finite sizes 
and with a center crack under tension. An efficient classical 
solution based on the principle of minimum total potential 
energy was provided using only 2 and 1 degrees of freedom 
for symmetric and anti-symmetric modes and the linear elas-
tic buckling loads are evaluated by the means of Rayleigh-
Ritz method. In the pre-buckling state, a correction factor 
for the peak compressive stress in the finite cracked plates is 
defined with an empirical formula and used in the analytical 
solution of the buckling. To verify the analytical approach, 
a wide range of numerical results by aid of finite element 
method are provided herein and a comparison between theo-
retical results with the experimental work of other research-
ers has been done. Both numerical and experimental results 
accept the accuracy and validity of the presented analytical 
model. 
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1 INTRODUCTION 

In a cracked plate subjected to the tension load, perpendicular to the crack orientation, the developed 
compressive stress near the crack leads to buckling of crack edges. This phenomenon which can be 
called as local buckling of cracked plates under tension, has been studied by numerous researchers.  
 The early works were the experimental studies such as the Air Force Flight Dynamics Laboratory 
(AFFDL) results in AFFDL-TR-65-146 (1965); Zielsdorff and Carlson (1972). Similarly, Dyshel (1990; 
1999; 2002) has presented some variety of experimental results on the stability and fracture of plate 
with a central crack referred to as a non-classical problem.  
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 Besides, the numerical techniques such as the finite element method (FEM) have been carried out 
by many investigators such as Markstrom and Storakers (1980); Sih and Lee (1986); Shaw and Huang 
(1990); Brighenti (2005a; 2009) to evaluate the critical load in various geometry and boundary con-
ditions. Furthermore, Riks et al. (1992) studied the buckling and the post-buckling behavior from the 
viewpoints of stability and fracture mechanics by the aid of finite element method.  
 As Cherepanov (1963) mentioned, an analytical solution for this problem is engaged to some 
mathematical and fundamental difficulties because the exact solution for in-plane fields of stress and 
displacement exists just for the infinite plates and mathematically it is complex as well as the local 
buckling shapes. Guz et al. (2004) presented an analytical solution for the buckling of infinite cracked 
plate under tension. For the finite cracked plate, Brighenti (2005b) used an approximate model with 
estimated pre-buckling stress functions. In that work, the stress functions are in the form of hyperbolic 
series with infinite terms. The buckling shape function is considered to be a radial Gauss-like function 
(same function of x  and y ) in which the values of the two unknown parameters were assumed by 
the author. Both Guz et al. (2004) and Brighenti (2005b) consider the first mode of buckling, which 
is called the symmetric mode.  

 Following the previous studies, the most of non-experimental works concern the numerical studies 
which use many degrees of freedom to solve the problem. Against, the current paper intends to present 
an efficient classical solution for the non-classical problem of the central cracked plate buckling under 
tension, which includes only 2 and 1 degrees of freedom for both first (symmetric) and second (anti-
symmetric) modes of buckling and has answer for the finite plates with various geometric ratios. In 
this direction, primarily, the pre-buckling stress state is approximated by a simple function and then 
the proper shape functions with minimum degrees of freedom are used to describe the buckling mode 
shapes. Finally, the total potential energy is written as a function of the pre-buckling stress and the 
buckling deflection and subsequently, the well-known Rayleigh-Ritz method is used to evaluate the 
critical loads for each mode of buckling. All results were validated with several numerical finite ele-
ment simulations in ABAQUS environment and some existing experimental works. 
 

2 ANALYTICAL APPROACH 

2.1 General considerations 

Figure 1 shows the finite cracked plate, with the thickness t , under tension load. The geometric 
parameters are shown in this figure as well. As shown, the central crack orientation is perpendicular 
to the load direction which corresponds to the lowest buckling load and in terms of geometry it has 
two axes of symmetry consistent with the X  and Y . 
 It is assumed that the material is isotropic and linearly elastic with Young’s modulus E  and 
Poisson’s ratio ν .  Since ijσ  denotes the pre-buckling stresses, from Von Karman’s linearized theory, 
the total potential energy Π  is obtained based on the transverse displacement ( ),w x y  as the following 
equation: 
 

 ( )( ) ( )2 2 2 2 2
, , , , , , , , ,

2 1 2 d d
2

xx yy xx yy xy x x xy x y y y

D t
w w w w w w w w w x y

D
ν σ σ σ

 
 Π = + − − − − + +  

∫∫   (1) 

 
in which, ( )3 212 1D Et ν= − is the bending stiffness and subscript of w denotes the derivation. 
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Figure 1: The finite plate with a central crack under tension. 

 
By minimizing the total potential energy, 0∂Π = , the critical load can be obtained from an Eigen-
value problem. In Figure 2, the first and second modes are shown in which the buckling deformations 
are symmetric ( ) ( ), ,w x y w x y− =  and anti-symmetric ( ) ( ), ,w x y w x y− = − . Given that X  and Y  
are two axes of symmetry, it is possible to consider only a quarter of the plate in the analytical model. 
 

    
Figure 2: Symmetric and anti-symmetric buckling modes. 

 
As can be seen, the maximum deflection occurs at the center of the crack for both modes and gener-
ally, the deformations are insignificant in the regions away from the crack, because the instability of 
the crack edges is a local buckling phenomenon due to the compressive stress near the crack. Thus, 
providing a mathematical solution to this problem requires reviewing and determining the status of 
pre-buckling stress and especially compressive stress along the crack edges. 
 
2.2 Pre-buckling stress state 

The exact solution for the stress field of an infinite plate with a crack under the in-plane loads exists 
in many references such as Sadd (2005) but for the finite plates, due to the complexity of the problem, 
it cannot achieve such relations. In Figure 3, the distribution of stresses xσ  and yσ  on the axes X  
and Y  of a finite cracked plate schematically are compared with the infinite one under the same 
tension stress oσ . 
 It is necessary to note that due to the symmetry, the tangential stress on the symmetry axes is 
zero and just normal stress exists. In this model, the normal stress xσ  acting on the Y -axis includes 
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the local compressive stress parallel to the crack edges that is the main reason for the local buckling 
and should be considered in the analysis. 
 For some finite cracked plates problems, infinite plate relations can be used with some simplifica-
tions such as applying a correction factor related to the finite size of the plate. For example, in the 
field of fracture mechanics, the correction factor β  is used for the singular stress field at the crack 
tip of the finite plates. The values of β  can be assessed using numerical methods and for different 
geometric ratios a W , L W  are presented in Isida (1971). In this study, another correction factor β ′  
is defined and used for the peak compressive stress. From the exact solution of infinite cracked plate 
under tension in Sadd (2005), the stress distribution xσ  on the axis Y  is obtained as follows: 
 

 ( )
( )
( )

2 2

3 2
2

2
0, 1

1
x x o

Y a Y
Y

Y

σ σ σ

 
+ 

 = = − 
 + 

  (2) 

 
According to the equation (2), the maximum compressive stress is obtained for 0Y =  which the 
value is equal to the applied tensile stress oσ . So by using the correction factor β ′ , the peak com-
pressive stress for the finite cracked plate is achieved as oβ σ′ × . In section 3.1, the values of β ′  are 
obtained for different ratios a W , L W  using the finite element method. 

 
2.3 Simplified analytical model 

A simple analytical model that is used to estimate the buckling load of the finite cracked plate is 
shown in Figure 4. It is clear that one quarter of the plate is considered and the distribution of the 
stress xσ  on the Y -axis is represented as a simple bilinear function. 

 

  
Figure 3: Comparison of stress distribution in the one 

quarter of a finite cracked plate (solid line) and the infi-

nite one (dash line) under same tension. (+) for tensile 

and (-) for compressive stresses. 

Figure 4: Simplified model of the finite cracked plate. 
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For both finite and infinite cracked plates, the stress xσ  along Y -axis changes from a negative value 
to a positive one and at a special point (e.g. Y d= ) it is zero (see Figure 3). From equation (2), the 
zero-value location d  for the infinite plate can be found by setting 0xσ =  which results in 

 

 
5 1

0.8
2

d a a
−

= ≈   (3) 

 
It is assumed that the value of d  depends only on the crack length so that the constant 0.8d aδ = ≈  
can be defined and used for the finite plate with arbitrary dimensions as shown in Figure 4. This 
assumption is further verified in section 4.1. Now, using dimensionless parameters y Y a=  and 

L a=ℓ , the simple bi-linear function xσ  with the value of cσ−  at 0y = , tσ  at y = ℓ  and zero for 
y δ=  can be written as  

 

 

if  01

1 if  

c

x

t

y
y

y
y

δσ
δ

σ
δ

σ δ
δ δ

    < <− −     =       −  −  < <        −
ℓ

ℓ

  (4) 

 
In the bi-linear function, cσ  is the peak compressive stress and can be achieved as c oσ η σ= × , where 
η  equals β ′  multiplied by a reduction coefficient C  related to the linearization of xσ . In this study, 
roughly C =0.9 is used for all analytical cases but the exact value can be set by a regression analysis 
on the results. Apart from that, using the force equilibrium along the X  direction, tσ  value is ob-
tained in terms of the variable cσ  according to the following equation. 
 

 
t c

δ
σ σ

δ

 =    −ℓ
  (5) 

 
Finally, equation (4) is rewritten as follows. 
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  (6) 

 
As shown in Figure 4, the analytical one quarter model of the cracked plate is divided into cracked 
( 0 X a≤ ≤ ) and un-cracked (a X W≤ ≤ ) rectangular panels which are named panels 1 and 2, 
respectively. Since in the local buckling mode, the buckling deformation must be vanished with the 
distance from the crack, the buckling deformation in panel 2 is limited and panel 1 will experience 
the most bulging. To define the buckling shape functions ( ),w x y  for each mode of buckling, the 
conditions presented in Table 1 are considered. For the symmetric mode, the following shape functions 
are defined in terms of the dimensionless variables x X a= , y Y a=  and w W a= . 
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in which ( )0 0,0w w=  is the maximum deflection and  
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  (8) 

 
where A  is an arbitrary parameter and a continuing condition at 1x =  leads to ( )1B A ω= − . In 
this case, the division line 1x =  acts as a simple support. It is necessary to note that these functions 
are obtained through multiplying an exponential decay that exerts locally the nature of buckling, to 
polynomial functions so that the overall satisfies all conditions in Table 1. 

 

Buckling Mode Panel Left Right Top Bottom 

Symmetric 
1 ,

0xw =  0w ≈  0w =  ,
0yw ≠  

2 0w ≈  0w =  0w =  ,
0yw =  

Anti-symmetric 
1 ,

0xw =  0w ≈  0w =  ,
0yw ≠  

2 0w ≈  0w =  0w =  0w =  

Table 1: Boundary conditions of buckling shape modes at panels’ edges. 

 

From Table 1, it is clear that for the anti-symmetric mode, the panel 2 has four edges with zero 
deflection and it is not unreasonable to assume ( ), 0w x y =  for 1 x ω≤ ≤ . In other words, the divi-
sion line x = 1 acts as a clamped support. This assumption simplifies the solution for anti-symmetric 
mode so that the shape function can be lessen as 

 

 
( ) ( ) ( )4 1

3 2
4

, 0 1

2 3 1

ow x y w f x g y x

f x x

 = ≤ ≤  

= − +
  (9) 

 
To calculate the potential of applied stresses xσ  and oσ  shown in Figure 4, the first assumption is 
that the stress xσ  acts throughout the horizontal shortening (in X -direction) due to the buckling 
deflection of panel 1. For the stress oσ  which acts in the vertical direction (Y -direction), since the 
crack edge is free to move, the vertical shortening due to the buckling deflection appears as crack 
mouse opening. Consequently it can be assumed that the stress oσ  is relatively without moving so 
that the related potential can be neglected in the analysis. 
 Now, using equation (1) and the well-known Rayleigh-Ritz method, the critical loads are obtained 
for both symmetric and anti-symmetric modes. It should be noted that, for the symmetric and anti-
symmetric shape modes, just 2 and 1 degrees of freedom are used respectively which can greatly 
reduce the computation. 
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3 EVALUATIONS USING FEM 

A wide range of models were prepared in ABAQUS environment in order to determine the correction 
factor β ′  and numerical evaluation of the buckling loads in which the effect of parameter L W , 
which so far has received less attention, is also included. 
 After some mesh size sensitivity analysis with relation to the buckling load, the proper finite 
element mesh with adequate refinement near the crack tips is illustrated in Figure 5 in which, 4-node 
doubly curved general-purpose shell elements S4R have been used. 

 
  

 
Figure 5: Typical finite element mesh and crack tip detail. 

 
 
3.1 Peak compressive stress correction factor 

In section 2.2, the correction factor β ′  was defined for the peak compressive stress in the finite plates 
under tension as that amount can be calculated using the finite element models. Given that the pre-
buckling stress field is independent of the material properties, the β ′  is only related to the geometry 
of the plate. Therefore, several models have been developed with different aspect ratios a W =
0.2 0.5∼  and 1 2L W = ∼ , the results are presented in Table 2. 

 

a W  1L W =  1.25 1.5 1.75 2.0 

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 
0.20 1.0676 1.0409 1.0270 1.0212 1.0191 
0.25 1.1148 1.0719 1.0500 1.0409 1.0377 
0.30 1.1730 1.1093 1.0775 1.0644 1.0598 
0.35 1.2433 1.1536 1.1098 1.0920 1.0858 
0.40 1.3264 1.2052 1.1475 1.1243 1.1163 
0.45 1.4231 1.2645 1.1908 1.1616 1.1516 
0.50 1.5339 1.3317 1.2402 1.2044 1.1922 

Table 2: β ′  for different aspect ratios from FEM. 

 
Like the infinite cracked plates, the value of β ′  for small cracks in comparison with plate dimensions 
should approach to 1 which is inserted in the second row of the above Table 2.  
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 Due to the use of β ′  in the proposed solution, it will be useful to determine an approximate 
formula for β ′  based on the numerical results. Using the method of separation of variables, the 
general form of β ′  can be considered as follows. 

 

 ( ) ( )1 F a W G L Wβ ′ = +   (10) 

 
Each of the functions F  and G  has certain limit values which are useful to determine their overall 
form. For example, by changing a W  from 0 to 1, ( )F a W  must change from 0 to infinity respec-
tively and similarly ( )G L W  changes from infinity to 1 when L W  changes from 0 to infinity. Due 
to the described conditions, several functions were considered for F  and G  and they were analyzed 
using numerical results and applying least squares method. Finally, appropriate forms of the functions 
F  and G  are recommended below. 

 

 ( )
( )

( )

2

2
2 1

a W
F a W

a W

=
−

  (11) 

 ( )
( )3

8
1 1.3

3

G L W

LW

= + ≥   (12) 

 
Due to the simple form and precision of the defined formula for β ′ , it can very well be used in the 
analytical solution presented in section 2. 

 

3.2 Buckling loads for the symmetric and anti-symmetric modes 

Using equation (1) with the Rayleigh-Ritz method, it can be easily shown that the buckling load is 
directly related to the elastic modulus E  and inversely with 2t  (the thickness to the power of 2). 
Thus, the other parameters involved in the problem are the crack length a, the dimensions of the 
plate L , W  and the Poisson's ratio ν  that their influence must be evaluated on the buckling load. 
For this purpose, finite element models have been developed with different Poisson's ratios ν =  
0.1 0.4∼  and the aspect ratios 0.2 0.5a W = ∼ , 1 2L W = ∼  and the values of buckling load are 
presented in Table 3 as the dimensionless quantities. It should be noted that in these models, the 
constant parameters are E =200 GPa, t = 1 mm, W = 200 mm and all exterior edges are considered 
to be simply supported. These results are used to validate the analytical results and are discussed in 
section 4. 

 

4 VERIFICATION AND DISCUSSION OF THE RESULTS 

4.1 Pre-buckling stress distribution and the correction factor β ′  

In Figure 6, the curves of correction factor β ′  from equation (10) are drawn for the different ratios 
of a W  and L W  and compared with the finite element results from Table 2. 
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310cr Eσ ×  

0.1ν =  

 Symmetric mode  Anti-symmetric mode 

a W  1L W =
 

1.25 1.50 1.75 2.0  1L W =
 

1.25 1.50 1.75 2.0 

0.20 0.911 0.930 0.947 0.954 0.956  1.257 1.298 1.324 1.337 1.341 

0.25 0.563 0.582 0.597 0.605 0.608  0.768 0.804 0.828 0.840 0.844 

0.30 0.376 0.394 0.409 0.417 0.419  0.505 0.538 0.560 0.570 0.574 

0.35 0.267 0.283 0.297 0.304 0.306  0.350 0.379 0.399 0.408 0.412 

0.40 0.197 0.212 0.224 0.230 0.232  0.253 0.278 0.295 0.304 0.307 

0.45 0.151 0.164 0.175 0.179 0.180  0.188 0.210 0.225 0.233 0.236 

0.50 0.118 0.130 0.139 0.142 0.143  0.144 0.163 0.176 0.183 0.186 
 
0.2ν =  

 Symmetric mode  Anti-symmetric mode 

a W
 

1L W =
 

1.25 1.50 1.75 2.0  1L W =
 

1.25 1.50 1.75 2.0 

0.20 0.887 0.906 0.922 0.929 0.931  1.231 1.271 1.297 1.309 1.313 

0.25 0.548 0.567 0.582 0.590 0.592  0.752 0.788 0.811 0.822 0.827 

0.30 0.367 0.384 0.399 0.406 0.408  0.495 0.527 0.548 0.559 0.562 

0.35 0.260 0.276 0.289 0.296 0.298  0.343 0.371 0.391 0.400 0.404 

0.40 0.192 0.207 0.219 0.224 0.225  0.248 0.272 0.289 0.298 0.301 

0.45 0.147 0.160 0.170 0.175 0.175  0.184 0.206 0.221 0.228 0.231 

0.50 0.115 0.127 0.135 0.138 0.139  0.141 0.159 0.173 0.179 0.182 
 
0.3ν =  

 Symmetric mode  Anti-symmetric mode 

a W
 

1L W =
 

1.25 1.50 1.75 2.0  1L W =
 

1.25 1.50 1.75 2.0 

0.20 0.873 0.892 0.907 0.914 0.916  1.217 1.256 1.281 1.293 1.298 

0.25 0.540 0.558 0.573 0.581 0.583  0.744 0.779 0.802 0.813 0.818 

0.30 0.361 0.379 0.393 0.400 0.402  0.490 0.521 0.542 0.552 0.556 

0.35 0.256 0.272 0.285 0.291 0.293  0.340 0.367 0.386 0.395 0.399 

0.40 0.189 0.204 0.216 0.221 0.222  0.245 0.267 0.286 0.294 0.298 

0.45 0.147 0.158 0.167 0.172 0.172  0.184 0.203 0.218 0.226 0.229 

0.50 0.113 0.124 0.133 0.136 0.136  0.139 0.158 0.171 0.177 0.180 
 
0.4ν =  

 Symmetric mode  Anti-symmetric mode 

a W
 

1L W =
 

1.25 1.50 1.75 2.0  1L W =
 

1.25 1.50 1.75 2.0 

0.20 0.869 0.888 0.903 0.910 0.912  1.215 1.254 1.278 1.290 1.294 

0.25 0.537 0.556 0.571 0.578 0.580  0.743 0.778 0.800 0.811 0.815 

0.30 0.360 0.378 0.392 0.399 0.401  0.489 0.520 0.541 0.551 0.555 

0.35 0.255 0.272 0.284 0.290 0.292  0.339 0.367 0.386 0.395 0.398 

0.40 0.189 0.204 0.215 0.220 0.221  0.245 0.269 0.286 0.294 0.297 

0.45 0.144 0.157 0.167 0.171 0.171  0.182 0.203 0.218 0.225 0.228 

0.50 0.112 0.124 0.132 0.135 0.134  0.139 0.157 0.170 0.177 0.179 

Table 3: FEM dimensionless results of buckling load for both symmetric and anti-symmetric modes. 
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Figure 6: Correction factor β ′  as a function of a W  and L W  from equation (10) and FEM from Table 2. 

 

Figure 6 shows that, the approximate equation (10) for β ′  is in good agreement with the finite 
element results so that the maximum difference is less than 1.5 % in all cases. Also, by changing any 
of the parameters a W  and L W , the FEM results will follow the expected and defined trend for β ′  
function. For example, with decreasing a W , the value of β ′  decreases and approaches to 1 for all 
ratios of L W . 
 Overall, the curves in Figure 6 show the effect of plate dimensions and the crack length on the 
peak compressive stress, so that, the peak compressive stress increases with increasing the crack length 
and decreasing the length of the plate in comparison with plate width.  
 Apart from the correction factor β ′ , Figure 7 shows the normalized actual distribution of stress 

xσ  along the normalized Y -axis obtained from FEM for square plates ( 1L W = ) with different 
crack lengths ( 0.2 0.5a L = ∼ ) in comparison with the equivalent bilinear function from equation 
(6)  which is used in the buckling analysis.  

 

 

Figure 7: Normalized distribution of stress xσ  from FEM and equivalent bilinear function from equation (6) with a 

larger view of the compressive region. 
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FEM results show that for different crack length the distribution of the stress xσ  has been changed, 
but the relative zero point of stress on the Y -axis is almost constant and about 0.8Y a= . Such value 
was obtained in section 2.3 for infinite plates and was used as 0.8d aδ = ≈  to define the bilinear 
function. Figure 7 also show that, the curve trend for the infinite cracked plates is descending far 
from the crack, so that, the positive stress xσ  tends to zero next to the plate edge. Against, FEM 
results indicate that this trend is ascending for the finite cracked plates especially for relatively larger 
cracks compared with the length of the plate. This represents the effect of finite size of plates on the 
pre-buckling stress state. Comparing the curves obtained for different ratios of a L  implies that 
proportional to increase in the peak compressive stress, the maximum tensile stress on the Y -axis 
increases which is consistent with the equilibrium condition in the X  direction written in section 2.3. 
The larger view of the compressive region of stress xσ  shows that under section 2.3, the peak com-
pressive stress in the equivalent bilinear function is multiplied by a factor of 0.9. 

 

4.2 Symmetric and anti-symmetric buckling loads 

In this section, in order to demonstrate the accuracy and ability of the presented analytical model to 
estimate the buckling load of the cracked plates with different geometric and material properties, 
fairly complete comparison between analytical model (Theory) and FEM results are depicted graph-
ically in Figures 8 to 10. 

 Curves depicted in Figure 8 show that with increasing the crack length, buckling capacity of the 
plates will drop drastically. The reason is that with increasing the crack length, on the one hand, the 
coefficient β ′  increases and on the other hand, the geometric stiffness of the plate decreases and both 
factors are simultaneously reducing the buckling capacity of the plate. It is necessary to note that 
this drop in the anti-symmetric mode is greater than the symmetric mode, so that with increasing 
crack length, the difference of the two modes decreases but never reaches zero. Therefore, the buckling 
load in the symmetric mode is often less than the anti-symmetric mode and the symmetric mode can 
be introduced as the first and prior mode. In contrast, with decreasing the crack length, the buckling 
load is rising with a steep gradient and it is expected that it tends to infinity at 0a W =  because 
the plates without crack never buckle under tensile load. 

 Overall, the results of the presented analytical model for different values of crack length have an 
acceptable agreement with the FEM results in terms of quality and quantity which indicate that the 
simplifying assumptions of the analytical model are reasonable and do not affect the accuracy. 

 The curves plotted in Figure 9 show that increasing the ratio L W  or, in other words, increasing 
the length of the plate will always increase the buckling capacity. But, the sensitivity of the buckling 
load to the plate length is reduced by increasing the ratio L W , so that, it looks for 2L W > , the 
buckling load is almost constant.  

 By comparing Figure 9 with Figure 8, it can be concluded that the buckling load is less sensible 
to L W  than to a W , however, the analytical model is able to show that slight variations of buckling 
load as well and is in good agreement with the FEM results. 

 According to the Figure 10, the results of both the presented analytical model and FEM show that 
the sensitivity of the buckling load to Poisson's ratio is less than its sensitivity to a W  and L W . 
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Figure 8: Normalized buckling stresses versus relative crack length for both symmetric and 

anti-symmetric buckling modes. 

 
Moreover, in the Figure 11, the presented approach is compared with some existing experimental 
works on the symmetric buckling mode, which will be described. The first experimental data was 
reported by Air Force Flight Dynamics Laboratory (AFFDL) in AFFDL-TR-65-146 (1965) as load 
versus buckling deflection curves and in the present paper, the extended Southwell technique from 
NACA TN-658 (1938) is used to estimate the buckling loads from those curves. In the work of Dixon 
and Strannigan (1969), the upper and lower limits of buckling load are given and here the upper  
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Figure 9: Normalized buckling stresses versus relative plate's length for both symmetric and 

anti-symmetric buckling modes. 

 
limit is considered. The other experiment was done by Zielsdorff and Carlson (1972) in which the 
buckling loads were presented and used directly in this paper. The characteristics of these samples 
are listed in Table 4 and ν  = 0.33 is considered for all samples. 

 From Figure 11, it can be seen that the results of AFFDL-TR-65-146 (1965), with a small distance, 
are at the top and bottom of the present theoretical curve, so that the theoretical results are well 
consistent with the mean of the experimental results. Dixon and Strannigan (1969) experiments in-
clude a wide range of relative crack lengths and are in very good agreement with the theoretical curve. 
In the work of Zielsdorff and Carlson (1972), a fewer range of cracks were considered and the difference 
between the experimental results and the theory increases with decreasing the relative crack length. 
 Looking at three experimental works we can see that for the small cracks, the experimental results 
show lower values than the analytical results or in other words, the analytical results are somewhat 
overestimated for small cracks. In sum, given that the experiments were carried out under different 
conditions and on different materials, Figure 11, can confirm the accuracy of the analytical model 
based on the experimental results. 
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Figure 10: Normalized buckling stresses versus Poisson's ratio for both symmetric and 

anti-symmetric buckling modes. 

 

     

Figure 11: Comparison of the presented theoretical model with the experimental data. 
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Reference Material E (GPa) t  (mm) L  (mm) W (mm) a (mm) 

AFFDL-TR-65-146 (1965) Al2024-T3,T81 70,71 1.52 495 114~305 3W  

Dixon & Strannigan (1969) Al-alloy 68.9 0.94 381 127 19~114 
Zielsdorff & Carlson (1972) Al2024-T3 73 0.51 254 152 25.4~30.5 

Table 4: Characteristics of experimental samples. 

 

5 CONCLUSIONS 

In this paper, an approximate classical solution based on the principle of minimum total potential 
energy was provided for non-classical local buckling problem of central cracked plate under tension 
which includes both symmetric and anti-symmetric modes. Given that the mathematical functions 
for symmetric and anti-symmetric shape modes are written using only 2 and 1 degrees of freedom, 
the proposed approach mathematically is efficient and has an advantage in comparison with the 
numerical methods with many degrees of freedom. 
 After investigating the pre-buckling state, the relative zero point of normal stress xσ  acting on 
the Y -axis (perpendicular to the center of the crack as Figure 3) was defined. Then using the finite 
element models, it was shown that this point is approximately constant and independent of the plate 
dimensions so that its theoretical value for the infinite cracked plate can be used for the cracked 
plates with any sizes. Moreover, the factor β ′  was defined as correction factor for the peak compres-
sive stress in the finite cracked plates; then, in order to mathematically describe β ′ , an empirical 
formula was presented based on the finite element results. This correction factor was used in the 
analytical solution of buckling. 
 To verify the results of the presented analytical model, a wide range of numerical finite element 
models (FEM) were produced in ABAQUS environment which can evaluate the effects of the geo-
metric characteristics and material properties of the plates on the buckling load. By comparing the 
results of these models with the results of the analytical model, the accuracy and the ability of the 
presented analytical model was demonstrated. 
 Finally, the results of three existing experimental works compared with the presented analytical 
model that confirm the validity of the analytical model to estimate the buckling load. 
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