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Abstract 

An investigation on the effect of uniform tensile in-plane force on 

the radially symmetric vibratory characteristics of functionally 

graded circular plates of linearly varying thickness along radial 

direction and resting on a Winkler foundation has been carried out 

on the basis of classical plate theory. The non-homogeneous me-

chanical properties of the plate are assumed to be graded through 

the thickness and described by a power function of the thickness 

coordinate. The governing differential equation for such a plate 

model has been obtained using Hamilton’s principle. The differen-

tial transform method has been employed to obtain the frequency 

equations for simply supported and clamped boundary conditions. 

The effect of various parameters like volume fraction index, taper 

parameter, foundation parameter and the in-plane force parameter 

has been analysed on the first three natural frequencies of vibra-

tion. By allowing the frequency to approach zero, the critical 

buckling loads for both the plates have been computed. Three-

dimensional mode shapes for specified plates have been plotted. 

Comparison with existing results has been made. 
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1 INTRODUCTION 

Now-a-days, technologists are able to tailor advanced materials by mixing two or more materials to 

get the desired mechanical properties along one/ more direction(s) due to their extensive demand in 

many fields of modern engineering applications. Functionally graded materials (FGMs) are the re-

cent innovation of this class. In classic ceramic/metal FGMs, the ceramic phase offers thermal bar-

rier effects and protects the metal from corrosion and oxidation and the FGM is toughened and 

strengthened by the metallic constituent. By nature, such materials are microscopically non-
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homogeneous, in which the material properties vary continuously in a certain manner either along a 

line or in a plane or in space. The plate type structural elements of FGMs have their wide applica-

tions in solar energy generators, nuclear energy reactors, space shuttle etc. and particularly in de-

fence - as penetration resistant materials used for armour plates and bullet-proof vests. This necessi-

tates to study their dynamic behaviour with a fair amount of accuracy. 

 Since the introduction of FGMs by Japanese scientists in 1984 (Koizumi, 1993), a number of 

researches dealing with the vibration characteristics of FGM plates of various geometries has been 

made due to their practical importance. A critical review of the work upto 2012 has been given by 

Jha et al. (2013). In addition to this, natural frequencies of functionally graded anisotropic rectan-

gular plates have been studied by Batra and Jin (2005) using first-order shear deformation theory 

coupled with the finite element method. The first and third-order shear deformation plate theories 

have been used by Ferreira et al. (2006) in analyzing the free vibrations of rectangular FGM plates 

using global collocation method by approximating the trial solution with multiquadric radial basis 

functions. The same method has been employed by Roque et al. (2007) to present the free vibration 

analysis of FGM rectangular plates using a refined theory. Zhao et al. (2009) used element-free kp-

Ritz method for free vibration analysis of rectangular and skew plates with different boundary con-

ditions taking four types of functionally graded materials on the basis of first-order shear defor-

mation theory. Liu et al. (2010) have analysed the free vibration of FGM rectangular plates with in-

plane material inhomogeneity using Fourier series expansion and a particular integration technique 

on the basis of classical plate theory. Navier solution method has been used by Jha et al. (2012) to 

analyse the free vibration of FG rectangular plates employing higher order shear and normal defor-

mation theory. The vibration behaviour of rectangular FG plates with non-ideal boundary condi-

tions has been studied by Najafizadeh et al. (2012) using Levy method and Lindstedt-Poincare per-

turbation technique. The vibration solutions for FGM rectangular plate with in-plane material in-

homogeneity have been obtained by Uymaz et al. (2012) using Ritz method and assuming the dis-

placement functions in the form of Chebyshev polynomials on the basis of five-degree-of-freedom 

shear deformable plate theory. Thai et al. (2013) have developed an efficient shear deformation 

theory for vibration of rectangular FGM plates which accounts for a quadratic variation of the 

transverse shear strains across the thickness and satisfies the zero traction boundary conditions on 

the surfaces of the plate without using shear correction factors. Recently, Dozio (2014) has derived 

first-known exact solutions for free vibration of thick and moderately thick FGM rectangular plates 

with at least on pair of opposite edges simply supported on the basis of a family of two-dimensional 

shear and normal deformation theories with variable order. Very recently, the natural frequencies of 

FGM nanoplates are analyzed by Zare et al. (2015) for different combinations of boundary condi-

tions by introducing a new exact solution method. 

 Under normal working conditions, plate type structures may be subjected to in-plane stressing 

arising from hydrostatic, centrifugal and thermal stresses ( Brayan (1890-91), Leissa (1982), Wang 

et al. (2004)), which may induce buckling, a phenomenon which is highly undesirable. Numerous 

studies dealing with the effect of uniaxial/biaxial in-plane forces on the vibrational behaviour of 

FGM plates are available in the literature and reported by Feldman and Aboudi (1997), 

Najafizadeh and Heydari (2008), Mahdavian (2009), Baferani et al. (2012), Javaheri and Eslami 

(2002), Prakash and Ganapati (2006), Zhao (2009), Zhang et al. (2014). Among these, Feldman and 
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Aboudi (1997) analysed the elastic-bifurcational buckling of FG rectangular plates under in-plane 

compressive loading employing a combination of micromechanical and structural approach. The 

closed form solutions for the axisymmetric buckling of FG circular plates under uniform radial 

compression have been obtained by Najafizadeh and Heydari (2008) on the basis of higher order 

shear deformation plate theory. Baferani et al. (2012) have used Bessel functions to analyze the 

symmetric and asymmetric buckling modes of functionally graded annular plates under mechanical 

and thermal loads. Thermal buckling of FGM rectangular plates on the basis of classical plate theo-

ry for four different types of thermal loading has been presented by Javaheri and Eslami (2002) 

using Galerkin's method. Finite element method has been applied by Prakash and Ganapati (2006) 

to analyse the asymmetric thermal buckling and vibration characteristics of FGM circular plates. 

Recently, Zhang et al. (2014) have used local Kringing meshless method for the mechanical and 

thermal buckling analysis of rectangular FGM plates on the basis of first-order shear deformation 

plate theory.  

 Plates with tapered thickness are broadly used in many engineering structural elements such as 

turbine disks, aircraft wings and clutches etc. With appropriate variation of thickness, these plates 

can have significantly greater efficiency for vibration as compared to the plate of uniform thickness 

and also provide the advantage of reduction in weight and size. Several researches have been made 

to study the vibrational behaviour of functionally graded plates of varying thickness. Exact element 

method has been used by Efraim and Eigenberger (2007) for the vibration analysis of thick annular 

isotropic and FGM plates of three forms of thickness variation: linear, quadratically concave and 

quadratically convex. Naei et al. (2007) have presented the buckling analysis of radially loaded 

FGM circular plate of linearly varying thickness using finite-element method. Free vibration analy-

sis of functionally graded thick annular plates with linear and quadratic thickness variation along 

the radial direction is investigated by Tajeddini and Ohadi (2011) using the polynomial-Ritz meth-

od. Recently, the free vibrations of FGM circular plates of linearly varying thickness under ax-

isymmetric condition have been analysed by Shamekhi (2013) using a meshless method in which 

point interpolation approach is employed for constructing the shape functions for Galerkin weak 

form formulation.  

 The problem of plates resting on an elastic foundation has achieved great importance in modern 

technology and foundation engineering. Airport runways, submerged floating tunnels, bridge decks, 

building footings, reinforced-concrete pavements of highways, railway tracks, buried pipelines and 

foundation of storage tanks etc. are some direct applications of the foundations. From the view-

point of practical utility, the commonly used elastic foundation is Winkler’s model. In this model, 

the foundation is virtually replaced by mutually independent, closely spaced linear elastic springs 

providing the resistance and reaction at every point which is taken to be proportional to the deflec-

tion at that point. This consideration leads to satisfactory results in a variety of problems. In this 

regard, numerous studies analyzing the effect of Winkler foundation on the dynamic behaviour of 

non-FGM plates are available in the literature and the recent ones are reported by Gupta et al. 

(2006), Hsu (2010), Li and Yuan (2011),  Kägo and Lellep (2013), Zhong et al. (2014), Ghaheri et 

al. (2014), to mention a few. However, regarding FGM plates, a very limited work is available and 

done by Amini et al. (2009), Kumar and Lal (2013), Kiani and Eslami (2013), Joodaky (2013), 

Fallah (2013), Chakraverty and Pradhan (2014). Of these, Amini et al. (2009) have provided the 
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exact three-dimensional vibration results for rectangular FGM plates resting on Winkler foundation 

by employing Chebyshev polynomials and Ritz’s method. Recently, Kumar and Lal (2013) predict-

ed the natural frequencies for axisymmetric vibrations of two-directional FG annular plates resting 

on Winkler foundation using differential quadrature method and Chebyshev collocation technique.  

 In the present study, a semi analytical approach: differential transform method proposed by 

Zhou (1986), has been employed to study the effect of in-plane force on the axisymmetric vibrations 

of functionally graded circular plate of linearly varying thickness and resting on a Winkler founda-

tion. According to this method, the governing differential equation of motion for the present model 

of the plate gets reduced to a recurrence relation. Use of this recurrence relation in the transformed 

boundary conditions together with the regularity condition, one obtains a set of two algebraic equa-

tions. These resulting equations have been solved using MATLAB to get the frequencies. The mate-

rial properties i.e.  Young's modulus and density are assumed to be graded in the thickness direc-

tion and these properties vary according to a power-law in terms of volume fractions of the constit-

uents. The natural frequencies are obtained for clamped and simply supported boundary conditions 

with different values of volume fraction indexn g , in-plane force parameter N , taper parameter γ  

and foundation parameter 
f
K . Critical buckling loads for varying values of plate parameter have 

been computed. Three-dimensional mode shapes for the first three modes of vibration have been 

presented for the specified plates. A comparison of results has been given. 

 
2 MATHEMATICAL FORMULATION 

Consider a FGM circular plate of radius a , thickness h(r), Young’s modulus E(z), densityρ  and 

subjected to uniform in-plane tensile force 
0

N . Let the plate be referred to a cylindrical polar 

coordinate system (R, θ, z) , 0z =  being the middle plane of the plate. The top and bottom surfac-

es are / 2z h= +  and / 2z h= − , respectively. The line 0R =  is the axis of the plate. The 

equation of motion governing the transverse axisymmetric vibration i.e. () θ∂ ∂   of the present 

model (Figure 1) is given by (Leissa, (1969)):  

 

2

, , , , , 0 ,2

2

, , 0 , ,3

2 1
(2 ) ( )

1
( ) 0

RRRR R RRR R RR RR

R RR R f tt

Dw D R D w D R D R D N w
R R

D RD R D N w k w h w
R

ν

ν ρ

   + + + − + + + −      

 + − + − + + =  

 (1) 

 
where w  is the transverse deflection, D  the flexural rigidity, ν the Poisson's ratio and a comma 

followed by a suffix denotes the partial derivative with respect to that variable. 
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Figure 1: Geometry and cross-sectio

under uniform tensile load 
0
N  

For a harmonic solution, the deflectionw  can be expressed as

 

( , ) ( )w R t W R e=

 

where ω  is the radian frequency and 1i = − . The Eq. (1) reduces to
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section of tapered FGM circular plate 

0
 and resting on Winkler foundation. 

 
can be expressed as 

( , ) ( )
i t

w R t W R e
ω

 (2) 

. The Eq. (1) reduces to 
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Assuming that the top and bottom surfaces of the plate are ceramic and metal-rich, respectively, 

for which the variations of the Young's modulus ( )E z  and the density ( )zρ  in the thickness direc-

tion are taken as follows (Dong, (2008)): 

     ( ) ( ) ( )
c m c m

E z E E V z E= − +  (4) 

( ) ( ) ( )
c m c m

z V zρ ρ ρ ρ= − +  (5) 

 

where 
c
E , 

c
ρ  and 

m
E , 

m
ρ denote the Young's modulus and the density of ceramic and metal 

constituents, respectively and ( )
c
V z  is the volume fraction of ceramic as follows:   

         

1
( )

2

g
z

V zc h

     
= +  (6) 

                       

where g  is used for the volume fraction index of the material. 

The flexural rigidity and mass density of the plate material are given by 
 

/2

2

2

/2

1
( )

1

h

h

D E z z dz
ν −

=
− ∫  (7) 

/2

/2

1
( )

h

h

z dz
h

ρ ρ

−

= ∫  
(8) 

 

Using Eqs. (4-6) into Eq. (7) and Eq. (8), we obtain  
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Introducing the non-dimensional variables , ,r R a f W a h h a= = = , Eq. (3) now reduces to 
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Assuming linear variation in the thickness i.e. ( )0
1h h rγ= − , γ  being the taper parameter and 

0
h  is the non-dimensional thickness of the plate at the center. Substituting the values of D  and 

ρ  from Eq. (9) and Eq. (10) into Eq. (11), we get 

 

  

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )
( )

3 3 2
3 2
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3 2
2 2
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3 2
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 (12) 

 

Where 
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Eq. (12) is a fourth-order differential equation with variable coefficients whose exact solution is 

not possible. The approximate solution with appropriate boundary and regularity conditions has 

been obtained employing differential transform method. 

 
2.1 Boundary and regularity conditions 

Following Zhou (1986), the relations which should be satisfied for simply supported/clamped 

plate at the boundary and regularity condition at the centre are given as follows: 

 

(i) Simply-supported edge  

2

1 2

1

1
(1) 0, | 0

r r

r

d f df
f M D

r drdr
ν=

=

        = = − + =          
 (13) 

(ii) Clamped edge  

1
(1) 0, | 0

r

df
f

dr == =  (14) 

(iii) Regularity conditions at the centre ( 0r = ) of the plate  

3 2 2

0 0 ,3 2 2 2

0

1 1
| 0, | 0
r r r r
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Q D D

dr r dr r drdr dr r dr
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=

         = = + − + + =            
 (15) 

 

where r
M is the radial bending moment and  r

Q  the radial shear force.                    
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3 METHOD OF SOLUTION 

3.1 Description of the method 

According to differential transform method Zhou (1986), an analytic function (r)f  in a domain 

0
r r a− ≤ is expressed as a power series about the point 0r . The differential transform of its 

thk

derivative is given by    
                     

0

( )1

!

k

k k

r r

d f r
F

k dr
=

 
 =  
  

  (16) 

   

The inverse transformation of the function 
k
F  is defined as 

 

0
0

( ) ( )k
k

k

f r r r F
∞

=

= −∑  (17) 

                                        

Combining the above two expressions, we have, 
     

0

0

0

( ) ( )
( )

!

k k

k
k r r

r r d f r
f r

k dr

∞

= =

 −  =  
  

∑  (18)     

 

In actual applications, the function (r)f  is expressed by a finite series. So, Eq. (18) may be writ-

ten as: 
 

0

0

0

( ) ( )
( )

!

k kn

k
k r r

r r d f r
f r

k dr= =

 −  =  
  

∑  (19) 

 

The convergence of the natural frequencies decides the value of n . Some basic theorems which 

are frequently used in the practical problems are given in Table 1. 

 

Original Functions Transformed Functions 

( ) ( ) ( )f r g r h r= ±  
k k k
F G H= +  

( ) ( )f r g rλ=  
k k
F Gλ=  

( ) ( ) ( )f r g r h r=  
0

k

k l k l
l

F G H −
=

=∑  

( )
( )

n

n

d g r
f r

dr
=  

( )!

!k k n

k n
F G

k +
+

=  

( ) nf r r=  
1

( )
0k

k n
F k n

k n
δ

 == − =  ≠
 

 

Table 1: Transformation Rules for one-dimensional DTM. 
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3.2 Transformation of the governing differential equation 

Applying the transformation rules given in Table 1, the transformed form of the governing differ-

ential equation (12) around 0 0r =  can be written as                 

 

( )
( )( )

( )( )( )( ) ( )( )
( )( )
( )

2
1 2

2

2

2 2 2
1

3 3 2
2
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2
3 4
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{3 4 3 2 1 6 2 1

3 1 6 25 2 2 ( 1) }

2 { 4 (2 3 ) 3 1}

( )
]

k k

k

k

f

k k

F k k k k F
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k k k k k k

N
k k k k k F

B

k k k k F

A K A
F F

B B

γ ν

γ ν γ

γ ν ν

γ ν ν

γ

+

−

−

− −

= − − − +
−

+ − − − − − − −

− − − + − + −

+ − − + + − +

Ω −
+ − Ω

 (20) 

 

3.3 Transformation of the boundary/regularity conditions 

By applying transformations rules given in Table 1, the Eqs. (13, 14, 15) becomes: 

 

Simply-supported edge condition:  

0 0

0, [ ( 1) ] 0
n n

k k
k k

F k k k Fν
= =

= − + =∑ ∑  (21) 

Clamped edge condition:  

0 0

0, 0
n n

k k
k k

F k F
= =

= =∑ ∑  (22) 

Regularity condition:  

1 3 2

2
0, (1 )

3
F F Fγ ν= = +  (23) 

 

4 FREQUENCY EQUATIONS 

Since, the subscripts of the F − terms should be non-negative, so in Eq. (20), the subscript k

should starts with 3. Starting with 3k =  in Eq. (20), we get a recursive relation i.e. 4
F is deter-

mined in terms of 0
F and 2

F , 5
F   in terms of 2

F  and 4
F  and so on. Therefore, all the F terms 

can be expressed in terms of 0
F  and 2

F . Now, applying the boundary condition (21) on the re-

sulted 
k
F expressions, we get the following equations: 

  

( ) ( )
11 0 12 2
( ) ( )
21 0 22 2

( ) ( ) 0

( ) ( ) 0

m m

m m

F F

F F

Φ Ω +Φ Ω =

Φ Ω +Φ Ω =
 (24) 
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where ( )
11
mΦ , ( )

12
mΦ , ( )

21
mΦ and ( )

22
mΦ are polynomials in Ω  of degree m  where 2m n=  . Eq. (24) can be 

expressed in matrix form as follows: 

 
( ) ( )
11 12 0
( ) ( )

221 22

( ) ( ) 0

0( ) ( )

m m

m m

F

F

        Φ Ω Φ Ω        =         Φ Ω Φ Ω           

 (25) 

 

For a non-trivial solution of Eq. (25), the frequency determinant must vanish and hence 

 
( ) ( )
11 12
( ) ( )
21 22

( ) ( )
0

( ) ( )

m m

m m

Φ Ω Φ Ω
=

Φ Ω Φ Ω
 (26) 

 

Similarly, for clamped edge condition, the corresponding frequency determinant is given by 

 
( ) ( )
11 12
( ) ( )
21 22

( ) ( )
0

( ) ( )

m m

m m

Ψ Ω Ψ Ω
=

Ψ Ω Ψ Ω
 (27) 

 

where ( )
11
mΨ  , ( )

12
mΨ  , ( )

21
mΨ and ( )

22
mΨ  are polynomials in Ω of degree m .  

 
5 NUMERICAL RESULTS AND DISCUSSION 

The frequency Eqs. (26) and (27) provide the values of the frequency parameter Ω . The lowest 

three roots of these equations have been obtained using MATLAB to investigate the influence of 

in-plane force parameter N , taper parameter γ , foundation parameter 
f
K and volume fraction 

index g  on the frequency parameter Ω  for both the boundary conditions. In the present analysis, 

the values of Young’s modulus and density for aluminium as metal and alumina as ceramic con-

stituents are taken from Dong (2008), as follows:  

 
370 GPa, 2,702 kg/m

m m
E ρ= = ; 3380 GPa, 3, 800 kg/m

c c
E ρ= =

 
 

The variation in the values of Poisson's ratio is assumed to be negligible all over the plate and its 

value is taken as ν = 0.3. From the literature, the values of various parameters are taken as:  

                                            

Volume fraction index g = 0, 1, 3, 5; 

In-plane force parameter N = -30, -20, -10, 0, 10, 20, 30; 

Taper parameter γ  = -0.5, -0.3, -0.1, 0, 0.1, 0.3, 0.5; and 

Foundation parameter
f
K = 0, 10, 50, 100. 
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Figure 2: Relative error Erel in Ω with no. of terms k: (a) simply supported plate (b) clamped plate  

for g = 5, N = 30, γ = 0.5, Kf = 100.□ , first mode; ∆, second mode; ◦, third mode. 

 
In order to choose an appropriate value of k , a computer program developed to evaluate frequen-

cy parameter Ω  was run for different sets of the values of plate parameters for both the bounda-

ry conditions taking k = 48, 49,…, 56. Then, the difference between the values of the frequency 

parameter Ω for two successive values of k was checked continually with varying values of k for 

various values of plate parameters till the accuracy of four decimals is attained i.e. 
( ) ( )
1

0.00005i i

k k+Ω −Ω ≤ for all the three modes i= 1, 2, 3. For the present study, the number of 

terms k has been taken as 55 as there was no further improvement in the values of Ω for the first 

three modes for both the boundary conditions, considered here. The relative error 

56
/ 1

rel j
E = Ω Ω − , j = 48 (1) 56 for a specified plate N = 30, g = 5, γ = 0.5, 

f
K = 100 has been 

shown in Figure 2 for the first three modes of vibration, as maximum deviations were obtained 

for this data. 

The numerical results have been given in Tables 2-6 and presented in Figures 3-8. It is ob-

served that the values of the frequency parameter Ω for simply supported plate are less than 

those for a clamped plate for the same set of the values of other parameters. The values of critical 

buckling loads for a clamped plate are higher than that for the corresponding simply supported 

plate. 
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* denotes that the frequency parameter does not exist because of buckling 
 

Table 2: Values of frequency parameter for simply supported plate. 

g

  

N  0
f
K =  10

f
K =  100

f
K =  

I II III I II III I II III 

 γ = - 0.1 

0 

-10 

0 

10 

20 

30 

*             24.6947   71.7593 

5.2061    31.3465   78.0323 

9.3771    36.8133   83.8345 

12.1863   41.5633   89.2575 

14.4553   45.8201   94.3667 

*            24.8877   71.8258 

6.0573   31.4985   78.0934 

9.8756   36.9428   83.8914 

12.5741  41.6780   89.3109 

14.7839   45.9242   94.4173 

7.8294   26.5617   72.4215 

11.0893   32.8352   78.6415 

13.5611   38.0882   84.4017 

15.6378   42.6964   89.7904 

17.4652   46.8503   94.8709 

     

1 

-10 

0 

10 

20 

30 

*             15.6421   55.8186 

4.3311    26.0778   64.9168 

9.4736    33.3985   72.8819 

12.6652   39.3732   80.0523 

15.1970   44.5482   86.6261 

*          15.9965   55.9185 

5.4740   26.2911   65.0027 

10.0485 33.5652  72.9584 

13.1012   39.5146  80.1219 

15.5623   44.6733   86.6904 

7.5879   18.8902   56.8097 

11.4374   28.1379   65.7705 

14.2120   35.0295   73.6430 

16.5144   40.7656   80.7458 

18.5288   45.7836   87.2673 

     

3 

-10 

0 

10 

20 

30 

*             10.7043   49.5148 

4.0316   24.2748   60.4283 

9.6815   32.6303   69.6437 

13.0709   39.2351   77.7662 

15.7433   44.8718   85.1103 

*            11.2641   49.6378 

5.3379   24.5247   60.5291 

10.2953   32.8165  69.7311 

13.5321   39.3901  77.8445 

16.1284   45.0074   85.1818 

7.5428   15.4141   50.7313 

11.7747   26.6694   61.4283 

14.7087   34.4474   70.5128 

17.1334   40.7587   78.5454 

19.2512   46.2100   85.8228 

 γ =  0.1 

0 

-10 

0 

10 

20 

30 

*              23.1913   65.8277 

4.6637      28.0774   70.2127 

8.7934      32.2196   74.3365 

11.5479    35.8821   78.2407 

13.7713    39.2018   81.9571 

*             23.4172    65.9077 

5.6750   28.2642   70.2877 

9.3695   32.3824   74.4073 

11.9926  36.0283   78.3080 

14.1464   39.3357   82.0214 

8.4549   25.3598   66.6230 

11.2385   29.8922   70.9587 

13.4892   33.8122   75.0414 

15.4285   37.3186   78.9107 

17.1572   40.5207   82.5970 

     

1 

-10 

0 

10 

20 

30 

*             15.8774    52.1002 

3.8798    23.3582    58.4115 

8.9557    28.9379    64.0975 

12.0833   33.5969   69.3137 

14.5640   37.6824   74.1601 

*           16.2608    52.2182 

5.2225   23.6200   58.5168 

9.6146   29.1495   64.1935 

12.5797  33.7793   69.4024 

14.9785   37.8451   74.2431 

8.5884   19.3729   53.2688 

11.7157   25.8569   59.4559 

14.2319   30.9889   65.0505 

16.3836   35.3787   70.1958 

18.2913   39.2794   74.9852 

     

3 

-10 

0 

10 

20 

30 

*            12.3026     46.8449 

3.6116   21.7432    54.3728 

9.1823   28.1317    60.9683 

12.5033   33.3097   66.9100 

15.1215   37.7831   72.3608 

*           12.8386    46.9883 

5.1373   22.0499   54.4963 

9.8833   28.3693   61.0784 

13.0272  33.5106  67.0104 

15.5576   37.9603   72.4536 

8.8209   16.9156   48.2594 

12.1043   24.6390   55.5955 

14.7636   30.4242   62.0608 

17.0313   35.2672   67.9069 

19.0379   39.5198   73.2836 
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* denotes that the frequency parameter does not exist because of buckling 
 

Table 3: Values of frequency parameter for clamped plate. 

g

 

N  0
f
K =  10

f
K =  100

f
K =  

I II III I II III I II III 

 γ = - 0.1 

0 

-10 

0 

10 

20 

30 

7.5172   37.1300   88.5914 

11.0301   42.1337   93.9486 

13.6892   46.5857   99.0116 

15.9127   50.6374 103.8237 

17.8589   54.3807 108.4187 

8.1346   37.2586   88.6453 

11.4597  42.2471   93.9994 

14.0375  46.6883   99.0598 

16.2132  50.7318 103.8697 

18.1272  54.4687 108.4627 

12.3752   38.3967   89.1288 

14.7737   43.2544   94.4555 

16.8512   47.6019   99.4927 

18.7020   51.5739 104.2827 

20.3833   55.2538 108.8584 

     

1 

-10 

0 

10 

20 

30 

2.9523     27.6389   70.4644 

9.1762     35.0520   78.1579 

12.6917   41.1082   85.1483 

15.4239   46.3613   91.5978 

17.7307   51.0646   97.6145 

4.4740   27.8404   70.5435 

9.7721   35.2112   78.2293 

13.1288  41.2440   85.2139 

15.7854   46.4818  91.6587 

18.0460   51.1741  97.6717 

11.0325   29.5921   71.2520 

14.0397   36.6128   78.8689 

16.5512   42.4471   85.8014 

18.7277   47.5527   92.2053 

20.6686   52.1488   98.1848 

     

3 

-10 

0 

10 

20 

30 

*            23.5775    63.5922 

8.5418   32.6284   72.7539 

12.5274   39.5994   80.8687 

15.5146   45.4907   88.2278 

17.9994   50.6867   95.0084 

1.9064   23.8349   63.6880 

9.2355   32.8151   72.8377 

13.0100   39.7534  80.9440 

15.9068   45.6249  88.2969 

18.3385  50.8071   95.0726 

10.7123   26.0376   64.5436 

14.0101   34.4497   73.5871 

16.7390   41.1134   81.6192 

19.0769   46.8148   88.9163 

21.1466   51.8783   95.6482 

 γ = 0.1 

0 

-10 

0 

10 

20 

30 

4.0304   33.3873   80.2309 

9.4027   37.3763   84.1680 

12.5785   40.9733   87.9263 

15.0473   44.2699   91.5272 

17.1308   47.3277   94.9881 

5.1579   33.5443   80.2965 

9.9391   37.5164   84.2305 

12.9849   41.1011  87.9861 

15.3889  44.3882   91.5846 

17.4318  47.4384    95.0434 

10.9472   34.9252   80.8841 

13.8624   38.7551   84.7907 

16.1893   42.2342   88.5224 

18.1766   45.4392   92.0999 

19.9374   48.4230   95.5400 

     

1 

-10 

0 

10 

20 

30 

*             25.2393   64.3919 

7.8223   31.0941   70.0212 

11.9213   35.9992   75.2246 

14.8481   40.2901   80.0827 

17.2396   44.1450   84.6537 

*             25.4816    64.4874 

8.5625   31.2908   70.1090 

12.4204  36.1691   75.3063 

15.2522  40.4420   80.1594 

17.5891  44.2836   84.7262 

9.8148   27.5667   65.3403 

13.5079   33.0083   70.8939 

16.2360   37.6638   76.0373 

18.4959   41.7837   80.8464 

20.4680   45.5121   85.3764 

     

3 

-10 

0 

10 

20 

30 

*              21.8582   58.4972 

7.2815     28.9442   65.1798 

11.8744   34.5974   71.2300 

15.0272   39.4172   76.7929 

17.5729   43.6803   81.9666 

*            22.1633   58.6120 

8.1404   29.1748   65.2828 

12.4207  34.7904   71.3241 

15.4631   39.5867  76.8803 

17.9474   43.8333  82.0484 

9.4880   24.7409   59.6350 

13.6190   31.1735   66.2021 

16.5450   36.4814   72.1662 

18.9401   41.0803   77.6619 

21.0199   45.1868   82.7812 
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Table 4: Critical buckling load in compression. 

 
In Figures 3(a, b, c), the behaviour of volume fraction index g on the frequency parameter Ω  for 

two values of in-plane force parameterN = -5, 10 and taper parameter γ = -0.5, 0.5 for a fixed 

value of foundation parameter 
f
K = 50 for both the plates has been presented. It has been ob-

served that the value of frequency parameter Ω  decreases with the increasing value of g for both 

tensile as well as compressive in-plane forces for both the plates except for the fundamental mode 

of vibration. The corresponding rate of decrease is higher for smaller values of g (< 2) as com-

pared to the higher values of g  (> 3). Further, it increases with the increase in the number of 

modes. In case of fundamental mode (Figure 3(a)), the frequency parameter Ω  increases as g in-

creases for both the plates when plate becomes thinner and thinner towards the boundary (i.e. γ

= 0.5) in presence of tensile in-plane force (i.e. N =10). However, for the simply supported plate 

vibrating in the fundamental mode, the frequency parameter is found monotonically increasing 

with increasing values of g  irrespective of the values of γ  ( ± 0.5) as well as in-plane force pa-

rameter N (-5, 10). 

The effect of in-plane force parameter N on the frequency parameter Ω  for three different 

values of taper parameter γ = -0.3, 0, 0.3 taking g = 5 and 
f
K =10 for both the plates vibrating 

in the first three modes has been shown in Figures 4(a, b, c). It has been noticed that the value of 

the frequency parameter increases with the increasing value ofN whatever be the values of other 

plate parameters. This effect increases with the increasing number of modes. The rate of increase 

γ  g  Modes f
K = 0 

f
K =10 

f
K =100 

f
K = 0 

f
K =10 

f
K = 100 

Simply supported plate Clamped plate 

-0.3 

1 

I 

II 

III 

2.8882   

12.3006   

30.1499 

4.1840   

12.4772   

30.2442 

12.8866   

16.8314   

31.2944 

12.5432 

21.6535 

56.3859 

13.0929 

22.5547 

56.5335 

17.7154 

26.7538 

58.1104 

        

3 

I 

II 

III 

2.2913    

9.7585   

23.9189 

3.5856    

9.9363   

24.0135 

10.7358   

15.7235   

25.1867 

11.9509 

16.7643 

44.7328 

13.4998 

17.8642 

44.8811 

16.0191 

19.9876 

46.5370 

      

0.3 

1 

I 

II 

III 

2.0116   

18.6339   

55.4928 

4.3952   

18.9851   

55.6702 

23.5744 

24.4055 

56.5676 

5.1932   

29.5455   

74.8228 

6.8207   

30.1018   

75.1151 

21.1783   

35.3628   

77.7286 

        

3 

I 

II 

III 

1.5959   

14.7829   

44.0243 

3.9919   

15.1233   

44.2004 

12.7556 

19.4774 

44.7283 

4.1199   

23.4395   

59.3595 

5.7469   

23.9961   

59.6517 

19.9314   

29.4242   

62.2554 
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in the values of Ω  with N increases as the plate becomes thicker and thicker towards the outer 

edge i.e. γ changes from positive values to negative values. The rate of increase is higher for simp-

ly supported plate as compared to clamped plate. 

Figures 5(a, b, c) show the graphs for foundation parameter 
f
K verses frequency parameter Ω  

for two different values of taper parameter γ = -0.5, 0.5 and in-plane force parameter N = -5, 10 

for a fixed value of volume fraction index g = 5 for all the three modes. It can be seen that the 

frequency parameter Ω  increases with the increasing values of foundation parameter
f
K . This 

effect is more pronounced for tensile in-plane forces (i.e. N = 10) as compared to compressive in-

plane forces (i.e. N = -5) with respect to the change in the values of taper parameter γ from 0.5 to 

-0.5 keeping other plate parameters fixed and also increases with the increase in the number of 

modes for both the plates. 

To study the effect of taper parameter γ  on the frequency parameter Ω , the graphs have 

been plotted for fixed value of foundation parameter 
f
K = 50 for two values of volume fraction 

index g = 0, 5 and three values of in-plane force parameterN = -5, 0, 10 and given in Figures 6(a, 

b, c) for all the three modes and for both the plates. It has been observed that for a clamped 

plate vibrating in the fundamental mode of vibration, the values of the frequency parameter Ω  

decrease monotonically with the increasing values of taper parameter γ  from -0.5 to 0.5 whatever 

be the values ofg as well as N . In case of simply supported plate, forg = 0, the values of frequen-

cy parameter has a point of minima having a tendency of shifting from -0.1 towards 0.3 as N

changes from compressive to tensile i.e. takes the values as -5, 0, 10. However, for g = 5, the val-

ues of Ω increase continuously forN = -5, 0 while there is a point of minima in the vicinity of γ = 

0 for N  = 10. For the second mode of vibration, the values of frequency parameter Ω  monoton-

ically decrease with the increasing values of g  and N for both the plates except for simply sup-

ported plate for N = -5, g = 5. In this case, there is a point of maxima in the vicinity of γ = -0.1. 

The rate of decrease in the values of Ω  with increasing values of taper parameter γ  is higher in 

case of clamped plate as compared to simply supported plate keeping other parameters fixed. The 

effect of in-plane force parameter is more pronounced for γ = 0.5 for both the plates whatever be 

the value ofg . In case of the third mode of vibration, the behaviour of the frequency parameter 

Ω  with the taper parameter γ  is almost similar to that of the second mode for both the plates 

except that the rate of decrease is much higher than the second mode. 

By allowing the frequency to approach zero, the values of the critical buckling load parameter

cr
N  in compression for different values of volume fraction index g = 1, 3; taper parameter γ = -

0.3, 0.3 and foundation parameter 
f
K = 0, 10, 100 for both the plates have been computed in 

Table 4. For selected values of volume fraction index g = 0, 5; taper parameter γ = -0.5, -0.1, 0, 

0.1, 0.5 for 
f
K = 50, the plots for the critical buckling load parameter

cr
N for both the plates vi-

brating in the fundamental mode of vibration have been given in Figures 7(a, b). From the re-

sults, it has been observed that the values of the critical buckling load parameter 
cr
N  for a 

clamped plate are higher than that for the corresponding simply supported plate. Also, the value 
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of 
cr
N decreases with the increasing values of the volume fraction indexg  for both the boundary 

conditions whereas the value of 
cr
N  increases with the increasing values of

f
K for all the values of 

g  and γ  for both the plates. A comparative study for critical buckling load parameter 
cr
N  for 

an isotropic plate with Gupta and Ansari (1998) obtained by using Ritz method, Vol'mir (1966) 

exact solutions, Pardoen (1978) obtained by using finite element method have been presented in 

Table 5. An excellent agreement among the results has been noticed. Three-dimensional mode 

shapes for the first three modes of vibrations for a specified plateg = 5, N  = 30, γ = -0.5, 
f
K = 

100 are shown in Figure 8 for both the plates. 

The results for the frequency parameter Ω  with those obtained by Rayleigh-Ritz method 

(Singh and Saxena, 1995), exact element method (Eisenberger and Jabareen, 2001), generalized 

differential quadrature rule (Wu and Liu, 2001) has been given in Table 6. A close agreement of 

the results for both the boundary conditions shows the versatility of the present technique. 

 

Boundary 

conditions 
Refs. I II III 

γ  = -0.5 

Simply 

Supported 

Present 6.2927 37.7423 93.0342 

[31]a 6.2928 37.743 93.042 

Clamped 
Present 14.3021 51.3480 112.6360 

[31]a 14.302 51.349 112.64 

γ  = -0.3 

Simply 

Supported 

Present 5.7483 34.5625 85.6206 

[31]a 5.7483 34.563 85.623 

Clamped 
Present 12.6631 46.7813 103.4123 

[31]a 12.663 46.782 103.41 

γ  = -0.1 

Simply 

Supported 

Present 5.2061 31.3465 78.0323 

[31]a 5.2061 31.346 78.032 

Clamped 
Present 11.0301 42.1337 93.9486 

[31]a 11.030 42.134 93.949 

γ  = 0 

Simply 

Supported 

Present 4.9351 29.7200 74.1561 

[31]a 4.9351 29.720 74.156 

[33]c 4.935 29.720 74.156 

Clamped 

Present 10.2158 39.7711 89.1041 

[31]a 10.216 39.771 89.104 

[33]c 10.216 39.771 89.104 

γ  = 0.1 

Simply 

Supported 

Present 4.6637 28.0774 70.2127 

[31]a 4.6637 28.077 70.213 

Clamped 
Present 9.4027 37.3763 84.1680 

[31]a 9.4027 37.376 84.168 

γ  = 0.3 
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Boundary 

conditions 

(cont.) 

Refs. (cont.) I (cont.) II (cont.) III (cont.) 

Simply 

Supported 

Present 4.1158 24.7265 62.0704 

[32]b 4.11575858 24.72653378 62.07039882 

[33]c 4.116 24.727 62.071 

[31]a 4.1158 24.727 62.071 

Clamped 

Present 7.7783 32.4610 73.9467 

[32]b 7.77831060 32.46099735 73.94674509 

[33]c 7.779 32.462 73.948 

[31]a 7.7783 32.461 73.947 

γ = 0.5 

Simply 

supported 

Present 3.5498 21.2386 53.4402 

[31]a 3.5498 21.239 53.441 

Clamped 
Present 6.1504 27.3002 63.0609 

[31]a 6.1504 27.300 63.062 

 

a Singh and Saxena (1995)  by Rayleigh-Ritz method 
b Eisenberger and Jabareen (2001) by exact element method 

c Wu and Liu (2001) by generalized differential quadrature rule 
 

Table 5: Comparison of frequency parameter Ω  for linear varying thickness taking 0N = , 0g = , 0
f
K = .

 

 

 

Boundary  

condition 
Ref. First mode Second mode Third mode 

Simply       

Supported 

Present 4.1978 29.0452 73.4768 

Gupta and 

Ansari [43] 
4.1978 29.0452 73.4768 

Vol'mir  [44] 4.1978 29.0452 73.4768 

Pardoen [45] 

 

4.1978 

 

29.0495 

 

73.5495 

 

Clamped 

Present 14.6820 49.2185 103.4995 

Gupta [43] 14.6820 49.2158 103.4995 

Vol'mir  [44] 14.6820 49.2158 103.4995 

Pardoen [45] 14.6825 49.2394 103.7035 

 

Table 6: Comparison of critical buckling load parameter 
cr
N  

for isotropic plate ( 0g = , 0γ = , 0
f
K = ). 
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Figure 3: Frequency parameter Ω  for _ _ _ _ _, simply supported plate; _______, clamped plate. ∆,  

γ  = -0.5, N  = -5;     , γ  = -0.5, N  = 10; ○, γ = 0.5, N = -5; □ , γ  = 0.5, N = 10; 
f
K = 50. 
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Figure 4: Frequency parameter Ω  for _ _ _ _ _, simply supported plate; _______,  

clamped plate. □ , γ  = -0.3; ∆, γ = 0; ○, γ = 0.3; g = 5; 
f
K  = 10. 
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Figure 5: Frequency parameter Ω  for _ _ _ _ _, simply supported plate; _______, 

clamped plate. ∆, γ  = -0.5, N  = -5;     , γ = -0.5, N  = 10; ○ , γ  = 0.5, N  = -5; □ , 

γ  = 0.5, N  = 10; g = 5. 
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Figure 6: Frequency parameter Ω  for _ _ _ _ _, simply supported plate; _______,  

clamped plate. ▲, N  = -5, g = 0; ■, N = 0, g = 0; ●, N = 10, g = 0; ∆, N = -5, g = 5; □ ,  

N  = 0, g = 5;  ○, N = 10, g  = 5; Kf = 50. 
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Figure 7: Critical buckling load parameter
cr
N for _______, g = 5;  _ _ _ _ _,  g = 0; ∆, γ  = -0.5 ;▲, 

γ  = -0.1; ○, γ  = 0 ;  ■, γ  = 0.1; □ ,  γ  = 0.5; 
f
K = 50. 
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Figure 8: Three dimensional mode shapes

(b) Clamped plate for g = 5, 
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Three dimensional mode shapes for (a) Simply supported plate 

= 5, N  = 30, γ = -0.5, 
f
K = 100. 

 



2254      R. Lal and N. Ahlawat / Buckling and Vibration of Functionally Graded Non-uniform Circular Plates Resting on Winkler Foundation  

Latin American Journal of Solids and Structures 12 (2015) 2231-2258 

 

 

g  Modes 

γ  = -0.5 γ = 0.5 γ  = -0.5 γ  = 0.5 

N = 0 N  = 30 N = 0 N = 30 N = 0 N = 30 N = 0 N = 30 

Simply supported plate Clamped plate 

0 

I 

II 

III 

4.29 

25.32 

25.19 

12.19 

44.36 

39.82 

-1.84 

25.27 

27.38 

-3.03 

31.47 

31.56 

26.58 

28.11 

26.22 

7.83 

36.56 

35.27 

19.52 

29.38 

28.83 

4.73 

31.62 

31.67 

5 

I 

II 

III 

-1.99 

23.24 

24.82 

11.36 

48.94 

47.86 

-7.52 

21.42 

26.67 

-13.08 

33.52 

34.52 

17.04 

26.8 

25.95 

6.84 

40.76 

41.58 

8.77 

26.89 

28.3 

-6.91 

32.22 

33.56 

 

Table 7: Percentage variation in the values of frequency parameter with respect to γ  = 0 when  

γ  changes from -0.5 to 0 and 0 to 0.5 for N = 0, 30 and g  = 0, 5 taking 
f
K  = 50. 

 
6 CONCLUSIONS 

The effect of thickness variation and elastic foundation on the buckling and free axisymmetric 

vibration of functionally graded circular plate has been analysed employing differential transform 

method. The numerical results show that: 
 

1. Values of frequency parameter Ω  for an isotropic plate are higher than those for the corre-

sponding FGM plate i.e. frequency parameter decreases as the contribution of metal constituent 

increases. 

2. The values of frequency parameter Ω  for a clamped plate are higher than that for the corre-

sponding simply supported plate whatever be the values of other plate parameters. 

3. As the plate becomes thicker and thicker towards the outer edge i.e. the value of the taper 

parameter γ  changes from negative to positive, the values of the frequency parameter Ω  decreas-

es continuously and the rate of decrease is higher for the clamped plate as compared to the simp-

ly supported plate. 

4. With the increase in the value of volume fraction index g , the frequency parameter Ω  decreas-

es irrespective to the values of the other plate parameters. The rate of decrease increases with 

increase in the number of modes for both the plates. 

5. The values of frequency parameter also increase with the increase in the values of foundation 

parameter 
f
K  whatever be the values of other plate parameters. 
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6. The values of critical buckling loads for an isotropic plate (g = 0) are higher than the corre-

sponding FGM plate (g  > 0) i.e. in order to obtain the highest critical buckling loads, the ceram-

ic isotropic plate is much suitable than FGM plate. 

7. The clamped plate pursue more critical buckling load than the corresponding simply supported 

plate. 

8. The values of the critical buckling load parameter 
cr
N  decreases with the increasing values of 

volume fraction index g  keeping other plate parameters fixed. 

9. As the foundation stiffness increases, the values of critical buckling load parameter 
cr
N  in-

creases for both the plates. 

10. The percentage variations in the values of the frequency parameter Ω  with varying values of 

in-plane force parameter N = 0, 30 and volume fraction index g = 0, 5 for both the plates for two 

cases (i) when the plate becomes thicker and thicker toward the outer edge i.e. γ  changes from 0 

to -0.5 (ii) when the plate becomes thinner and thinner towards the outer edge i.e. γ  change 

from 0 to 0.5 for all the three modes have been computed and given in Table 7. It has been no-

ticed that for both the plates, in absence of in-plane force when the plate changes its nature from 

isotropic to FGM, the percentage variation decreases for all the modes and for both the cases. 

This behaviour remains same in the presence of tensile in-plane force, when the plate is vibrating 

in the fundamental mode of vibration while percentage variation increases for the second and 

third modes of vibration. 

11. The differential transform method, being straightforward and easy to apply for such type of 

problems, gives highly accurate results with less computational efforts as compared to the other 

conventional methods like differential quadrature and finite element methods etc. The results 

presented in this paper can serve as benchmark solutions for future investigations. 
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