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Abstract

Numerical investigations of transversally driven beams are carried out versus control
parameters, i.e. amplitude and frequency of an external loading for a series of boundary
conditions and for two kinematical beam models of Euler-Bernoulli and Timoshenko types.
Novel stiff stability beam loss is detected and studied. Reliability of the obtained results is
verified via FEM (Finite Element Method) and FDM (Finite Difference Method). Transi-
tional and chaotic phenomena exhibited by flexible Euler-Bernoulli beams subjected to an
impact action of a one-degree of freedom body with a given mass and velocity are analyzed.
It has been shown, among the others, that inclusion of transversal shears and rotation inertia
essentially influences nonlinear dynamics of the studied beams subjected to transversal and
sign-changeable load actions.

1 Introduction

Recently, an interest in the investigation of regular and chaotic dynamics of continuous systems
has been observed. However, rather simple modeling is applied resulting in a study of 1DOF
or 2DOF lumped systems yielded by one or two modes approximation and the application of
Bubnov-Galerkin method (BGM) [12]. For instance, in references [7, 8] BGM is applied to
study nonlinear vibrations of the Bernoulli-Euler beams with one mode approximation taking
into account geometric nonlinearities. However, there are many examples which show that the
application of more modes yields even qualitatively different results (see, for instance, results
reported in [11]). It is well known that validity of the results plays a crucial role, particularly
in the analysis of chaotic vibrations of such construction members as plates and shells [2–6].
Among a series of works devoted to the analysis of beam chaotic vibrations, important results
are obtained in [10], where nonlinear behavior (including chaos) of an elastic beam with large
deflections is studied, and also in reference [14], where global bifurcations and chaotic dynamics
of a console beam subjected to axial and transversal harmonic loading are reported.
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In this work new theoretical and numerical results devoted to vibrations of flexible Bernoulli-
Euler and Timoshenko type beams are presented.

2 Mathematical models of flexible multi-layered beams

2.1 Problem formulation

We are focused on the investigation of multi-layered beam being a 2D object in space R2 with
rectangular co-ordinates introduced in the following way. In the beam body a certain arbitrary
reference curve z = 0 is fixed; the axis 0X goes along main curvature of the reference curve,
whereas the axis 0Z is directed to the reference curvature center. In the given coordinates the
beam (as a 2D object Ω) is defined as: Ω = {(x, z) / (x) ∈ [0, a] , δ0 −∆ ≤ z ≤ δn+m −∆}, where
[0, a] defines a straight beam line; δn+m−δ0 = 2h —constant beam thickness; z = δ0−∆ —lower
beam face; z = δn+m −∆ —upper beam face; ∆ —beam thickness measured from upper beam
face surface to the surface z = 0.

2.1.1 Fundamental hypotheses of mathematical beam models

In order to establish the mathematical beam models the following assumptions regarding beam
geometry, material properties, beam layers and beam exploitation conditions are introduced.

1) We denote by δi, i = 0, n + m, thickness of the i -th beam layer; m —number of beam
layers regarding the layer containing the surface z = 0; n —number of remaining layers.
Interval of z ∈ (δ0 −∆, δn+m −∆) is partitioned into intervals regarding z within one layer
(δi −∆, δi+1 −∆).

2) We assume that normal stresses σzz = 0 are small in comparison with other stresses in the
beam governing equations.

3) Piece-wise homogeneous beam members (layers) of constant thickness are studied, and
therefore the beam is a composition of the layers having different stiffness and being
arbitrarily situated regarding the reference surface z = 0. If the layers are orthotropic,
then in each of them there is an elasticity symmetry plane parallel to a plane tangent to
the reference surface, whereas two remaining planes are perpendicular to the axes 0X.

4) Deformable beam state is studied assuming that deflections of the reference surface are of
the order of beam thickness.

5) We denote by u = u (x, t), W = W (x, t) components of the displacement vector of the
surface z = 0; uz = u (x, z, t), and W z = W (x, z, t) denotes displacements of an arbitrary
beam point.

6) Let the loading vector on external beam surfaces have the form: q+ = q; q̄ = 0.
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7) Only thin beams are analyzed, and owing to reference [1], the beam arbitrary layer defor-
mation is as follows:

ez
xx =

∂uz

∂x
+

1
2

(
∂W z

∂x

)
, ez

xz =
∂uz

∂z
+

∂W z

∂x
. (1.1)

8) A transition from 2D theory of multilayered beams to 1D theory is carried out by intro-
ducing a series of static and kinematical hypotheses.

 

 

Figure 1.1: Studied beam deformation and position of layers

2.2 The Bernoulli-Euler model

We assume that tangential displacements uz, W z are distributed along the layer thickness within
the following linear rule:

uz = u− z
∂W

∂x
,W z = W. (1.2)

Hence, taking into account (1.2), equation (1.1) gives

ez
xx =

∂u

∂x
+

1
2

(
∂W

∂x

)2

− z
∂2W

∂x2
. (1.3)

Let us denote by ε11 tangential deformations of the middle surface

ε11 =
∂u

∂x
+

1
2

(
∂W

∂x

)2

, (1.4)
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then formulas governing deformations of each layer can be presented in the form of linear series
regarding z:

ez
xx = ε11 − z

∂2W

∂x2
, z ∈ (δi −∆, δi+1 −∆) . (1.5)

Hooke’s law applied to each of the i -th layer has the following form:

ei
xx =

1
Ei

1

σi
xx −

vi
13

Ei
1

σi
zz; e

i
zz =

−vi
31

Ei
3

σi
xx +

1
Ei

3

σi
zz. (1.6)

Solving system (1.6) with respect to σi
xx, σi

zz yields:

σi
xx =

Ei
1

∆̄i
ei
xx +

Ei
1v

i
31

∆̄i
ei
zz, σ

i
zz =

Ei
3v

i
13

∆̄i
ei
xx +

Ei
3

∆̄i
ei
zz, (1.7)

where Ei
1, Ei

3 are the elasticity modules, and vi
13, vi

31 are Poisson’s coefficients in the i -th layer,
whereas ∆̄i = 1− vi

31v
i
13.

For chosen orthotropic properties of the material layers the following formula holds

Ei
3v

i
13 = Ei

1v
i
31, (1.8)

which means that Ei
1 = Ei

3v
i
13/vi

31.
Owing to the static hypothesis σzz = 0, the second equation of (1.7) yields the formula for

deformation εi
zz, which is then substituted to the first relation of (1.7) taking into account (1.8).

As a result one obtains:
σi

xx = Ei
1e

i
xx. (1.9)

Stresses in each beam layer are defined as follows

σi
xx = Ei

1ε11 − zEi
1

∂2W

∂x2
. (1.10)

Next, we derive a beam dynamics equation as well as the associated boundary conditions
from the point of view of energy distribution analysis.

We consider the process of beam motion on the interval of time instants t0 and t1. For
this time interval various trajectories of the system points between initial and final states are
compared. Real trajectories differ from other possible trajectories (allowed by constraints) by
satisfying the following condition:

t1∫

t0

(
δK − δΠ + δ′A

)
dt = 0, (1.11)

where K denotes the system kinetic energy, Π is the system potential energy, and δ′A is the
sum of elementary works of the external forces.
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In this case, when all forces acting on the system have a potential, equation (1.11) takes the
following form

δS = δ

t1∫

t0

(K −Π) dt = 0, (1.12)

where S =
t1∫
t0

(K −Π) dt is the Hamilton action. The last equation presents the well known

Hamilton-Ostrogradskiy principle. In (1.12) Π = ΠC + Πi, where ΠC is the deformation energy
of the middle surface, and Πi is the energy of the bending deformation.

Proceeding in an analogous way as in the case of one-layered beam, we denote by T11 internal
stresses in the middle beam line, by Q1 the shearing forces, and by M11 the bending moment:

T11 =
k∑

i=0

αi+1∫

αi

σxx
idz,M11 =

k∑

i=0

αi+1∫

αi

σxx
izdz, (1.13)

where n + m− 1 = k, δi −∆ = αi, δi+1 −∆ = αi+1.
Let us first define variation of the potential beam energy δΠ. Observe that energy ΠC is

ΠC =
1
2

∫
T11ε11dx, (1.14)

and energy of bending has the following form

Πi =
1
2

∫
M11

(
−∂2W

∂x2

)
dx. (1.15)

Kinetic beam energy is:

K =
1
2

γ

g
(2h0)

∫ [(
∂u

∂t

)2

+
(

∂W

∂t

)2
]

dx. (1.16)

Elementary work of external forces has the following form

δ′A =
∫

(Pxδu + qδW ) dx, (1.17)

where Px denotes normal load and q denotes transversal load. After some transformations the
following equations of motion are obtained:

∂T11

∂x
+ Px − γ

g
(2h0)

∂2u

∂t2
= 0,

∂2M11

∂x2
+

∂

∂x

(
T11

∂W

∂x

)
+ q − γ

g
(2h0)

∂2W

∂t2
= 0. (1.18)
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Substituting formulas for T11 and M11 governed by (1.4) and (1.5) into (1.18) one gets

T11 =




k∑

i=0

αi+1∫

αi

Ei
1dz


 ε11 −




k∑

i=0

αi+1∫

αi

Ei
1zdz


 ∂2W

∂x2
,

M11 =




k∑

i=0

αi+1∫

αi

Ei
1zdz


 ε11 −




k∑

i=0

αi+1∫

αi

Ei
1z

2dz


 ∂2W

∂x2
(1.19)

Introducing the following notation

C11 =
k∑

i=0

αi+1∫

αi

Ei
1dz,K11 =

k∑

i=0

αi+1∫

αi

Ei
1zdz, D11 =

k∑

i=0

αi+1∫

αi

Ei
1z

2dz (1.20)

one gets

T11 = C11ε11 −K11
∂2W

∂x2
,M11 = K11ε11 −D11

∂2W

∂x2
. (1.21)

Substituting formulas of (1.21) into (1.18) and taking into account (1.4) we get:

∂C11

∂x

[
∂u

∂x
+

1
2

(
∂W

∂x

)2
]

+ C11
∂

∂x

[
∂u

∂x
+

1
2

(
∂W

∂x

)2
]
−

−∂K11

∂x

∂2W

∂x2
−K11

∂3W

∂x3
+ Px − γ

g
(2h0)

∂2u

∂t2
= 0,

∂2

∂x2

{
K11

[
∂u

∂x
+

1
2

(
∂W 2

∂x

)2
]
−D11

∂2W

∂x2

}
+

+
∂

∂x

{
C11

[
∂u

∂x
+

1
2

(
∂W 2

∂x

)2
]
−K11

∂2W

∂x2

}
∂W

∂x
+

+q − γ

g
(2h0)

∂2W

∂t2
= 0. (1.22)

In the case of one-layered and homogeneous beam of constant cross section, equations (1.22)
take the form

E (2h0)
{

∂2u

∂x2
+ L3 (W,W )− (2h0)

γ

g

∂2u

∂t2

}
= 0,

E (2h0)

{
L1 (u,W ) + L2 (W,W )− (2h0)

2

12
∂4W

∂x4

}
+ q − (2h0)

γ

g

∂2u

∂t2
= 0, (1.23)

where

L1 (u,W ) =
∂2u

∂x2

∂W

∂x
+

∂u

∂x

∂2W

∂x2
,
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L2 (W,W ) =
3
2

∂2W

∂x2

(
∂W

∂x

)2

,

L3 (W,W ) =
∂2W

∂x2

∂W

∂x
(1.24)

are nonlinear operators.
System (1.23) should be supplemented by one of the following boundary conditions:

1. Clamping

w = 0;u = 0;
∂w

∂x
= 0; (1.25)

2. Simple support
w = 0;u = 0;Mx = 0; (1.26)

3. Free edge
Mx = 0;Nx = 0;Qx = 0; (1.27)

and the following initial condition

w|t=0 = ẇ|t=0 = u|t=0 = u̇|t=0 = 0. (1.28)

2.3 The Timoshenko beam model

We assume that tangential displacements uz, W z are distributed along thickness of the layers
package via a linear rule, i.e.

uz = u + zγx,W z = W, (1.29)

where γx = γx (x) is the angle of normal rotation to the surface z = 0 generated by deformation
in the plane X0Z. Then from (1.1) and taking into account (1.29) one gets

ez
xx =

∂u

∂x
+

1
2

(
∂W

∂x

)2

+ z
∂γx

∂x
; ez

xz = γx +
∂W

∂x
. (1.30)

Now, if we denote tangential deformations of the middle beam line by ε11 using the formula

ε11 =
∂u

∂x
+

1
2

(
∂W

∂x

)2

, (1.31)

and bending deformations by H11 = ∂γx

∂x , shear deformations by ε13 = γx + ∂W
∂x , then formulas

governing each beam layer deformation can be presented by the linear formula regarding z :

ez
xx = ε11 + zH11; ez

xz = ε13; z ∈ (δi −∆, δi+1 −∆) . (1.32)
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Hooke’s law for each i-th orthotropic layer is

ei
xx =

1
Ei

1

σi
xx −

vi
13

Ei
1

σi
zz; e

i
zz =

−vi
31

Ei
3

σi
xx +

1
Ei

3

σi
zz; e

i
xz =

σi
xz

Gi
13

, (1.33)

and hence one gets

σi
xx =

Ei
1

∆̄i
ei
xx +

Ei
1

(
vi
31

)

∆̄i
ei
zz; σ

i
zz =

Ei
3

(
vi
13

)

∆̄i
ei
xx +

Ei
3

∆̄i
ei
zz; σ

i
xz = Gi

13e
i
xz, (1.34)

where Ei
1, Ei

3 are the elasticity modules; vi
13, vi

31 are Poisson’s coefficients; Gi
13 is the shear

modulus in the i -th layer, and ∆̄i = 1 − vi
31v

i
13. For a chosen type of material othotropy the

following relations hold
Ei

3v
i
13 = Ei

1v
i
31, (1.35)

which yields Ei
1 = Ei

3vi
13

vi
31

.

Taking into account the static hypothesis σi
zz = 0, a formula for deformation ei

zz is found
and then it is substituted into first two relations of (1.34). Hence, stress tensor components in
each beam layer have the following forms:

σi
xx = Ei

1e
i
xx, σi

xz = Gi
13e

i
xz. (1.36)

Denoting
ϕi

1 = Ei
1, ϕ

i
2 = 0, (1.37)

and taking into account (1.32), the following formulas describing stresses in each beam layer are
derived

σi
xx = ϕi

1ε11 + zϕi
1H11, σ

i
xz = Gi

13ε13. (1.38)

Let us denote n + m − 1 = k, δi − ∆ = ai, δi+1 − ∆ = ai+1, and in the way analogous to
that of one layer beam we denote internal stresses by T11, shearing forces by Q1, and bending
moment of the form by M11

T11 =
k∑

t=0

ai+1∫

ai

σt
xxdz; Q1 =

k∑

i=0

ai+1∫

ai

σ1
xzdz;M11 =

k∑

t=0

ai+1∫

ai

σ1
xx · zdz (1.39)

respectively, and then

δV =
∫

(T11δε11) dX +
∫

(M11δH11) dX +
∫

(Q1δε13) dX. (1.40)

Substituting into (1.34) the formulas for σi
xx and σi

xz given by (1.40), one gets

T11 =




k∑

i=0

αi+1∫

αi

ϕi
1dz


 ε11 +




k∑

i=0

αi+1∫

αi

ϕi
1zdz


H11,
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Q1 =




k∑

i=0

αi+1∫

αi

Gi
13dz


 ε13,

M11 =




k∑

i=0

αi+1∫

αi

ϕi
1zdz


 ε11 +




k∑

i=0

αi+1∫

αi

ϕi
1z

2dz


H11. (1.41)

Coefficients of series (1.41) have the following form

C11 =
k∑

i=0

ai+1∫

ai

ϕi
jdz; K11 =

k∑

i=0

ai+1∫

ai

ϕi
j · zdz;

D11 =
k∑

i=0

ai+1∫

ai

ϕi
j · z2dz;A44 =

k∑

i=0

ai+1∫

ai

Gi
13dz; j = 1, 2, l = 2, 1, (1.42)

and therefore formula (1.41) takes the following form

T11 = C11ε11 + K11H11, Q1 = A44ε13, M11 = K11ε11 + D11H11. (1.43)

Proceeding in the way similar to that of the Euler-Bernoulli kinematical model, the Hamilton-
Ostrogradskiy principle takes the following form

δS = δ

t1∫

t0

(K −Π) dt = 0, (1.44)

where Π = ΠC + Πi.
Energy of the middle surface ΠC is

ΠC =
1
2

∫

e

T11ε11dx =
1
2

∫

e

T11

[
∂U

∂x
+

1
2

(
∂W

∂x

)2
]

dx, (1.45)

and bending energy Πi is given in the form

Πi =
1
2

∫

e

[
M11H11 + Q11

(
γx +

∂W

∂x

)]
dx, (1.46)

whereas the kinetic energy is

K =
1
2

γ

g
2h0

∫

e

[(
∂U

∂t

)2

+
(

∂W

∂t

)2

+ b

(
∂γx

∂t

)2
]

dx, (1.47)
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and finally the work of external forces is as follows

δ′A =
∫

e

(P11δU + qδW ) dx, (1.48)

where the following abbreviations: γ =
k∑

i=0
γi, b =

k∑
i=0

αi+1∫
αi

z2dz are applied in equation (1.47).

Substituting (1.45)-(1.48) into (1.44) and applying variation, the following equilibrium equa-
tions are obtained

∂T11

∂x
+ Pxx − γ

g
(2h0)

∂2u

∂t2
= 0,

∂Q11

∂x
+

∂

∂x

(
T11

∂W

∂x

)
+ q − γ

g
(2h0)

∂2W

∂t2
= 0, (1.49)

∂M11

∂x
−Q11 − γ

g
b
∂2γx

∂t2
= 0.

Substituting (1.43) into (1.49) and taking into account (1.31) gives the following Timoshenko
equations regarding displacements

∂

∂x

{
C11

[
∂u

∂x
+

1

2

(
∂W

∂x

)2
]

+ K11
∂γx

∂x

}
+ Pxx − γ

g
(2h0)

∂2u

∂t2
= 0,

∂

∂x

[
A44

(
γx +

∂W

∂x

)]
+

∂

∂x

{
C11

[
∂u

∂x
+

1

2

(
∂W

∂x

)2
]

∂W

∂x
+ K11

∂γx

∂x

∂W

∂x

}
+ q − γ

g
(2h0)

∂2W

∂t2
= 0 (1.50)

∂

∂x

{
K11

[
∂u

∂x
+

1

2

(
∂W

∂x

)2
]

+ D11
∂γx

∂x

}
−A44

(
γx

∂W

∂x

)
− γ

g
b
∂2γx

∂t2
= 0

The system of equations (1.50) requires boundary and initial conditions.

1. Either rotation angle around the normal axis OY or the bending moment is given

γx = γ0
x or M11 = M0

11. (1.51)

2. Either normal displacements of the contour points or the value of external transversal
stresses is given

W = W 0 or Q11 + T11
∂W

∂x
= Q0

11. (1.52)

3. Either displacements of the contour points of the middle surface in x directions or the
value of external compression stress are given, i.e.

u = u0 or T11 = T 0
11. (1.53)

Latin American Journal of Solids and Structures 5 (2008)



Chaotic vibrations in multi-layered Bernoulli-Euler and Timoshenko type beams 329

Initial conditions are introduced in the following way

w|t=0 = u|t=0 = γ|t=0 = 0, ẇ|t=0 = u̇|t=0 = γ̇|t=0 = 0. (1.54)

In the mathematical model built on the Bernoulli-Euler hypothesis, the position of a normal
element in the extreme cross section after deformation is governed by four parameters. This
means that on each of the contour part four boundary conditions are formulated. In the math-
ematical model based on the Timoshenko hypothesis a number of the degrees of freedom of a
normal element reaches five, since now an independent rotation around axis x is allowed (on the
boundary x=const).

If transversal rotation is neglected, i.e. ∂δW
∂x = −δγx holds, then removal of term δγx from the

variation equation gives the equations corresponding to the Bernoulli-Euler hypotheses instead
of equations (1.50).

3 Numerical investigation of chaotic vibrations of flexible Euler-Bernoulli beams

3.1 Problem formulation

Let us introduce the Cartesian coordinates XOZ (Figure 2.1). A thin elastic beam is studied
in the space Ω =

{
x ∈ [0, a] ;−h ≤ z ≤ h;− b

2 ≤ y ≤ b
2

}
, whose middle surface deformation is

εx = ∂u
∂x + 1/2

(
∂w
∂x

)2
, where: w (x, t) is the beam deflection and u (x, t) is the displacement of

the middle beam line along axis ox. It is assumed that owing to the Bernoulli-Euler hypothesis
a normal to the middle line remains normal after the beam deformation i.e. εxx = εx − z ∂2w

∂x2 ,

where εx denotes the middle beam line deformation, Nx =
h∫
−h

σxxdz is the longitudinal stress,

and Mx =
h∫
−h

σxxzdz = − (2h)3

12 E ∂2w
∂x2 denotes the bending moment [13].

The system of differential equations in displacements, governing the beam motion including
energy dissipation, after introduction of the following non-dimensional parameters

w̄ =
w

(2h)
, ū =

ua

(2h)2
, x̄ =

x

a
, λ =

a

(2h)
, q̄ = q

a4

(2h)4 E
,

t̄ =
t

τ
, τ =

a

c
, c =

√
Eg

γ
, ε̄i = εi

a

c
, i = 1, 2, (2.1)

is written in the following non-dimensional form

{
∂2u
∂x2 + L3 (w,w)− ∂2u

∂t2
− ε2

∂u
∂t = 0,

1
λ2

{
L2 (w, w) + L1 (u,w)− 1

12
∂4w
∂x4

}
− ∂2w

∂t2
− ε1

∂w
∂t + q = 0.

(2.2)
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Figure 2.1: Beam geometry and applied load

In the above, bars over non-dimensional parameters are omitted and the following notation
is introduced: L1 (u,w) = ∂2u

∂x2
∂w
∂x + ∂u

∂x
∂2w
∂x2 , L2 (w,w) = 3

2
∂2w
∂x2

(
∂w
∂x

)2
, L3 (w,w) = ∂2w

∂x2
∂w
∂x ; ε1, ε2

- damping coefficients; q = q (x, t) - transversal load, E - Young modulus; ρ, γ - density and
weight density of the beam, respectively; g - Earth gravitational acceleration.

Equation (2.2) is supplemented by one of the equations on the beam boundaries:

i. “clamping-clamping”

w (0, t) = w (a, t) = u (0, t) = u (a, t) =
∂w (0, t)

∂x
=

∂w (a, t)
∂x

= 0; (2.3)

ii. “simple support - simple support”

w (0, t) = w (a, t) = u (0, t) = u (a, t) =
∂2w (0, t)

∂x2
=

∂2w (a, t)
∂x2

= 0; (2.4)

iii. “clamping - simple support”

w (0, t) = u (0, t) = w (a, t) = u (a, t) =
∂w (0, t)

∂x
=

∂2w (a, t)
∂x2

= 0; (2.5)

iv. “clamping - free edge”
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w (0, t) =
∂w (0, t)

∂x
= u (0, t) = 0; Mx (a, t) = Nx (a, t) = Qx (a, t) = 0. (2.6)

Additionally, the following initial conditions are added to system (2.2):

w (x, t)|t=0 =
∂w (x, t)

∂t |t=0
= u (x, t)|t=0 =

∂u (x, t)
∂t |t=0

= 0 (2.7)

3.2 FDM and PDEs solution

The infinite problem (2.2)-(2.7) will be solved via FDM with the approximation of O
(
c2

)
, and

it is reduced to a system of ordinary differential equations (ODEs). In each node of a mesh the
following set of ODEs is obtained

{
L1,c (wi (t) , ui (t)) + qi (t) = ε1ẇi (t) + ẅi (t) ;
L2,c (wi (t) , ui (t)) = ε2u̇i (t) + üi (t) ; (i = 0, ..., n) ,

(2.8)

where n denotes the partition number regarding a spatial coordinate, c is the computational
step regarding spatial coordinate, and L1,c (wi (t) , ui (t)), L2,c (wi (t) , ui (t)) are the difference
operators.

For i = 1, i = n−1 in equations (2.8) one needs to find w in the out-of-contour points, which
are defined by the boundary conditions. Namely, we have

i. for boundary conditions (2.3): w−i = wi ;

ii. for boundary conditions (2.4): w−i = −wi.

Additionally, the system of equations (2.8) is supplemented by the following equations on
the boundary, i.e.

iii. Boundary conditions (2.3)-(2.5):

w0 = 0;wn = 0;u0 = 0;un = 0; (2.9)

iv. Boundary conditions (2.6):

w0 = 0;u0 = 0;Mx = 0;Nx = 0;Qx = 0 (2.10)

Initial conditions for all mentioned boundary conditions have the following difference forms

w (xi)|t=0 = 0;u (xi)|t=0 = 0; ẇ (xi)|t=0 = 0; u̇ (xi)|t=0 = 0, (i = 0, ...n, ) . (2.11)

The obtained system of equations (2.8) with the supplemented boundary and initial condi-
tions (2.9)-(2.11) is solved by the fourth order Runge-Kutta method.

Latin American Journal of Solids and Structures 5 (2008)



332 J. Awrejcewicz, A. V. Krysko, M.V. Zhigalov, O.A. Saltykova, V. A. Krysko

3.3 FEM and PDEs solution

Note that in the field of mechanical structural engineering in spite of the so far applied FDM
often FEM and FBE (Finite Boundary Elements) are used. The main idea of application of the
mentioned approaches relies on the approximation of a continuous object by a discrete model.
The discrete model is obtained on a basis of a set of piece-wise continuous functions defined on
a finite set of either subspaces (FDM) or boundaries (MBE).

The methods of formulation of discrete models by FEM are divided into two large groups.
The first one uses minimizing conditions of various energy containing functional, whereas the
second one relies on the methods of weighted boundary layers including the popular Bubnov-
Galerkin method.

In the Bubnov-Galerkin method the functions w (x) and u (x) are approximated as follows

ŵ =
N∑

i=1

ψi (x) ui, û =
N∑

i=1

ϕi (x) ui, (2.12)

where ui, wi are the values of functions u (x) , w (x) in the points (i = 1, N) to be found, and
ϕi (x) , ψi (x) are the known analytical (testing or form) functions.

Owing to the FEM theory, in order to construct a beam element one has to introduce form
functions. The considered beam element has four degrees of freedom (w1, w2, θ1, θ2) and the
introduced approximation is associated with the introduction of a cubic polynomial of the form

w (x) = a1 + a2x + a3x
2 + a4x

3, θ (x) = −dw

dx
= − (

a2 + 2a3x + 3a4x
2
)
. (2.13)

After estimation of the values of constants, the approximating function w (x) has the follow-
ing form

w = bNwc {W} , (2.14)

where bNwc =
(
1− 3ξ2 + 2ς3;−lξ (ξ − 1)2 ; 3ξ2 − 2ξ3;−lξ

(
ξ2 − ξ

))
is the form matrix; {W} =

(w1θ1w2θ2)
T is the matrix of node displacements; ξ = x/l is the non-dimensional quantity (local

coordinate).
Displacement approximation u (x) has the following form

u = bNuc {U} , (2.15)

where bNuc = (1− ξ; ξ) {U} = (u1u2)
T .

Applying the Bubnov-Galerkin procedure and taking into account the introduced approxi-
mations, the following FEM equations are finally obtained





[M1

[
Ẅ (t)

]
+ C1

[
Ẇ (t)

]
+ K1 [W (t)] = F1 (q (t) , U (t)) ,

M2

[
Ü (t)

]
+ C2

[
U̇ (t)

]
+ K2 [U (t)] = F2 (W (t)) ,

(2.16)

Latin American Journal of Solids and Structures 5 (2008)



Chaotic vibrations in multi-layered Bernoulli-Euler and Timoshenko type beams 333

where Mi, Ci,Ki are the mass, damping and stiffness matrices, respectively.

3.4 Reliability of the obtained results

One of the important problems which occur while solving chaotic phenomena in mechanics, is
addressing reliability of the obtained results. Since the differential equations governing behavior
of the applied mathematical models are essentially nonlinear, analytical solutions cannot be
obtained, and hence validity of results of the numerical solution cannot be verified. Therefore,
in order to check the computational reliability, a comparison of the results obtained via another
numerical technique is highly required. In this work, solutions obtained via FDM and FEM in
the Bubnov-Galerkin form are compared. Note, that for either FEM or FDM the partitions are
carried out regarding spatial coordinate and time.

In order to investigate convergence regarding the number of partitions of the spatial coordi-
nate applying FDM and FEM, problem (2.6) with the following data: ε1 = 1, ε2 = 0 ; ωp = 5, 1
–frequency of the driven force with amplitude q0, and the relative beam length λ = a/2h = 50,
is studied. Time step ∆t has been chosen from stability condition of the obtained solutions
with respect to the Runge principle, and it is ∆t=3.9052·10−3. Convergence regarding spatial
coordinates has been verified for n = 40; 80 using two different methods (FDM and FEM).

In order to compare numerical results in Tables 2.1 (FDM) and 2.2 (FEM) frequency power
spectra and time histories w (t) for loading amplitude q0 = 100 (harmonic vibrations regime),
as well as for q0 = 32200 (chaotic state), are analyzed.

As it is seen in the tables, the frequency power spectra of a harmonic signal fully coincide for
both methods for n = 40 and n = 80, and the signals differ from each other by 1.5-3%. In the case
of chaotic dynamics, the frequency power spectra coincide but they differ regarding frequencies
number. The signals differ by 3-5% either for periodic or chaotic vibrations. Therefore, a double
increase of the partition number does not lead to essential changes of signals and power spectra
in either regular or chaotic states. Next, during our further investigations of the Bernoulli-Euler
beams, partitions of n = 40 and step c = 1/40 are applied.

Table 2.3 presents convergence regarding (FDM, FEM) for the boundary conditions (2.6) and
for the parameters as in the previous cases. Table 2.3 shows that for periodic vibrations signals
and frequency power spectra obtained via FDM and FEM practically coincide. In the case
of chaos signal FDM differs by 2.5-4%. Frequency power spectra for beam chaotic dynamics
practically qualitatively coincide, and a difference of 5% is observed in frequencies number.
Therefore, owing to analysis of Tables 2.1 - 2.3, one may conclude that the results obtained by
FDM and MBM either for harmonic or chaotic regimes are reliable.

In order to investigate non-linear dynamics of the Bernoulli-Euler beams the so called charts
of vibration regime depending on two control parameters {q0, ωp} are introduced. The charts
represent a graphical transformation of the computational results of the investigated dynamical
systems. One of the important problems being addressed is that of getting full information of
the system dynamics achieved via minimal computational time. The investigations of charts
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Signal w (t) Power spectrum
q0 = 100

 

 

 

q0 = 32200

 

 

 

Table 2.1: Signal and frequency power spectra (regular dynamics)

with the resolution of 100×100, 200×200, 300×300, 400×400 reported in reference [9] indicate
that the most optimal one is that of the resolution 300×300. However, to construct it one needs
to compute and analyze 9 ·104104 computational variants. Observe that computation with a
Celeron 1700 processor using FDM with n = 40 requires the computational time of 70 days,
whereas for n = 80 it needs 140 days. In the case of FEM application the computational time
for the same case increases by about 1.5 to 1.7 times.

Table 2.4 gives charts which exhibit the dependence of vibration regimes on two control
parameters {q0, ωp} for boundary conditions (1.6) and (1.3). Frequency of the excitation load is
changed from ω0/2 (chart I) to 3ω0/2 (chart III), where ω0 (chart II) is the free beam vibration
frequency (for problem 4 - ω0 = 5.1). Maximum loading amplitude corresponds to the beam
deflection 5 (2h). The charts are constructed with the resolution of 300× 300.

Analysis of the obtained signals and beam vibration regimes also proves that results are
reliable for various forms of vibrations. Note that chaotic zones obtained through FEM are
wider regarding frequency in comparison to those obtained via FDM. However, the mentioned
zones coincide with respect to amplitude comparison. In the charts clearly periodic, chaotic,
and bifurcation zones are presented. For small amplitudes of the excited vibrations one may
observe black zones associated with damped system vibrations.

In order to check reliability of the results for different boundary conditions and to save
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Signal w (t) Power spectrum
q0 = 100

 

 

 

q0 = 32200

 

 

 

Table 2.2: Signal and frequency power spectra (chaotic dynamics)

computational time, Table 2.5 gives scales associated with vibration type vs. amplitude of
excitation q0 ∈

[
0, 6 · 104

]
(they are constructed only for one value of ωp) and the drawings

wmax (q0). The stated problems have been solved for the following parameters: ε1 = 1, ε2 = 0,
λ = a

2h = 50, ωp = 6.9, n = 40.
Different boundary conditions essentially influence vibration regime of the investigated sys-

tem. In the case of clamping-clamping, irrespectively of the numerical approach (FEM or FDM),
the system exhibits independent frequency vibrations with zones of bifurcations. A transition to
chaos is not observed in this case. In the graph wmax (q0) sudden jumps and discontinuities are
not observed. If one considers zones in the case of simple support-simple support, then chaotic
zones appear and they are interlaced with bifurcation zones. However, periodic zones are not
detected at all in this case.

Observe that the dependence of maximum deflection vs. amplitude of excitation only in
the beginning does not have sudden jumps of wmax (for q0 ∈

[
0, 1 · 104

]
). The transition from

periodic to chaotic dynamics and vice versa is characterized by a sudden change of wmax corre-
sponding to a simultaneous change of the amplitude of vibrations. This observation enables a
definition of dynamical stability loss associated with transversal sign-changeable load action.

In the case of asymmetric boundary conditions the transition to chaos occurs for q0 ≥ 2.5·104.
For the given boundary conditions periodic vibrations dominate for q0 ∈

(
1.1 · 104, 2.5 · 104

)
.
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Signal w (t) Power spectrum

q0 = 100

FDM

FEM

FDM

FEM

 

 

 

q0 = 32200
 

FDM

FEM

FDM

FEM

 

 

Table 2.3: Convergence of results obtained by FDM and FEM

Observe that in the case of chaos, the dependence wmax (q0) also has discontinuities in spite of
sudden jumps of the maximum deflection.

3.5 Chaotic vibrations vs. boundary conditions

We have observed that the obtained results of FEM and FDM are satisfactorily convergent, and
since the computational time is essentially lower using FDM computation, therefore the last one
is further applied.

We divide the vibration regimes into two classes: class “A” - periodic vibrations with in-
dependent frequencies, damped vibrations (engineering-acceptable regimes), and class “B” -
bifurcation and chaos, i.e. regimes which are not suitable for construction exploitation.

Table 2.6 gives charts constructed for the Bernoulli-Euler model for boundary conditions
(2.3)-(2.5). The beam is transversally driven and the amplitude of excitation is changed in the
interval q0 ∈ [0; 32200], while the excitation frequency is ωp ∈ [2.55; 7.65].
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FDM

  

FEM

  

Notation

 

Table 2.4: Vibration type charts obtained by FDM and FEM
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Table 2.5: Vibration scales, beam schemes and Wmax obtained by FDM and FEM
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a) b)

 

    

c)

Table 2.6: Beam models and vibration type charts
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Note that in the case of boundary conditions (4) - (a) and (6) - chart (c), the region of class
“A” is the largest one. Besides, in chart (c) drops of bifurcation zones appear. Namely, small
changes of the parameters {q0, ωp} cause a change of vibration regime, which is not required.
Zones of class “B” are denoted in charts (a) and (b) and begin with the loading amplitude
q0 ≈ 19000 - chart (a) and q0 ≈ 7500 - chart (b). It should be emphasized that zones of class
“B” for a “simple support” are wider in comparison to “stiff clamping”. Chart (c) essentially
differs from charts (a) and (b), since it suffers from the lack of chaotic zones.

One of the important questions which appear in the investigation of chaotic beam vibrations
is the analysis of a scenario transition from regular to chaotic motion. Next, we study the
scenario for fixed ωp = 9.2 (Table 2.7) by FDM.

q0 Sw wt w(ẇ)

100

   

8740

   

10500

   

60000

   

Table 2.7: Frequency spectra, time histories and phase portraits for different q0 (Ruelle-Takens-
Newhouse scenario)

The following transition steps are remarkable.

1. q0 = 100. Periodic vibrations with excitation frequency ωp.
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2. q0 = 560. Emergence of the first and second independent frequencies ω1 = 3, 31, ω2 = 2, 92.

3. q0 = 8740. Occurrence of the third frequency ω3 = 2, 51 and fourth frequency ω4 = 3, 75.
Simultaneously, the values of ω1, ω2 are changed and the following linear combination
appears ω1-ω2=ω2-ω3.

4. q0 = 10500. Noisy character of frequencies appears, and a chaotic component is observed.
The combination of linear frequencies is as follows: ω1-ω2=ω2-ω3=ω1-ω4.

5. q0 = 60000. Chaotic state of the system.

The so far reported scenario follows the so called Ruelle-Takens-Newhouse scenario presented
in reference [3].

Below, the transition from regular to chaotic dynamics for ωp = 6.2 is illustrated. The
following vibration steps are observed.

1. q0 = 50. Periodic system vibrations with frequency ωp = 6.2. Then ω1 = 0, 07 appears,
whose value is successively decreased.

2. q0 = 9812.5. Frequency ω1 vanishes.

3. q0 = 9812.70887900199977594. Sharp transition into chaos is observed.

4. q0 = 10300. The system leaves the chaotic state and the associated frequencies are changed.
Beside the excitation frequency, also two more appear, i.e. ω2 = 1, 57 and ω3 = 4, 62, and
the difference between ωP and ω3 is ω2. Pairs of frequencies around ω2 and ω3 appear.
Their number increases up to a certain threshold, then the pairs of frequencies begin to
vanish, and simultaneously the values of frequencies ω2 and ω3 are oscillating.

5. q0 = 16000. For ω2 the mentioned pairs of frequencies are ω4 = 0, 61 and ω7 = 2, 79 ;
ω5 = 1, 08 and ω6 = 2, 32, whereas for ω3 the pairs of frequencies are ω8 = 3, 40 and
ω11 = 5, 5837 ; ω9 = 3, 8779 and ω10 = 5, 1143.

A further increase of the load amplitude generates an increase of the number of the men-
tioned pairs of frequencies.

6. q0 = 23000. The frequency ω12=ωP
2 = is isolated, and the pair frequencies appear in its

vicinity; also period doubling bifurcations are observed (region I).

7. q0 = 23500. In the frequencies spectrum a chaotic component appears, and then the
system transits into the chaotic regime.

The illustrated and studied scenarios are reported for the same problem, however for different
excitation frequencies. Note that for different values of ωp, the system is transited into chaotic
state using different scenarios.
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q0 Sw wt w(ẇ)

50

   

9812,5

   

9812,7088...

   

10300

   

16000

   

23000

   

23500

   

Table 2.8: Frequency spectra, time histories and phase portraits for different q0
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3.6 Chaotic beam vibrations excited by an impact

In this section, we study the case when a free beam edge is subjected to an impact of a rigid
body with mass Mr and given velocity V. The problem described so far, beside a theoretical
importance has also practical aspects. Namely, vibration processes are often generated by an
impact which occurs during the contact of a spacecraft and orbital station, a rail-coach with a
train, and so on. After impact the impacting body sticks with the beam and further the “beam
+ body” system is studied (Figure 2.2).

 

Figure 2.2: Impact between two bodies

In the impact time instant, owing to the 2nd Newton law, the following force Nx · (2h) =
Mr · ∂2u

∂t2
appears on the free beam edge, where 2h denotes the beam height, Mr is the impacting

body mass, u (x, t) describes displacements along OX axis, and Nx is the longitudinal force. The
associated non-dimensional governing equation form is as follows: ∂2u

∂t2
= 1

χNx, where χ = Mr
Mb

,
and Mb are the beam mass.

Finally, the mathematical model of beam vibrations during impact consists of the following
parts:

i. Differential equations

{
∂2u
∂x2 + L3 (w, w)− ∂2u

∂t2
− ε2

∂u
∂t = 0,

1
λ2

{
L2 (w,w) + L1 (u,w)− 1

12
∂4w
∂x4

}
− ∂2w

∂t2
− ε1

∂w
∂t + q = 0;

(2.17)

ii. Boundary conditions

w(0) = u(0) = Mx = 0;
1
χ

Nx =
∂2u

∂t2
; (2.18)

iii. Initial conditions

w (x) |t=0 = u (x) |t=0 = 0;
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λ = 30 λ = 40 λ = 50 λ = 60
V = 0.05 tcr = 1428, 6 tcr = 3891, 8 tcr = 1659, 56 tcr = 378, 03
V = 0.01 tcr = 611, 91 tcr = 486, 72 tcr = 322, 72 tcr = 175, 5

Table 2.9: Dependences of tcr on λ and V

∂w (x, t)
∂t

∣∣∣∣t=0 = 0;
∂u (x, t)

∂t

∣∣∣∣
t=0

= 0forx 6= 0,

∂u (x, t)
∂t t=0

= V forx = 0. (2.19)

We study nonlinear beam vibrations for: X = 0.01, ωp = 5.1; and when the beam is subjected
to the action of constant transversal load q = 10−7, free beam face is exposed to the impact of
the rigid body side moving with velocity V = 0.05, 0.1, and the following damping coefficients
are taken ε1 = 10−3, ε2 = 0. Geometric beam parameters are: λ = 30, 40, 50, 40. Note that
the impact generates longitudinal waves and their reflection. So, we introduce time tcr, when a
multiple interaction of the longitudinal waves occurs with appearing transversal waves.

Further, we study the dependence of tcr on geometric beam parameters and on the impacting
body velocity in the impact time instant.

As it is seen in Table 2.9, the value of tcr is high in the case of relatively thick beams
λ = 30, 40 and depends on the body velocity. We discuss the computational results of signals
w (t) and frequency power spectra Sdb (ω) for each of the considered cases.

Analysis of the reported data shows that for small impacting body velocity periodic and
damped vibrations appear. Increase of velocity yields a transition from longitudinal to transver-
sal beam vibrations, what is well visible on the beam signal shapes. For λ = 40 and V = 0.05
the vibration process is slightly modified, and for remaining λ the beam vibrations are chaotic
(in the reported case they are periodic).

3.7 Investigation of three-layered beam vibrations

The three-layered Bernoulli-Euler beam is investigated for the following parameters: λ = 50,
ε1 = 0.1, ε2 = 0.1, ωp = 5.1. The amplitude of exciting load is changed in the interval q0 ∈
[0; 7500]. The material of external layers is glass-plastic (E1 = 18.7GPa, ρ1 = 1.8 · 103kg/m3),
whereas internal layer is made from aluminum (E0 = 73GPa, ρ0 = 2.681 · 103kg/m3).

A mathematical model is built using the Bernoulli-Euler hypothesis for the whole package
of layers and taking into account non-linear relation between deformations and displacements
in the form proposed by Kármán [13]. The following modified modules of elasticity and density
are introduced:

E = (2h)−1 · (E0h0 + 2E1h1) , ρ = (2h)−1 · (ρ0h0 + 2ρ1h1) . (2.20)
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V λ = 30 λ = 40 λ = 50 λ = 60
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Table 2.10: Beam signals and frequencies for different λ and V
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Figure 2.3: Three-layered beam

The model consists of differential equations (2.2), boundary conditions (2.6) and initial
conditions (2.7).

Table 2.11 gives the functions of maximum deflection vs. amplitude of excitation, as well as
vibration type scales. Results are given for different thicknesses of external layer h1

h1 = h/5

 

 

h1 = h/4

 

Table 2.11: Functions Wmax and vibration scales for different h1

As Table 2.11 shows, the thickness of external layers has an essential influence on the
vibrations of the three-layered symmetric beam. For instance, for external layer thickness
h1 = h2 = h/5, and for loading amplitude q0 ∈ [500; 7000] vibrations take place with an in-
dependent frequency, whereas for q0 > 7000 chaotic vibrations appear.

An increase of the external layer by 20% provokes an essential change in the development of
the vibration scenario. For the load amplitudes q0 ∈ [700; 7000], the beam undergoes bifurcation
type vibrations, whereas for the loading amplitude larger than 7000 periodic vibrations with an
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Aluminum Glass-plastic

  

Table 2.12: Vibration scales and wmax(q0) obtained by FDM and FEM

independent frequency appear.
A transition from vibrations with independent frequency to chaotic vibrations for the external

layer thickness of h1 = h/5 is characterized by a jump of deflection in the function {wmax; q0}.
This shows that the so called stiff stability beam loss occurred, which may cause harmful effects.
In this case in the function {wmax; q0} for external layer thickness h1 = h/4, and during transition
from the bifurcation to periodic regime a sudden change of deflection is not observed, and
therefore stability loss does not appear.

Table 2.12 gives results for one-layered beams made from aluminum and glass-plastic. Com-
putations are carried out for the same earlier used damping coefficients and excitation frequency.

The results are obtained due to the application of two mentioned computational methods
(FDM and FEM). Although results presented on the graphs {wmax; q0} coincide in full, vibration
scales exhibit slight differences only in the case of aluminum.

As it has been seen in Table 2.12, a one-layered beam made from glass-plastic does not
vibrate chaotically within the whole interval of the applied loading. Vibration scales indicate
that the vibrations with excitation frequency dominate. Beams made from aluminum exhibit
chaotic dynamics for q0 ≥ 6000. Contrary to the beam made from glass-plastic, bifurcation
vibrations dominate in this case. Similarly to results reported in Table 2.11, a transition to
chaotic vibrations corresponds to a sharp change of beam deflection (aluminum), i.e. a stiff
stability loss appears.

Comparison of the results presented in Tables 2.11, 2.12 shows that for external layer thick-
ness h1 = h/5 vibration type of the three-layered beam for q0 < 6000 corresponds to vibrations
of the beam made from glass-plastic, whereas for q0 ≥ 6000 beam vibrations are similar to those
of the aluminum beam for the same loading amplitude excitation. In the case of external layer
thickness h1 = h/4 the behavior is completely inversed. It means that a slight change of layer
thickness may qualitatively change the vibration behavior.
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Therefore, one may control beam vibrations by changing the external layer thickness, i.e.
stiffness beam properties. In other words, one may choose geometric parameters of the layers
via numerical computations in such a way as to avoid harmful beam vibration regimes.

In order to study the second way of beam vibration control, we report charts of the vibration
type vs. control parameters {q0, ωp} obtained through FDM (Table 2.13) for the beam package
(where external layer thickness h1 = h/5 - a), as well as for homogeneous material (E = 2 · 105

MPa) - b). The vibration charts are constructed with the resolution 300× 300, and the applied
notation is the same as in Table 2.11.

In chart (a) large zones of damped vibrations dominate and the system (in general) vibrates
with one independent frequency. Chaotic and bifurcation-type vibrations occupy very narrow
zones. Observe that there are no regular vibration zones. For chart (b) the compression of
chaotic zones is evident. Zones of damped vibrations are essentially smaller in comparison to
those in chart (a), and they are distributed more uniquely. For low band frequencies and for
loading amplitude up to 3000, zones of periodic vibrations appear. For high band frequencies,
the image of vibrations is practically homogeneous and vibrations with independent frequency
dominate.

In the case of multi-layered beams, their vibrations strongly depend on small frequency
variations. Some frequencies are associated with chaotic dynamics within the whole interval
of excitation amplitude. For the one-layered beam and for ωp > 5.5, the loading amplitude
variation does not change the beam vibration type.

The charts of vibration types give a possibility to choose the required beam vibration regimes
using two control parameters {q0, ωp}, for which the beam exhibits either damped or harmonic
vibrations with one independent frequency.

  

a) b)

Table 2.13: Vibration charts of multiple (a) and single (b) beam layers
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4 Numerical investigation of chaotic vibrations of flexible Timoshenko-type beams

4.1 Problem formulation

During construction of the mathematical model of the Timoshenko-type beam it is assumed
that transversal cross sections remain flat after deformations, but they are not perpendicular to
the middle beam axis [13]. In this model we take into account the angle between transversal
cross sections and beam axis after deformation, which results in an increase of the number of
functions being sought, keeping the unchanged order of ODEs.

The system of ODEs regarding displacements which govern the beam dynamics taking into
account transversal shears effects (Timoshenko-type model) and energy dissipation in the non-
dimensional form (non-dimensional parameters are defined by (2.1), and γ̄ = γa

(2h) - transversal
shear), and for ε̄3 = ε3

a
c (damping coefficient associated with γ), takes the following form





1
3

(
∂2w
∂x2 + ∂2γx

∂x2

)
+ 1

λ2

(
L1 (w, u) + 1

2L2 (w,w) + L3 (w, u) + L2 (w, w)
)
+

+2 1
λ2 q − ∂2w

∂t2
− ε1

∂w
∂t = 0,

∂2u
∂x2 + L4 (w, w)− ∂2u

∂t2
− ε2

∂u
∂t = 0,

∂2γx

∂x2 − 8λ2
(

∂w
∂x + γx

)− ∂2γx

∂t2
− ε3

∂γx

∂t = 0;

(3.1)

where L1 (w, u) = ∂2w
∂x2

∂u
∂x , L2 (w,w) = ∂2w

∂x2

(
∂w
∂x

)2
, L3 (w, u) = ∂w

∂x
∂2u
∂x2 , L4 (w,w) = ∂w

∂x
∂2w
∂x2 and

bars over non-dimensional parameters are already omitted.
The system of ODEs (3.1) is supplemented by one of the following boundary and initial

conditions

i. “Clamping - clamping”:

w (0, t) = w (a, t) = 0; u (0, t) = u (a, t) = 0;

γx (0, t) = γx (a, t) = 0;
∂w (0, t)

∂x
=

∂w (a, t)
∂x

= 0; (3.2)

ii. “simple support - simple support”

w (0, t) = w (a, t) = 0; u (0, t) = u (a, t) = 0;

Qx (0, t) = Qx (a, t) = 0;
∂2w (0, t)

∂x2
=

∂2w (a, t)
∂x2

= 0; (3.3)

iii. “clamping - simple support”

w (0, t) = w (a, t) = 0; u (0, t) = u (a, t) = 0;

γx (0, t) = Qx (a, t) = 0;
∂w (0, t)

∂x
=

∂2w (a, t)
∂x2

= 0; (3.4)
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iv. “clamping - free edge”

w (0, t) = u (0, t) = 0; γ (0, t) =
∂w (0, t)

∂x
= 0;

Mx (a, t) = Nx (a, t) = Qx (a, t) = 0; (3.5)

and the initial conditions are

w (x, t)|t=0 = u (x, t)|t=0 = γ (x, t)|t=0 = 0,

∂w (x, t)
∂t |t=0

=
∂u (x, t)

∂t |t=0
=

∂γx (x, t)
∂t |t=0

= 0. (3.6)

4.2 Solution of PDEs via FDM and FEM

The studied infinite system is solved by FDM with the approximation of O
(
c2

)
and is reduced

to a system of finite ODEs. In each mesh node the following ODEs are obtained

L1,c (w, u, γ) = ε1ẇi + ẅi,

L2,c (w, u) = ε2u̇i + üi,

L3,c (w, γ) = ε3γ̇xi + γ̈xi . (3.7)

Boundary and initial conditions are also presented in the difference form which are analogous
to equations (2.9) - (2.11) but with inclusion of γx.

Applying the Bubnov-Galerkin procedure, the following FDM equations are obtained




M1

[
Ẅ

]
+ C1

[
Ẇ

]
+ K1 [W ] = F1 (q, U, ϕ) ,

M2

[
Ü

]
+ C2

[
U̇

]
+ K2 [U ] = F2 (W ) ,

M3 [ϕ̈] + C3 [ϕ̇] + K3 [ϕ] = F3 (W ) .

(3.8)

The system of equations (3.5) and (3.6) is solved via a standard procedure of the 4th order
Runge-Kutta method.

4.3 Reliability of the obtained results

In order to check reliability of the obtained results for the Timoshenko-type model, solutions
obtained via FDM and FEM are compared. Next, we study the problem for boundary conditions
of clamping-clamping, simple support-simple support, clamping-simple support for the same
parameters as in the Bernoulli-Euler beam investigations (ε3 = 0).

Graphs of the dependencies of the maximum deflection vs. excitation amplitude are obtained
via different computational methods. They fully coincide in the case of regular beam vibrations,
whereas slight differences appear only for chaotic dynamics.
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On the basis of results presented in Table 3.1, one may conclude that for the excitation
amplitude corresponding to regular vibrations the values of wmax coincide fully for two applied
computational approaches. In the case of chaotic dynamics small differences are visible. Vi-
bration scales obtained by the two methods fully coincide. Transition to chaos appears using
FDM later than in the case of FEM computation and the chaotic regime is smaller in the case
of applied FDM approach.

 

 

 

 

 

 

Table 3.1: Beam schemes, Vibration scales, beam schemes and Wmax(q0) obtained by FDM and
FEM

Observe that dynamical stability loss of the beam transversally excited by sign-changeable
load occurs, which is characterized by a sharp change of the maximum deflection associated with
a small change of the excitation amplitude. Dynamical stability loss occurs during the transition
from point A to point B, and from point C to point D. These transitions are associated with the
occurrence of chaotic zones. During the transition form point E to point F inversed transition
occurs, i.e. from chaos to regular dynamics, which is also presented on a scale (in the last case
the beam deflection values are decreased by about 1.5 times).
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Charts showing dependence of vibrations character vs. control parameters (Table 3.2) for
the Timoshenko-type beam are also presented for the used FDM (a) and FEM (b). Analysis of
scales and charts included in Tables 3.1 and 3.2 supports the earlier conclusion on a significant
influence of the transversal shear effects, keeping the same parameters of the used mathematical
beam models. A comparison of charts for the Timoshenko and Euler-Bernoulli beams shows
that for the same initial and boundary conditions and control parameters, the charts differ from
each other significantly. For instance, chaotic (periodic) zones (Table 3.2 a) are wider (narrow)
than those presented in Table 3.2b. A characteristic feature of the two mentioned charts is that
vibrations with independent frequency dominate. This suggests a need of development of more
exact mathematical models.

  

(a) (b)

Table 3.2: Beam vibration charts obtained by FDM (a) and FEM (b)

4.4 Chaos vs. boundary condition variations

Next, we consider the influence of boundary conditions on the Timoshenko-beam vibrations
(Table 3.3). The amplitude of excitation load is q0 ∈ [0; 60000] and the excitation frequency
ωp ∈ [3.45; 10.35]. The remaining parameters are the same as in the case of the Bernoulli-Euler
beam investigation. The classification of vibration types A and B is introduced like in part II.

The zones regarding class “A” practically have the same area for the presented three charts,
differing only because of vibration types. Vibration regimes of class “B” begin from the external
loading amplitude q0 ≈ 12000. In the chart associated with non-symmetric boundary conditions
for ωp ≈ [7.8; 9.1] , [9.8; 10.35] chaotic zones appear already for q0 ≈ 10.

Let us discuss in more detail scenarios shifting the investigated system from regular to
chaotic dynamics. We consider three scenarios regarding frequencies: ωp = 8.05, 6.9, 5.75. As
it is exhibited by the chart, the system is transited into chaos during the change of excitation
amplitude. Table 3.4 gives fundamental steps of the mentioned scenario for ωp = 8.05 (FDM).

The following fundamental steps of the system behavior are detected.
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  a) b)

 

   
Notation

 
c)

Table 3.3: Beam schemes and vibration charts
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1. q0 = 1. System vibrations are periodic, and only frequency excitation appears in the
frequency spectrum.

In the given interval three frequencies appear, which are linearly independent, i.e. ω1 =
4.46, ω2 = 1.83 and ω3 = 4.9.

2. q0 = 4600. After occurrence of ω4 = 0.92, the following linear frequency relations appear:
ω2 − ω4 = 0.85, and ω3 − ω1 = 0.85.

3. q0 = 11000. Frequencies constitute three groups, where the linear dependence in each
group follows: ω1 − ω2 = ω2 − ω4 = 1.1, ω3 − ω1 = ω1 − ω6 = 1.1, ωp − ω5 = 1.1.

4. q0 = 30000. Frequency power spectrum exhibits first, second and third period doubling
bifurcations denoted as I, II and III.

5. q0 = 40000. The fourth period doubling bifurcation is detected, and the phase portrait
consists of four rings.

6. q0 = 42500. There are three bifurcations, and an inversed route from chaos to regular
dynamics is realized.

7. q0 = 45000. New frequencies appear, whose values differ from fundamental frequencies
by the amount of 0.42, and the following relations hold ω4 − ω1 = ω7 − ω4 = ω9 − ω7 =
ωp − ω10 = 1.86.

The given scenario (for small values of the excitation amplitude) is characterized by three
frequency vibrations. Then, a series of new frequencies, whose values depend linearly on the
fundamental frequencies, appear and finally further frequency bifurcations yield a broad band
frequency spectrum. The investigated system is transited through a chaotic zone, and then the
number of bifurcations decreases.

Table 3.5 gives a scenario associated with excitation frequency ωp = 6.9 (FDM).
The following steps of beam dynamical behavior are detected.

1. q0 = 1000. System vibrations are periodic, and the frequency spectrum consists of excita-
tion and ω1 = 0.627 frequencies, and ω1 does not depend linearly on ωp.

2. q0 = 24000. The following linearly dependent frequencies appear: ω2 = ωp − 2ω1, ω3 =
ω1 · 3, ω4 = ω2 − 2ω1. Then the frequency values are changed.

3. q0 = 24600. The so far reported frequencies undergo three bifurcations denoted as I, II
and III.

4. q0 = 25500. The frequency spectrum consists of the following linearly dependent frequen-
cies: ωp − ω2 = ω2 − ω4 = ω4 − ω7 = 1.8, ω2 − ω6 = ω9 − ω4 = ω4 − ω3 = ω3 − ω11 =
= ω7 − ω1 = 0.53
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q0 Sw wt w(ẇ)

1

   

4600

   

11000

   

30000

   

40000

   

42500

   

45000

   

Table 3.4: Frequency spectra, time histories and phase portraits for different q0 and wp = 8.05
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q0 Sw wt w(ẇ)

1000

   

24000

   

24600

   

25500

   

40000

   

43000

   

Table 3.5: Frequency spectra, time histories and phase portraits for different q0 and wp = 8.05
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5. q0 = 40000. The system exhibits chaos.

6. q0 = 43000. Inversed transition from chaos to regular motion takes place.

In the considered case, the two-frequency system vibrations undergo three bifurcations as-
sociated with the occurrence of new linearly dependent frequencies and with the changes of the
frequencies which appeared earlier. However, frequency values are changed further, and the
system exhibits vibrations with four fundamental frequencies linearly dependent on ωp. As a
result of new linearly dependent frequencies, the system transits into chaos.

Table 3.6 presents the system behavior for ωp = 5.75 (FDM).
The following dynamical behavior of the system is tracked.

1. q0 = 1. System vibrations are linear.

2. q0 = 6200. Frequencies ω1 = 0.46 and ω5 = 1.36 are linearly independent, and the
following relations hold: ωp − ω7 = ω3 − ω2 = ω2 − ω6 = 1.

3. q0 = 12000. Frequency values differ from each other on 0.61.

4. q0 = 18000. A large number of frequencies appear in the frequency spectrum and the
fundamental frequencies depend on each other on the value of 0.169.

5. q0 = 19000. The system returns to regular dynamics.

6. q0 = 20000. First bifurcation associated with the frequency ω2 = 2.87 = ωp/2 appears.

7. q0 = 23750. New frequencies linearly dependent on these described so far appear, i.e.
ω1 = 1.04, ω2 − ω3 = ω4 − ω2 = ωp − ω5 = ω1.

8. q0 = 28000. Frequency spectrum becomes broadband.

9. q0 = 40000. The system is in a chaotic regime.

In the scenario three-frequency vibrations appear, which further are transited into linear
combinations of all frequencies. The described scenario corresponds to the modified Ruelle-
Takens-Newhouse scenario. Further, the system again exhibits periodic vibrations, and next
the first bifurcation appears, and then period doubling bifurcation of ωp and the first bifurcated
frequency occur. Then, the system is transited into the chaotic state.

The reported results emphasize that in the control parameters {q0, ωp} plane there is no
universal transition from regular to chaotic dynamics of the investigated system. There are
subspaces of {q0, ωp}, where the transition from regular to chaotic dynamics is realized in a
different way.
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q0 Sw wt w(ẇ)

1

   

6200

   

12000

   

18000

 
  

19000

   

20000

   

23750

   

28000

   

40000

   

Table 3.6: Frequency spectra, time histories and phase portraits for ωp = 5.75
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5 The Bernoulli-Euler model vs. Timoshenko model

The investigation of vibrations of non-linear constructions within different vibration regimes (pe-
riodic and chaotic) implies the need of improvement of mathematical models and computational
techniques. Note that taking into account the transversal shear effect causes a qualitative change
of the system dynamics. It is clearly illustrated by a comparison of the vibration type scales and
charts constructed for different mathematical models (the Bernoulli-Euler and Timoshenko-type
models) for the same parameters used during computation.

The reported vibration scales and dependencies wmax (q0) regarding the Bernoulli-Euler and
Timoshenko-type are studied for all boundary conditions.

The Bernoulli-Euler model The Timoshenko-type model

 

  

 

  

 

  

Table 4.1: Beam schemes, vibration scales and wmax(q0) for the Bernoulli- Euler and for the
Timoshenko models obtained by FDM and FEM

Table 4.1 shows that the results obtained for the Bernoulli-Euler and Timoshenko-type mod-
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els differ essentially regarding scales and functions wmax (q0). For hybrid types of boundary
conditions the results converge in particular for q0 ≤ 2.7 · 104. Observe that for symmetric
boundary conditions for the Timoshenko-type model a stiff stability loss appears, when the sys-
tem is driven by transversal sign-changeable load. However, for the Bernoulli-Euler model the
transition into chaos is associated with a rather smooth change of the maximum beam deflection.

Next, we study vibration type charts, the control parameter planes for the Bernoulli-Euler
model and the Timoshenko-type model for three different boundary conditions (see Table 4.2).

Since the free beam frequencies, as well as beam vibration amplitudes do not coincide for
both studied models for the maximum deflection 5 (2h), the charts reported in Table 4.2 are con-
structed for different values of control parameters (for the Bernoulli-Euler beam ωp ∈ (2.55, 7.65),
q0 ∈ (0, 32200), and for the Timoshenko-type beam ωp ∈ (3.45, 10.35), q0 ∈ (0, 60000)). Vi-
brations of the investigated system in the case of hybrid boundary conditions regarding the
Bernoulli-Euler and Timoshenko-type models are similar to the case of symmetric boundary
conditions but for different frequency intervals. The mentioned similarity has a remarkable mir-
ror type character. Namely, for the Bernoulli-Euler model the chart coincides with the chart
regarding simply supported beam ends, whereas for high frequencies –for clamped ends. The
inversed behavior to that described so far takes place for non-symmetric boundary conditions
of the Timoshenko-type model.

One more important question is that of beam modeling influence on the system behavior.
We compare charts constructed for the same numerical values of control parameters for the case
of the Bernoulli-Euler model and for the case of the Timoshenko-type model for the boundary
conditions associated with stiff clamping (see Table 4.3).

Table 4.3 shows vibration type charts for the same parameters and for clamping-clamping
beam boundary conditions.

Observe that zones of class B for the Timoshenko-type model are wider and begin with the
amplitude q0 ≈ 6000 for the Timoshenko type model, whereas they begin with q0 ≈ 12000 for
the Bernoulli-Euler model. However, zones of class A for the Timoshenko-type model are smaller
in comparison to the Bernoulli-Euler model. Note that for q0 ∈ [0; 5000] beam deflection values
are small and essentially the system behaves in a linear manner. The character of vibrations
estimated by the two models practically coincides, which indicates their validation and reliability.
Loading over 3 ·104, which essentially influences nonlinear terms in equations (2.2), (3.1), results
in the occurrence of qualitative differences between results obtained via two mentioned beam
models.

Furthermore, the introduction of transversal shear effects and rotation inertia (the Timo-
shenko model) essentially influences the character of beam vibrations. Additionally, the following
observations result from the study of two charts regarding the applied beam models:

i. chaotic vibrations for the Timoshenko-type model are wider regarding either amplitude or
frequency;

ii. zones of harmonic vibrations and zones of independent frequency vibrations are smaller in
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The Bernoulli-Euler model The Timoshenko-type model

 

  

 

  

 

  

Table 4.2: Beam schemes and vibration charts for two models and three boundary conditions
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The Bernoulli-Euler model The Timoshenko-type model

 

  

Table 4.3: Vibration charts for two models and stiff clamping

the case of Timoshenko-type model;

iii. the character of vibrations of two models coincides for low frequencies, but for higher
frequencies the differences increase.

6 General conclusions

1. A general theory of nonlinear vibrations of flexible Bernoulli-Euler and Timoshenko-type
beams is developed.

2. The equivalence of reduction of infinite input problem to finite dimensional one regarding
a spatial coordinate by FDM with approximation of O

(
c2

)
and FEM in the form of the

Bubnov-Galerkin is discussed and illustrated.

3. Note that for a computer with a Celeron 1700 processor, computational time of the FDM
is by 1.5-1.7 times shorter than for the FEM method.

4. Scenarios of transition from regular to chaotic dynamics of the investigated system are
presented and discussed.

5. It has been shown that although the system is transversally loaded by sign-changeable
load, a stiff stability system loss is observed during a transition from regular to chaotic
regimes.

6. An increase of the impacting body velocity implies a transition from beam longitudinal to
transversal vibrations.

7. The application of multi-layered beam systems allows us to control regular and chaotic
system dynamics for both applied mathematical models.
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8. Vibration type charts regarding two control parameters {q0, ωp} for different models and
boundary conditions are constructed.

9. The influence of transversal shear effects and rotation inertia implies essential changes of
the beam dynamics.
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