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Abstract 

In this paper, natural frequency based forward and inverse meth-

ods are proposed for identifying multiple cracks in beams. Forward 

methods include simplified definition of the natural frequency 

drops caused by the cracks. The ratios between natural frequencies 

obtained from multi-cracked and un-cracked beams are deter-

mined by an approach that uses the local flexibility model of 

cracks. This approach does not consider nonlinear crack effects 

that can be easily neglected when the number of cracks is not 

excessive. In addition, an expression, which removes the necessity 

of repeating natural frequency analyses, is given for identifying the 

connection between the crack depths and natural frequency drops. 

These simplified approaches play crucial role in solving inverse 

problem using constituted crack detection methodology. Solution 

needs a number of measured modal frequency knowledge two 

times more than the number of cracks to be detected. Efficiencies 

of the methods are verified using the natural frequency ratios 

obtained by the finite element package. The crack detection meth-

odology is also validated using some experimental natural fre-

quency ratios given in current literature. Results show that the 

locations and depths ratios of cracks are successfully predicted by 

using the methods presented. 
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Cracked beam vibration, local flexibility model, simplified ap-

proaches, natural frequency ratios, crack detection methodology. 
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1 INTRODUCTION 

Inspection and detection of the damages are crucial for the systems having beam type mechanical 

or structural components. A damage known as crack may be invisible in many applications of 

visual inspection methods which do not guarantee the detection in early stage. At result, ad-

vances of crack in a short time may cause catastrophic failures. However, existence of any dam-

ages leads to the alteration of the dynamic behaviour of the systems. Therefore, vibration based 
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crack identification methods take great attention throughout the researchers studying non-

destructive testing and evaluation methods. 

 Changes in vibration characteristics can be observed by using modal parameters such as natu-

ral frequency and mode shape.  In contrast to the mode shapes, natural frequencies can be meas-

ured easily, and they are not seriously affected by the experimental errors. In connection with 

this, crack detection systems, which use frequencies, can be inexpensive, non-invasive and auto-

mated for avoiding subjective operator differences. Therefore, frequency based inverse methods 

supported by the theoretical vibration models have been frequently proposed up to date. Dima-

rogonas (1996) and Doebling et al. (1998) present overviews to the methods examining the theo-

retical changes in dynamic behaviours and their agreement with measured vibration responses. 

Frequency based crack identification methods are summarised by Salawu (1997). Detailed review 

on vibration based identification of multiple cracks is given by Sekhar (2008). Recently, Jassim et 

al. (2013) review the studies on vibration analysis of damaged cantilever beams. 

 The identification of a single transverse crack in a beam is popularly studied using the lowest 

three natural frequencies which can be easily obtained (Chen et al. 2005; Chinchalkar 2001; Kim 

and Stubbs 2003; Liang et al. 1991; Nandwana and Maiti 1997; Owolabi et al. 2003). However, 

simultaneous detection of crack parameters is much more involved and complex than the identifi-

cation of single crack. In many cases, supports of theoretical vibration analyses are inevitable for 

the detection. In addition, multiple crack detection can require the knowledge of additional pa-

rameters and thus many measurements in several test conditions. Number of unknown parame-

ters is generally decreased by removing some of them which can have negligibly small effects. 

Theories of most studies are based upon the analytical method including local flexibility model 

which uses the conditions of compatibility and continuity at crack locations (Bakhtiari-Nejad et 

al. 2014; Caddemi and Calio 2009; Dado 1997; Khiem and Lien 2001; Nandwana and Maiti 1997; 

Ostachowicz and Krawczuk 1991; Shifrin and Ruotolo 1999). Local flexibility model neglects the 

distributed energy effects of crack and accumulates the effects of dynamical changes into rota-

tional springs considered at the crack locations. In classical solution method that use local flexibil-

ity model, the equation set satisfying the boundary conditions at two ends of the beam is ex-

panded with four new equations of continuity and compatibility conditions for each crack. With 

this method, to construct linear system is not a simple task for the beams with n  cracks. Shifrin 

and Ruotolo (1999) extend this base approach by defining 2+n  equations for simplifying the 

vibration analysis of the beams with n  cracks. However, their method can have the lack of exact-

ness due to the some simplifications and linearization done for decreasing the matrix size. Some 

other methods, including exponentially decaying crack disturbance functions, have been proposed 

to develop vibration equations for continuous models (Christides and Barr 1984; Mazanoglu et al. 

2009; Yang et al. 2001). When these methods are used in the inverse analyses, interaction effects 

of the cracks can be required to be neglected for being capable of detecting cracks. Accuracy of 

the vibration models is significantly important for the success of inverse methods presented for 

crack detection.  

 In the last two decades, several papers have been published to solve inverse problem of detect-

ing multiple cracks with the knowledge of natural frequency changes. However, the number of 

these studies is still less than the analyses addressing the forward problem. Mazanoglu and 
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Sabuncu (2012) present an algorithm that uses natural frequencies for detection of cracks in 

beams and a process which minimises the errors in experimental results. Gillich and Praisach 

(2014) study on a crack detection method based upon natural frequency changes and a procedure 

for determining accurate natural frequencies in measurement. Khiem and Toan (2014) present 

Rayleigh quotient based explicit expression providing a tool for calculating natural frequencies of 

the beam with arbitrary number of cracks. A method that combines the frequency measurements 

and vibration modelling using transfer matrix method is presented by Patil and Maiti (2003). 

They observe notable amounts of errors like 10% in the prediction of locations and sizes of cracks.  

Khiem and Lien (2004) use the natural frequencies obtained by the dynamic stiffness matrix 

method and formulate the multiple crack detection as a non-linear optimization problem. Morassi 

and Rollo (2001) present a technique, which uses the changes in the first three natural frequen-

cies, for a simply supported beam with two cracks having equal severity. Although the method is 

verified numerically, notable errors are seen in their predictions. Douka et al. (2004) use the an-

tiresonance changes, complementary with natural frequency changes, in a prediction scheme for 

identification of two cracks in beams. In their work, crack detection is based upon the availability 

of many experimental results. Lee (2009) presents a simple method for detecting n cracks using 

2n natural frequencies by means of the finite element and the Newton–Raphson methods. Their 

method reveals quite satisfactory results provided proper initial guesses are made for convergence 

of the solution. Ruotolo and Surace (1997) propose a solution procedure employing a genetic algo-

rithm and the results of the finite element model for the detection of multiple cracks in beams. 

Krawczuk (2002) uses the wave propagation approach combined with an iterative searching strat-

egy including two methods for damage detection in beam-like structures. 

 This paper presents simplified methods for determining natural frequency drops due to the 

multiple cracks in beams and a methodology for identifying location and depth ratio parameters 

of the cracks. First of all, theoretical background about the vibration of cracked beam is outlined. 

Theoretical simplifications are demonstrated to find natural frequencies of cracked beams. After 

that, methodology of crack identification, which employs the natural frequencies obtained by the 

forward analyses, is detailed. Then, several cracked beam scenarios are considered for discussing 

the results that are verified using the natural frequency ratios obtained by both the commercial 

finite element package (ANSYS©) and some experiments given by Kim and Stubbs (2003), Ma-

zanoglu and Sabuncu (2012), Ruotolo and Surace (1997). Finally, achievements and shortcomings 

of the methods are clearly stated. 

 
2 THEORETICAL BACKGROUND 

Free bending vibration of a uniform Euler-Bernoulli beam is identified by following well known 

differential equation. 
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where, E, I, A, and ρ  represent modulus of elasticity, area moment of inertia, cross-section area, 
and density respectively. Flexural displacement is symbolised by w, and variables z, t are the po-

sition along the beam length and the time respectively. When this equation is solved by separat-

ing the variables of z and t, mode shape of the beam, )(zW , is observed in the following solution 

form (Rao 1995). 
 

zCzCzCzCzW ββββ sinhcoshsincos)( 4321 +++= , (2) 
 

where 1C , 2C , 3C , and 4C  are the coefficients of harmonic and hyperbolic terms. Frequency 

parameter, β , which depends upon the natural frequency, ω , is written as: 
 

4

2

EI

Aωρ
β = . (3) 

 

An equation set is formed by using mode shape function and its derivatives satisfying the end 

conditions of the beam. The equations appropriate for some general end conditions are given in 

Table 1.  

 

Ends Equations 

Free 0'' =W , 0''' =W  

Fixed 0=W , 0'=W  

Pinned 0=W , 0'' =W  
 

Table 1: Equations for classical end conditions.. 

 

In example, for a cantilever beam, the matrix obtained by the harmonic and hyperbolic terms of 

functions is formed as follows: 
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where L is the length of beam. Zero determinant of the matrix, 0M , gives singular values as un-

cracked beam’s natural frequencies, 0ω . 

 
2.1 Vibration of the Beam with Cracks 

When the cracks exist on a beam, local flexibility changes should be identified at the crack loca-

tions. Local flexibility changes are simulated by the rotational springs, which are joints of the 

sections separated by the cracks, as shown in Figure 1. Cracks are modelled as slots whose depths 

are assumed to be unchanged along the width of the beam. Crack widths are considered to be 

negligibly small and thus the cracked beam’s vibration identification problem is handled by the 
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assumption of no mass loss from the beams. In classical approaches, the existence of n cracks 

requires the expression of n local flexibility changes for connecting 1+n  sections. Vibration form 

of each section can be expressed by appropriate harmonic and hyperbolic terms of the function 

written in Eq. (2). Connection at the crack location is provided by the continuity conditions with 

negligible effects of crack width. Deflection, bending moment and shear force are assumed to be 

equal at right hand and left hand sides of the crack as follow: 

 

)()( 1 zWzW ii += ,  ni ,....,1=  (5a) 

)('')('' 1 zWzW ii += , (5b) 

)(''')(''' 1 zWzW ii += , (5c) 

 

 

Figure 1: Cracked beam model. 

 

In addition, compatibility condition relates bending moment with the difference of slopes between 

both sides of the crack as represented in following equation. 
 

[ ])(')(')('' 1 zWzWzW iiii −= +α ,  ni ,....,1= . (6) 

where  

EI

ki
i =α . (7) 

 

Here, ik  represents the local rotational stiffness caused by 
th
i  crack, and it is described by the 

theoretical and experimental expressions of the fracture mechanics (Ostachowicz and Krawczuk 

1991; Tada et al. 1973) as follows: 
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where, b, h and a symbolise width and height of the beam and depth of the crack respectively. 

)( iaf  is known as flexibility compliance function of th
i  crack that is formulated for the rectangu-

lar beam as follows: 
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In conventional procedure, the equation set having size, 44 +n , is formed by 4n equations of con-

tinuity and compatibility conditions and 4 equations of the end conditions (Nandwana and Maiti 

1997; Ostachowicz and Krawczuk 1991). Large sized matrix shaped by harmonic and hyperbolic 

terms of the equation set must be singular for determining natural frequencies. Instead, a simpli-

fied approach is presented in linear manner to find natural frequencies of the beams with cracks. 

 
2.2 An Approach to Obtain Multi-cracked Beam’s Natural Frequencies 

Suppose that a cantilever beam considered as an example has a crack at the location 1z . 88×  

matrix, 1M , is formed by the terms of functions providing continuity and compatibility condi-

tions given in Eqs. (5, 6) and boundary conditions tabulated in Table 1. Here, subscript “1” is 

used for defining the parameters in cases of beams with one crack. Reduced form of the matrix is 

constructed as follows: 
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(10) 

 

Since the functions are continuous, infinite number of β  can be available for producing zero de-

terminant of 1M . As is known, each β  is correspond of a different natural frequency whose 

number is now represented by the superscript (m). For each mode, single cracked beam’s natural 

frequency, 
)(
)1(
m
cω  is smaller than un-cracked beam frequency, 

)(
0
mω  obtained from the matrix 0M . 
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Change in frequency can be examined by natural frequency ratio, 
)(

0
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c

m
r ωω= , or natural 

frequency drop ratio, )(
1
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1 1

mm
rd −= . When the second crack initiates from the location, 2z , mth 

mode natural frequency starts to decrease from 
)(
)1(
m
cω  to 
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m
cω . This proves that individual effect 

of the second crack should be equal to 
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)1(
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2

m

c

m

c

m
r ωω= . Thus, the natural frequency ratio in 

case of the existence of two cracks can be computed for mth vibration mode as follows (Mazanoglu 

and Sabuncu 2012): 
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Minor errors arising from the linear system assumption are indicated by the approximate equiva-

lence in the equation. If the crack at the location, 2z , initiates first, individual effect of this crack 

should remain same. It is for this reason that the following expression is accurate. 
 

)(

0

)2(

)1(

)2,1(

2

m

c

c

c
r













==
ω

ω

ω

ω
 (12) 

 

In general aspect, Eqs. (11, 12) can be arranged for the cases of n cracked beams as follow:  
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where ),...,2,1( ncω  and )(ncω  symbolise the natural frequencies for the beam with n cracks and solely 

thn  crack respectively. As a result of the substitution of Eq. (14) into Eq. (13), following expres-

sion is obtained for the natural frequency ratio of a beam with n cracks. 
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Each natural frequency ratio multiplied in Eq. (15) is obtained by making singularity analysis of 

88×  matrix shaped for every single cracked beam case. It is assumed here that each crack has a 

specific capacity of energy storing varying with the location and depth ratio. Since the energies 

consumed due to the cracks are locally stored on the springs in local flexibility model, each crack 

has independent influences on beams vibration. In the present work, this assumption is verified 

up to three cracks that need natural frequency ratios for six vibration modes. Existence of more 

cracks ( 3>n ) requiring more natural frequency ratios (2n) is not taken into consideration since 

the errors of the frequency ratio multiplication increase as the order of natural frequency increases 

(Gillich et al. 2012). This is because the following crack detection methodology is effective for 

detecting three cracks at most.   
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3 A METHODOLOGY FOR DETECTING CRACKS 

Novel crack detection procedure is now introduced step by step. 

 

Step 1: Experimentally found modal frequency drop ratios, 
)(m

inpd , are employed as input data of 

proposed crack detection method. Instead of direct use of the natural frequency ratios, 
)(m

inpr , natu-

ral frequency drop ratios are employed, since the methodology works better with this parameter. 

 

Step 2: Theoretical natural frequency drop ratios 
)(

1
md should be calculated to have a prior 

knowledge about the frequency of the beam with a crack. Conventionally, this may require re-

peating singularity analysis for all crack depths to prepare prediction scheme of corresponding 

natural frequency drop ratios. This is quite inconvenient and time-consuming procedure. To avoid 

this, a simplified formula is proposed here to calculate the changes in natural frequency drop ra-

tios reasoned by various crack depths at one position. For small cracks, fractional changes in mo-

dal strain energy are equal to the natural frequency drop ratios (Gillich and Praisach 2014; Gud-

munson 1982; Kim and Stubbs 2003). By neglecting minor effects of crack based changes in sec-

ond derivative of mode shape, approximate strain energy changes can directly be expressed by the 

flexibility increases which are the function of 2)/()( haaf  as given in Eq. (8). Once the drop ratio, 

)(
1
m
refd , is calculated for one reference crack depth, refa , at the position of refz , the ratios, 

)(
1
m

d , 

arising from the crack with different depth, a, can be calculated by the following expression. 
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Step 3: For the reference crack depth, theoretical natural frequency drop ratios are determined 

by shifting the crack location along the z  coordinate axis of beam. By fitting a curve on these 

natural frequency drop ratios, reference polynomial functions, ),(
)(

zap ref
m
ref , are constituted in 

following form: 
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1

)(1)(
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)(
1

)(
...),(

m
k

m
k

kmkm
ref

m
ref zzzzap +

− ++++= κκκκ , 6,....,2,1=m  (17) 
 

Eq. (17) is the set of reference polynomials constructed using natural frequency drop ratios for six 

modes of vibration ( 6,....,2,1=m ) that are necessary to inspect three cracks at most. kκ  symbol-

ises the coefficients of polynomial terms indexed by k. These coefficients can vary with the depth 

of crack and the geometric properties of beam. Values of coefficients and number of polynomial 

terms also depend upon the mode of vibration considered. Higher vibration modes require larger 

number of terms in the function. 

 

Step 4: Reference polynomial functions should be generalised for determining natural frequency 

drop ratios caused by the crack with any depth and location. For this purpose, Eq. (16) is rear-

ranged in the form of polynomial function as follows:  
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where ),()( zap m  symbolises the function set of natural frequency drop ratios varying with the 

location and depth of a crack. This set of polynomials satisfy the natural frequency drop ratios 

( ),()()(
ii

mm
i zapd =  for 3,2,1=i ) when the unknown crack parameters, locations ( iz ) and depths 

( ia ), are accurately substituted. 

 

Step 5: It is definite that measured modal frequency ratios employed as input of the method 

should be equal to the theoretical natural frequency ratios. Accordingly, following equation set 

should be satisfied.  
 

0
)(
3,2,1

)( =− mm
inp rr , 6,....,2,1=m  (19) 

 

Eq. (19) is written in the form of the set of polynomial functions using the relations of 
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)()( =−⋅−⋅−− zapzapzapr
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Eq. (20) presenting the nonlinear equation set for six vibration modes allows to find unknown 

crack parameters, 321 ,, zzz  and 321 ,, aaa . 

 

Step 6: In the final step, unknown crack parameters are initially predicted as )0(3)0(2)0(1 ,, aaa  and 

)0(3)0(2)0(1 ,, zzz , and then an optimisation problem of finding accurate crack parameters is solved 

by minimising following residual function set )(mR . 
 

( ) ( ) ( )),(1),(1),(1 33
)(

22
)(

11
)()()( zapzapzaprR mmmm

inp
m −⋅−⋅−−=  ,   6,....,2,1=m  (21) 

 

In this work, trust-region dogleg algorithm introduced in the package (Matlab©) is carried out as 

a solution method of the equation set (Nocedal and Wright 1999). 

 
4 RESULTS AND DISCUSSION 

4.1 Properties of the Beam Tested Numerically 

Uniform aluminium alloy cantilever beam is simulated for checking the efficiency of the methods 

presented. Dimensions of the beam are given as 1010×  mm2 cross-section and 36.0=L  m length. 

The modulus of elasticity, density, and Poisson ratio of the beam are 69=E  GPa, 2678=ρ  

kg/m3 and 3.0=ν  respectively. Geometric properties of a cantilever beam model with two cracks 

are shown in Figure 2. As a result of the theoretical computations, un-cracked beam natural fre-

quencies are found as 5341.397
)1(

0 =ω rad/s, 304.2491
)2(

0 =ω rad/s, 722.6975
)3(

0 =ω rad/s, 
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63.13669
)4(

0 =ω rad/s 88.22596
)5(

0 =ω rad/s 83.33755
)6(

0 =ω rad/s. Several examples of cracked beam 

cases are considered for the theoretical verifications given in following subsection.  

 The beam is also modelled by the finite element package (ANSYS©). In the program, cracks 

with the thicknesses, 0.4 mm, are modelled as slots formed by subtracting thin transverse blocks 

from the beam. Solid element called ‘Solid95’, which includes 20 dynamic nodes, is used as mesh-

ing element. Default edge length of the element is set to 5 mm using the “esize” command. Good 

convergence to exact results requires frequent meshing in the vicinity of any discontinuities. This 

necessity is provided by using the “smrtsize1” command that is the most refined mesh option of 

the free meshing procedure. Figure 3 shows meshing view around a slot considered as a crack. At 

result, natural frequencies are obtained by using “modal analysis” as the analysis type. It should 

be noted that variations of crack location and crack size, which lead to change of total number of 

elements, have negligible effects on sensitivity of the computations. 
 

Figure 2: Geometric properties of the cantilever beam with cracks. 

 

 

 
 

Figure 3: Meshing view of a cracked region of the beam modelled in the finite element package. 

 

4.2 Verification of Forward Methods 

The approaches formulated by Eq. (15) and Eq. (16) are verified by considering the example 

cases given in Table 2. It is seen that the crack modelled in Case 1 is fixed in Case 4 as one of the 

two cracks. Triple cracked beam scenario including these cracks is also considered in Case 10. 

Similar relationships are established throughout Cases 2,5,11 and Cases 3,6,12. Additionally, ex-

L 

z h  

1z  

w 

1a  2a  

2z  
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traordinary cases like the existence of small or large distance between two cracks with incipient or 

advanced severity are handled in Cases 7,8,9. Eq. (15) is validated throughout Cases 4-12. 

 Table 3 demonstrates the agreement between the natural frequency ratios computed by large 

sized matrix solution and the finite element package.  In addition, for the beam cases with two 

and three cracks, comparison of the results obtained by large sized matrix solution and frequency 

ratio multiplication method are given in Table 4. Fractal numbers equal or very close to unity 

show the success of frequency ratio multiplication method. The largest deviations from unity are 

obtained in Case 7 due to the rise of nonlinearity with two cracks having advanced depth ratio as 

0.4. The maximum deviation observed as 1.048 is still admissible for approximate detection of the 

cracks. It should be noted as an advantage of frequency ratio multiplication that the determina-

tion of singular values for the 88×  matrix is easier than the solution of larger sized matrix con-

structed for multi-cracked beams. 

 

Cases Normalised locations Depth ratios Cases Normalised locations Depth ratios 

1 0.20 0.20 7 
0.30 

0.70 

0.40 

0.40 

2 0.45 0.35 8 
0.1 

0.90 

0.40 

0.10 

3 0.80 0.15 9 
0.45 

0.55 

0.20 

0.40 

4 
0.20 

0.40 

0.20 

0.20 
10 

0.20 

0.40 

0.50 

0.20 

0.20 

0.20 

5 
0.25 

0.45 

0.15 

0.35 
11 

0.25 

0.45 

0.75 

0.15 

0.35 

0.30 

6 
0.55 

0.80 

0.25 

0.15 
12 

0.55 

0.65 

0.80 

0.25 

0.25 

0.15 
 

Table 2: Considered cracked beam scenarios.. 

 

Cases Method 
Natural frequency ratios ( )(

3,2,1
m

r ) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

1 
Analytical 

(Numerical) 

0.9999 

(0.9999) 

0.9979 

(0.9978) 

0.9916 

(0.9918) 

0.9874 

(0.9878) 

0.9907 

(0.9907) 

0.9976 

(0.9975) 

2 
Analytical 

(Numerical) 

0.9940 

(0.9939) 

0.9635 

(0.9640) 

0.9940 

(0.9940) 

0.9756 

(0.9762) 

0.9863 

(0.9845) 

0.9863 

(0.9875) 

3 
Analytical 

(Numerical) 

0.9932 

(0.9931) 

0.9999 

(0.9999) 

0.9980 

(0.9981) 

0.9947 

(0.9950) 

0.9955 

(0.9947) 

0.9988 

(0.9988) 

4 
Analytical 

(Numerical) 

0.9987 

(0.9988) 

0.9874 

(0.9876) 

0.9859 

(0.9862) 

0.9848 

(0.9853) 

0.9802 

(0.9809) 

0.9974 

(0.9972) 

5 
Analytical 

(Numerical) 

0.9939 

(0.9939) 

0.9615 

(0.9620) 

0.9878 

(0.9881) 

0.9691 

(0.9700) 

0.9853 

(0.9832) 

0.9854 

(0.9866) 
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Cases 

(cont.) 

Method 

(cont.) 

Natural frequency ratios ( )(
3,2,1

m
r )(cont.) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

6 
Analytical 

(Numerical) 

0.9876 

(0.9875) 

0.9841 

(0.9845) 

0.9959 

(0.9960) 

0.9820 

(0.9827) 

0.9886 

(0.9887) 

0.9916 

(0.9921) 

7 

Analytical 

 (Numeri-

cal) 

0.9640 

(0.9638) 

0.9642 

(0.9643) 

0.9115 

(0.9126) 

0.9688 

(0.9686) 

0.9918 

(0.9932) 

0.9295 

(0.9387) 

8 
Analytical 

(Numerical) 

0.9956 

(0.9961) 

0.9975 

(0.9977) 

0.9942 

(0.9942) 

0.9842 

(0.9841) 

0.9691 

(0.9689) 

0.9560 

(0.9573) 

9 
Analytical 

(Numerical) 

0.9821 

(0.9819) 

0.9479 

(0.9485) 

0.9920 

(0.9920) 

0.9617 

(0.9619) 

0.9759 

(0.9737) 

0.9793 

(0.9808) 

10 
Analytical 

(Numerical) 

0.9961 

(0.9963) 

0.9765 

(0.9770) 

0.9859 

(0.9862) 

0.9743 

(0.9754) 

0.9801 

(0.9808) 

0.9862 

(0.9871) 

11 
Analytical 

(Numerical) 

0.9719 

(0.9720) 

0.9610 

(0.9617) 

0.9704 

(0.9713) 

0.9519 

(0.9539) 

0.9815 

(0.9783) 

0.9826 

(0.9834) 

12 
Analytical 

(Numerical) 

0.9781 

(0.9780) 

0.9769 

(0.9776) 

0.9835 

(0.9840) 

0.9819 

(0.9826) 

0.9770 

(0.9743) 

0.9782 

(0.9797) 
 

Table 3: Natural frequency ratios, )(
3,2,1

m
r ,  obtained by large sized matrix solution (Analytical) 

and the finite element package (Numerical). 

 

 

Cases 

)()(
/

m
eapproximat

m
analytical ωω  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

4 1 1 1.0003 0.9996 1 1 

5 1 1.0002 1.0005 0.9993 1 1 

6 1.0001 1 1.0001 0.9998 1.0002 0.9999 

7 1.0001 1.0014 1.0004 0.9981 1.0005 1.0048 

8 1 1 1 1 1.0001 1.0001 

9 1 1.0013 0.9997 1.0022 0.9983 1.0016 

10 1 1.0004 1.0003 1 0.9999 0.9997 

11 1.0003 1.0005 0.9999 1 0.9993 1.0010 

12 1.0003 1.0005 1.0007 0.9998 1.0011 0.9983 

 

Table 4: Ratios between the natural frequencies obtained by analytical 

large size matrix solution and present approximate approach. 

 

Eq. (16), which states the change of natural frequency drop ratios caused by various depths of the 

cracks, also needs verification. Figure 4 shows natural frequency drop ratios caused by the crack 

whose location is shifted along the beam. It is seen that the results obtained by proposed formula-



2472      Kemal Mazanoglu / A Novel Methodology Using Simplified Approaches for Identification of Cracks in Beams 

Latin American Journal of Solids and Structures 12 (2015) 2460-2479 

 

tion employing only the knowledge of reference crack depth ratio, 0.25, present good agreement 

with the results of matrix solution repeatedly done for the depth ratios, 0.1 and 0.4. When the 

crack depth ratio is 0.4, some minor discrepancies appear between the results of the matrix solu-

tion and presented formulation. These deviations increase with rising crack depth differences. 

This is because the selection of the reference at the average level of crack depth ratio. 

 
4.3 Application of Crack Detection Procedure 

In this subsection, proposed crack detection procedure is implemented on the cantilever beam 

whose properties are given in Section 4.1. First of all, a database including the natural frequency 

drop ratios due to the reference crack should be generated for all considered modes of vibration. 

For this aim, a crack having reference depth ratio, 0.25, is modelled and it is shifted along the 

beam by taking proper spacing between two neighbour sample locations. Minimum normalised 

distances, which accurately reveal the shapes of natural frequency drop functions, are determined 

as 0.1 for the first and second vibration modes, 0.05 for the third and fourth vibration modes, and 

0.025 for the fifth and sixth vibration modes of the cantilever beam model. Curve fitting proce-

dure is applied through reference frequency drop ratios found at the sample crack locations. As a 

result, reference polynomial functions are generated for all vibration modes. The first mode coeffi-

cients ( )1(
kκ ) of the fractal natural frequency drop polynomial are obtained as follows:  

 

              0.00002]-  0.0024   0.0242-  0.0888   [-0.0324)1( =kκ , 5,...,1=k  

  

Here, th4  order polynomial function is adequate to define the change of natural frequency. As the 

vibration mode considered increases, shift of the crack along the beam result in more frequent 

modulation of the fractal natural frequency drops. Therefore, more sample locations and polyno-

mial terms are required to fit a curve on drop ratios of higher natural frequencies. Following coef-

ficients of the reference functions with the order of 8, 12, 16, 20, and 24 are employed to identify 

the natural frequency drop ratios obtained for the second, third, fourth, fifth, and sixth vibration 

modes respectively. 
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Figure 4: Natural frequency drop ratios obtained by the matrix solution for the crack 

depth ratios 0.1 (◊), 0.25 (o), 0.4 (□), and the drop ratios obtained by Eq. (16) for the crack 

depth ratios 0.1 (– –), 0.25 (—), 0.4 (- - -). The ratios are illustrated on the (a) first, (b) second, 

(c) third, (d) fourth, (e) fifth, and (f) sixth mode of vibrations. 

 

 

0.0000002]     0.0004-   0.019   0.348-  7.376   26.89-   38.98   25.21-   [6.098
)2( =kκ ,   9,...,1=k  

 

0.0000006]-   0.024   1.116-   20.16   158.3-   

955.9   4267-   12375   22568-   25693   17748-   6816   [-1118)3( =kκ ,  13,...,1=k  
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0.0000]-   0.00011-  0.0083   0.257-   4.512   47.44-  330.3   1622-   5778   

15076-   28860   40310-   40514   28499-   13310   3707-  [466 103)4( =kκ ,  17,...,1=k  

 

0.00000]-  0.000002-   0.00024   0.010-  

0.241   3.459-  33.26   227.1-  11377   4267-  12146   26491-  44557   

57984-   58353   45181-   26595   11618-   3590   707.4-  [67.3 10
5)5( =kκ

,    21,...,1=k  

 

0.00000]   0.00000005-  

0.000006   0.0003-  0.007   0.108-  1.072   6.938-  26.23   15.52-  

489.4-  3580   15073-  45163   102867-  183410   259632-  293260   

263653-   186741   102125-  41654   11935-  2142   [-181.2107)6( =kκ

,       25,...,1=k  

 

Polynomial functions, which have coefficients proportional to the reference coefficients, are de-

fined for unknown crack depths by using the expression given in Eq. (18).  Thus, the equation 

set, given in Eq. (21), is generated to find unknown crack parameters. 

 The cracked beam cases given in Table 2 are also considered as the scenarios of the inverse 

analysis. The results obtained by the theoretical and numerical natural frequency inputs are rep-

resented in Table 5. Theoretical natural frequency inputs tabulated by Table 3 are employed for 

checking the amount of errors caused by the simplifications given in Eq. (15) and Eq. (16). Re-

sults show that the cracks are revealed with some minor deviations even if the beam model in-

cludes three cracks which are inspected by the natural frequency knowledge of six vibration 

modes. It is seen that the deviations generally rise as the number of cracks increases. Similar re-

sults are also obtained when the same cracked beam cases are handled by using the finite element 

inputs. As one would expect, the deviations generally increase due to the numerical errors origi-

nated from the finite element calculations. 

 

Cases 

Results of theoretical frequency inputs Results of numerical frequency inputs 

Normalised 

locations 

Errors 

(%) 

Depth 

ratios 

Errors 

(%) 

Normalised 

locations 

Errors 

(%) 

Depth 

ratios 

Errors 

(%) 

1 0.198 0.2 0.202 0.2 0.201 0.1 0.198 0.2 

2 0.449 0.1 0.345 0.5 0.449 0.1 0.339 1.1 

3 0.799 0.1 0.152 0.2 0.803 0.3 0.151 0.1 

4 
0.185 

0.398 

1.5 

0.2 

0.209 

0.204 

0.9 

0.4 

0.152 

0.389 

4.8 

1.1 

0.237 

0.210 

3.7 

1.0 

5 
0.269 

0.456 

1.9 

0.6 

0.157 

0.341 

0.7 

0.9 

0.282 

0.459 

3.2 

0.9 

0.159 

0.336 

0.9 

1.4 

6 
0.548 

0.798 

0.2 

0.2 

0.250 

0.152 

0.0 

0.2 

0.550 

0.804 

0.0 

0.4 

0.247 

0.152 

0.3 

0.2 

7 
0.311 

0.714 

1.1 

1.4 

0.393 

0.383 

0.7 

1.7 

0.314 

0.718 

1.4 

1.8 

0.393 

0.381 

0.7 

1.9 

8 
0.099 

0.904 

0.1 

0.4 

0.410 

0.099 

1.0 

0.1 

0.102 

0.901 

0.2 

0.1 

0.393 

0.093 

0.7 

0.7 
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Cases 

(cont.) 

Results of theoretical frequency inputs (cont.) Results of numerical frequency inputs (cont.) 

Normalised 

locations 

Errors 

(%) 

Depth 

ratios 

Errors 

(%) 

Normalised 

locations 

Errors 

(%) 

Depth 

ratios 

Errors 

(%) 

9 
0.449 

0.554 

0.1 

0.4 

0.178 

0.396 

2.2 

0.4 

0.450 

0.554 

0.0 

0.4 

0.159 

0.400 

4.1 

0.0 

10 

0.196 

0.400 

0.500 

0.4 

0.0 

0.0 

0.203 

0.198 

0.201 

0.3 

0.2 

0.1 

0.198 

0.400 

0.494 

0.2 

0.0 

0.6 

0.199 

0.195 

0.197 

0.1 

0.5 

0.3 

11 

0.260 

0.449 

0.753 

1.0 

0.1 

0.3 

0.155 

0.342 

0.297 

0.5 

0.8 

0.3 

0.260 

0.448  

0.751 

1.0 

0.2 

0.1 

0.135 

0.341 

0.298 

1.5 

0.9 

0.2 

12 

0.521 

0.639 

0.801 

2.9 

1.1 

0.1 

0.216 

0.269 

0.160 

3.4 

1.9 

1.0 

0.528 

0.631 

0.800 

2.2 

1.9 

0.0 

0.208 

0.268 

0.169 

4.2 

1.8 

1.9 
 

Table 5: The cracks detected by present methodology using 

frequency inputs obtained by theoretical and finite element analyses. 

 

It should be noted that increasing number and depth of cracks brings some difficulties arise from 

the growth of the errors in linear modelling. The errors in natural frequency drop ratios obtained 

by simplified model may still be negligible in respect of natural frequency determination. How-

ever, large errors, which stem from the excessive number and depth ratio of cracks, lead devia-

tions in polynomial coefficients which make difficult to converge towards accurate crack parame-

ters. Besides, excessive number of cracks needs the use of higher modes of vibration frequencies 

which frequently modulate due to the crack shifted along the beam. Rise of the number of modu-

lations in fractal natural frequency drops makes the method convergence difficult and necessitates 

suitable initial predictions for the crack parameters. Based upon these effects, the inverse method 

can be suggested to be efficiently applied up to three cracks with depth ratios less than 0.5. 

 It is also worth noting that, when three cracks are detected using six polynomial functions, it 

is not judged about the possibility of existence of more cracks. In other words, six polynomial 

functions are able to detect three cracks, while giving definite knowledge up to two cracks. If 

there are two cracks that are inspected using six polynomial functions, methodology detects the 

third crack at random position with negligibly small depth ratio. From a different point of view, 

the use of larger number of polynomial functions is helpful in assessment of cracks near the free 

end. Because, especially in measurement, lower mode natural frequencies may have insufficient 

sensitivity to the effects of a crack near the free end unless the crack has significant depth ratio. 

As recognised from Figure 4, changes of the first two natural frequencies may be inadequate to 

distinguish the effects of the crack having normalised distance less than 0.1 from the free end. 

This inadequacy can be diminished to 0.05 and 0.025 by considering the first four and six natural 

frequencies respectively. Note that all of these limitations and thus success of the method can 

vary with the sensitivity and accuracy of measurements. 
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4.4 Testing the method on data from literature 

Simplified theories and inverse method used are also validated by using several tests given in 

current literature. At first, selected experiments of single cracked free-free beam scenarios re-

ported by Kim and Stubbs (2003) are utilised. The test beam has the material properties as 

206=E  GPa, 7650=ρ  kg/m3 and 29.0=ν . Dimensions of the beam are given as 032.0=h  m 

height, 016.0=b  m width and 72.0=L  m long. Secondly, double crack scenarios of the alumin-

ium alloy cantilever beam experimented by Mazanoglu and Sabuncu (2012), which is also speci-

fied in Section 4.1, is employed for testing the methods. Finally, cantilever beam experimented by 

Ruotolo and Surace (1997) is considered with double crack scenarios. Their tests were conducted 

on C30 steel beam with the geometric properties as 02.002.0 ×=A  m2 cross-section and 0.8 m 

long. Measured natural frequency ratios inputted to the methodology are given in Table 6.  

 

Cases 
Natural frequency ratios (	�,�

(�)
) 

First mode Second mode Third mode Fourth mode 

1 (Kim and Stubbs 2003) 0.9969 0.9847 0.9582 0.9396 

2 (Kim and Stubbs 2003) 0.9972 0.9926 0.9940 0.9970 

3 (Kim and Stubbs 2003) 0.8485 0.9219 0.9955 0.9010 

4 (Kim and Stubbs 2003) 0.9601 1.0000 0.9725 0.9993 

5 (Mazanoglu and Sabuncu 

2012) 
0.9750 0.9647 0.9874 0.9580 

6 (Ruotolo and Surace 1997) 0.9925 0.9907 0.9814 0.9966 

7 (Ruotolo and Surace 1997) 0.9946 0.9814 0.9643 0.9926 

8 (Ruotolo and Surace 1997) 0.9895 0.9894 0.9692 0.9952 

 

Table 6:  Measured natural frequency ratios used as inputs of the methodology. 

 

For all scenarios, actual and detected parameters of the cracks are tabulated in Table 7. Results 

show that the cracks are approximately identified for all cases. Applications using free-free and 

cantilever beam conditions demonstrate that boundary changes do not clearly affect the success of 

the methodology if the polynomial function is prepared for each different boundary condition. It 

is also shown that the methodology works well even if the crack is quite close to the free end as in 

the first case and its depth is advanced as in the third case. The largest error ratios are obtained 

as 1.6% for the location parameter of second and sixth scenarios and 4.6% for the depth ratio 

parameter of the eighth scenario. It can be observed that most of the errors are smaller than the 

errors given in the references. 
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Cases 
Actual cracks Detected cracks 

Locations Depth ratios Locations Errors (%) Depth ratios Errors (%) 

1 (Kim and 

Stubbs 2003) 
0.125 0.375 0.140 1.5 0.350 2.5 

2 (Kim and 

Stubbs 2003) 
0.250 0.125 0.234 1.6 0.123 0.2 

3 (Kim and 

Stubbs 2003) 
0.375 0.500 0.382 0.7 0.490 1.0 

4 (Kim and 

Stubbs 2003) 
0.500 0.250 0.486 1.4 0.270 2.0 

5 (Mazanoglu 

and Sabuncu 

2012) 

0.750 

0.550 

0.250 

0.350 

0.754 

0.538 

0.4 

1.2 

0.236 

0.353 

1.4 

0.3 

6 (Ruotolo and 

Surace 1997) 

0.682 

0.319 

0.200 

0.200 

0.697 

0.335 

1.5 

1.6 

0.199 

0.200 

0.1 

0.0 

7 (Ruotolo and 

Surace 1997) 

0.682 

0.319 

0.200 

0.300 

0.680 

0.312 

0.2 

0.7 

0.162 

0.321 

3.8 

2.1 

8 (Ruotolo and 

Surace 1997) 

0.682 

0.319 

0.300 

0.200 

0.683 

0.309 

0.1 

1.0 

0.254 

0.234 

4.6 

3.4 

 

Table 7: Cracked beam scenarios tested by several researchers and the cracks detected by present methodology. 

 

5 CONCLUSIONS 

This paper presents forward and inverse approaches to determine natural frequencies of cracked 

beams and to identify cracks. In forward analyses, two theoretical simplifications are introduced 

to find natural frequency drop ratios caused by cracks. One of them is helpful to compute natural 

frequency ratios of multiple cracked / un-cracked beams. The other one sets relation between the 

natural frequency drop ratios for various crack depths. Results are theoretically validated using 

well-known analytical approach. Proposed theoretical simplifications are also engaged in novel 

methodology of crack identification. It is demonstrated here that researchers do not have to use 

complex theoretical formulations to express crack effects and to detect cracks with acceptable 

proximity. In presented methodology, a set of polynomials, which have coefficients varying with 

unknown crack parameters, is produced using reference drop ratios obtained along the beam. 

Each crack to be detected needs two polynomial functions corresponding to two different natural 

frequency drop ratios. The function set is solved using the numerical optimisation to get singular 

values exhibiting the crack parameters. Proposed crack detection methodology is verified by nu-

merically obtained frequency ratios and the experimental frequency changes given in literature. It 

is seen that locations and depth ratios of the cracks are identified with admissible deviations. The 

methodology is powerful in the detection of one and two cracks. Furthermore, it can efficiently be 

employed up to three cracks if the initial estimations done for the crack parameters are not far 

from the accurate parameters. Limitation on crack number mainly stems from the growth of 

nonlinearity and rising number of modulations in fractal natural frequency drops. Here, it must 

be borne in mind that the identification of single and double cracked beams satisfies the people in 

most applications of non-destructive testing. 
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 Several achievements can be remarked when the methodology is evaluated in respect of non-

destructive evaluation. First of all, it only needs a dynamic data acquisition system for determin-

ing natural vibration frequencies. A point to consider is requirement of the un-cracked beam’s 

natural frequencies which are used as base data for zero setting procedure. This provides the ro-

bustness of method that is indispensable for the automated crack detection system. Simplified 

approaches for determining natural frequencies reduce the computational work load by eliminat-

ing integrations and differentiations. Simple relations also make the inverse method available and 

increase the adaptation speed of the method applied to the beams having different properties. In 

addition, if there is no measurement fail, the method does not depend on to the user experiences. 

As a result, it can be concluded that present methodology can be proposed due to its inexpen-

siveness, practicability, robustness, user independence, and convenience for automation. 
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