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Abstract

The purpose of this work is to establish an empirical relationship that describes the deflec-
tion created in a rectangular plate struck by a rigid wedge at the plate centre with sufficient
initial kinetic energy to produce large inelastic deformations. A multivariable power series
was selected as the form of the mathematical model to develop this empirical relationship.
Good agreement between the experimental results and the prediction of maximum deflections
for various impact energies has been obtained.

The data used in the development of statistical models was reanalyzed for the prediction
of maximum deflection by employing the technique of neural networks with a view towards
seeing if better predictions are possible. Neural networks have advantages over statistical
models like their data-driven nature, model-free form of predictions, and tolerance to data
errors. The neural network models resulted in very low errors and high correlation coefficients
as compared to the regression based models.
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1 Introduction

An approximate theoretical method of analysis was developed by Jones and Walters [1, 2, 5]
for the response of beams, plates and shells when subjected to dynamic transverse loads which
produce large inelastic strains and permanent deformations. This procedure idealises the struc-
tural material as rigid, perfectly plastic and retains the influence of large transverse deflections.
The method has been used by a number of authors largely to obtain the structural response for
dynamic pressure pulses and for impulsive loading, and good agreement has been obtained with
experimental work conducted on ductile metal beams, plates, and shells loaded impulsively.

The dynamic plastic response of thin rectangular plates struck transversely by wedge-shape
masses has been examined by several authors, such as Zhu [8] and Shen [3]. Zhu reported their
nine experimental results [8] and used an energy method proposed by Jones [1] and Wood’s
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Nomenclature

B Half- width of plate
C1 Multiplication constant of the model
E Young’s modulus of elasticity
Ei Impact energy = 1

2mpV
2

Es Strain energy = σ2
0

/
2E × LBTt

Er Energy ratio
L Half-length of plate
Mp Mass of striker
P1, P2, P3 Radicals of dimensionless variables used in the model
S Half-length of wedge
Tt Thickness of plate
V Initial velocity of striker
W Maximum deflection
σ0 Static flow stress

model [6] to analyse their tested specimens. The traveling hinge phase was first considered
by Yu and Chen [7] for the impulsive loaded rectangular plate. Shen [3] employed a pure
membrane model with two traveling hinge phases for wedge impact on rectangular plate. A
good agreement was obtained for the permanent maximum deflection of plates between the
theoretical predictions proposed in Ref. [3] and the experimental results reported in Ref. [8]. It
was found in Ref. [3] that the deflection produced during the two traveling hinge phases might
dominate the behaviour for high impact velocity. It was also pointed out in Ref. [3] that the
whole response possibly ends before the traveling hinge lines reach their final positions. The
problem of a rectangular plate struck by a wedge traveling at a higher speed, is to some extent,
similar to the problem of a rectangular plate under an intense impulse, therefore, the traveling
hinge phases must be included when the velocity of wedge is higher [3]. Shen [3] proved that
the displacement produced during the two traveling hinge phases may dominate the behavior
for higher impact velocity.

In the present work, an empirical multivariable power function relationship has been de-
veloped for the prediction of maximum deflection created in a rectangular plate struck by a
rigid wedge at the centre of plate. The data used in the development of statistical models was
reanalyzed for the prediction of maximum deflection by employing the technique of neural net-
works with a view towards seeing if better predictions are possible. The neural network models
resulted in very low errors and high correlation coefficients as compared to the regression based
models.
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2 Definition of problem and data

When a wedge of the shape shown in Fig. 1 strikes a rectangular fully clamped metallic plate
at the centre, the plate undergoes deflection and may even crack depending upon the energy
involved in the impact. The prediction of deflection of the plate may help in the prediction of
the state cracking.

Figure 1: A fully clamped rectangular plate struck by wedge at the centre of the plate

In the present study, a regression and Artificial Neural Network (ANN) models have been
developed for the prediction of deflection which has been used in subsequent prediction of the
state of damage caused to the plate. The data used for the development of the model is taken
from Ref. [4], which consists of sixty data points as given in Table 1. The range of parameters
involved in the experimental data are listed in Table 1.

The external dynamic energy imparted to the rectangular plates, Ei = mpV
2
/
2, in these

experiments is much larger than the maximum possible strain energy which could be absorbed
by the rectangular plates in a wholly elastic manner, whose upper bound is taken as

Es = σ2
0

/
2E × rectangular plate volume =σ2

0

/
2E × LBTt (1)

The strain energy, Es, given by above equation is defined very conservatively because local
plastic deformations would occur at much smaller values of the elastic strain energy than the
crude estimate which is used in the above Eq. 1. The ratio of impact energy to the strain energy
for the impact loaded rectangular plate gives an energy ratio, as

Er =
mpE

4BLTt

(
V

σ0

)2

(2)

The energy ratios according to Eq. 2 range from 8 to 236 for the experimental data. Seventy-
five percent of the data points lie in the range of energy ratio between 10 and 70 as seen from
Fig. 2. It is observed from the data that the increase in the energy ratio results in the increase
in the deflections.
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Table 1: Range of parameters for the experimental data of impact of wedge on plate

S. No. Parameter Values / Range
Basic Parameters

1. Plate length 2L, (mm) 280
2. Plate width 2B, (mm) 130 and 190
3. Plate thickness, Tt(mm) 1.0, 1.5, 2.0, 3.0 and 4.0
4. Wedge length, S (mm) 40 and 120
5. Wedge velocity, V (m/s) 2.53-10.45
6. Plate mass, m (kg) 0.286-0.670
7. Wedge mass, mp (kg) 12.16 - 86.65
8. Max. plate deflection, W (mm) 0.86 - 35.00
9. Static flow stress, σ0 (N

/
mm2) 153.10 - 357.70

Non-Dimensional Parameters
1. W/Tt 3.33 - 35.00
2. Tt/2S 0.008 - 0.100
3. mpV

2
/
T 3

t σ0 43.52 - 9135.46
4. B/L 0.464 and 0.678
5. mp/m 19.330 - 34.330

Figure 2: Frequency of percentage energy ratio

3 Regression model

For the prediction of maximum deflection of plate under the concentric normal impact of the
wedge, an empirical model has been developed. The model selected is a generic multivariable
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power function with the independent and dependent variables applied to the model in such a
manner as to maintain non-dimensionality. Failure impact event parameters that are needed, as
a minimum, to describe the target deflection are the basic impact geometry (length and width
of wedge; length, width and thickness of plate), projectile velocity, and basic material properties
(static flow stress of plate and mass of wedge). Static flow stress of plate and mass of wedge were
chosen as the material properties of interest for the problem since these are the only material
property involved in the basic shock jump relationship. The dimensionless model used for the
prediction of maximum deflection of plate is of the form:

W

Tt
= C1

(
2B

2L

)P1 (
Tt

2S

)P2 (
mpV

2

σ0T 3
t

)P3

(3)

where, C1, P1, P2 and P3 are the model parameters.
The regression analysis of the data for the above model gives:

W

Tt
= 0.775

(
B

L

)0.22 (
Tt

2S

)0.13 (
mpV

2

σ0T 3
t

)0.5

(4)

The mean error in the prediction of results employed for its development is 5.6%, which
shows that the model is good for predicting the deflections. A comparison of the experimental
and the predicted deflection is presented in Fig. 3. On the other hand, the mean error in
the prediction of deflection by Shen [4] is about 11.3%. The parameters involved in the above
proposed model in the order of decreasing sensitivity are: V , mp, σ0, B/L, Tt and S.

Figure 3: Prediction of dimensionless maximum permanent deflection by regression model (60
data points)

The comparison of mean error in the proposed models and the Shen’s prediction is shown in
Fig. 4. It is observed from this figure that for about 43.33% data points, the mean error in the
prediction by the proposed model given by Eq. 4 is less then 3%, whereas the data giving error
less than 3% in Shen’s prediction is 20. The model given by Eq. 4 generated better fits of the
original experimental data than Shen’s prediction.
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Figure 4: Histogram of percentage error in different models

4 Neural network model

The manner in which the data are presented for training is the most important aspect of the
neural network method. Often this can be done in more than one way, the best configuration
being determined by trial-and-error. It can also be beneficial to examine the input/output
patterns or data sets that the network finds difficult to learn. This enables a comparison of
the performance of the neural network model for these different combinations of data. In order
to map the causal relationship related to the deflection, two separate input-output schemes
(called Model - A1 and Model - A2) were employed, where the first took the input of raw causal
parameters while the second utilized their non-dimensional groupings. This was done in order to
see if the use of the grouped variables produced better results? The Model - A1 thus takes the
input in the form of causative factors namely, L, B, S, Tt, mp, σ0 and V yields the output, the
deflection, W , while Model - A2 employs the input of grouped dimensionless variables namely,
L/B, Tt/2S and mpV

2
/
σ0T

3
t and yields the corresponding dimensionless output W/Tt. Thus,

the two models are:
Model - A1:W = f (L,B, S, mp, Tt, V ) (5)

Model - A2:
W

Tt
= g

(
L

B
,

Tt

2S
,
mpV

2

σ0T 3
t

)
(6)

The input and output variables involved in the above two models were first normalized within
the range 0 to 1 as follows:

xN =
x− xmin

xmax − xmin
(7)

where xN is the normalized value of x; xmax and xmin are the maximum and minimum values
of variable, x. This normalization allowed the network to be trained better.

The current study used the data considered above (60 data points) for the prediction of
deflection. The training of the above two models was done using 83.33% of the data (i.e. 50
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data points) selected randomly. The validation and testing of the proposed models was made
with the help of the remaining 16.67% of observations (10 data points), which were not involved
in the derivation of the model.

Three neuron models namely, tansig, logsig and purelin, have been used in the architecture
of the network with the back-propagation algorithm. In the back-propagation algorithm, the
feed-forward (FFBP) and cascade-forward (CFBP) type network was considered. Each input is
weighted with an appropriate weight and the sum of the weighted inputs and the bias forms the
input to the transfer function. The neurons employed use the following differentiable transfer
function to generate their output:

Log-Sigmoid Transfer Function:yj = f

(∑

i

wijxi + φj

)
=

1
1 + e−(

∑
wijxi+φj)

(8)

Linear Transfer Function:yj = f

(∑

i

wijxi + φj

)
=

∑

i

wijxi + φj (9)

Tan-Sigmoid Transfer Function:yj = f

(∑

i

wijxi + φj

)
=

2
1 + e−2(

∑
wijxi+φj)

− 1 (10)

The weight, w, and biases, φ, of these equations are determined in such a way as to minimize
the energy function. The Sigmoid transfer functions generate outputs between 0 and 1 or -1
and +1 as the neuron’s net input goes from negative to positive infinity depending upon the use
of log or tansigmoid. When the last layer of a multilayer network has sigmoid neurons (log or
tan), then the outputs of the network are limited to a small range, whereas, the output of linear
output neurons can take on any value.

Further, in order to see if advanced training schemes provide better learning than the basic
back propagation, a radial basis function (RBF) network was also used which though requires
more neurons but it is sometimes more efficient. The Radial basis transfer function is given by:

yj = f

(∑

i

‖wij − xi‖φj

)
= e−(

∑ ‖wij−xi‖φj)
2

(11)

The task of identifying the number of neurons in the input and output layers is normally
simple, as it is dictated by the input and output variables considered in the model of physical
process. Whereas, the appropriate number of hidden layer nodes for the models is not known
for which a trial-and-error method was used to find the best network configuration. The optimal
architecture was determined by varying the number of hidden neurons. The optimal configura-
tion was based upon minimizing the difference between the neural network predicted value and
the desired output. In general, as the number of neurons in the layer is increased, the prediction
capability of the network increases in beginning and then becomes stationary.
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The performance of all neural network model configurations was assessed on the basis of Mean
Percent Error (MPE), Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE),
Correlation Coefficient (CC), and Coefficient of Determination, R2, of the linear regression line
between the predicted values from the neural network model and the desired outputs, which
were calculated as follows:

MPE =
100
p

p∑

i=1

Oi − ti
Oi

(12)

MAD =
100
p

p∑

i=1

|Oi − ti|
Oi

(13)

RMSE =

√√√√√
p∑

i=1
(Oi − ti)

2

p
(14)

CC =

p∑
i=1

(ti − t̄)
(
Oi − Ō

)

√
p∑

i=1
(ti − t̄)2

p∑
i=1

(
Oi − Ō

)2

(15)

R2 = 1−

p∑
i=1

(Oi − ti)
2

p∑
i=1

(
Oi − Ō

)2
(16)

where ti and Oi are target and network output for the ith output; t̄ and Ō are the average of
target and network output, and p is the total number of data considered.

The training of the neural network models was stopped when either the acceptable level
of error was achieved or when the number of iterations exceeded a prescribed maximum. The
neural network model configuration that minimized the MAE and RMSE and optimized the R2

was selected as the optimum and the whole analysis was repeated several times.

5 Relative significance of input neurons

The relative significance of input neurons was assessed by the conducting sensitivity tests on
the deflection (output) in both of the models given by Eqs. 5 and 6. In the sensitivity analysis,
each input neuron was in turn eliminated from the model and its influence on prediction of
deflection was evaluated in terms of the MPE, MAD, RMSE, CC and R2 criteria. The network
architecture of the problem considered in the present sensitivity analysis consists of one hidden
layer with ten neurons and the value of epochs has been taken as 100.
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The comparison of different neural network models in terms of the five error estimates, with
one of the independent parameters removed in each case is presented in Table 2. The results
show that for Model - A1, the velocity of strike, V , and mass of projectile, mp are the two most
significant parameters for the prediction of deflection. The variables in the order of decreasing
level of sensitivity for Model - A1 are: V , mp, σ0, Tt, S, L and B. It is thus seen that the last
four parameters have least significant effect when taken independently.

Similarly, Table 3 gives the results of sensitivity analysis for Model - A2. It is apparent
that, mpV

2
/
σ0T

3
t has most significant effect on the non-dimensional deflection and the other

two dimensionless variables, namely L/B, and Tt/2S have least significant effect. In the study
of Model - A1, it was observed that V , mp and σ0 have significant effect, and thus the influ-
ence of mpV

2
/
σ0T

3
t is very high in Model - A2. These findings are consistent with existing

understanding of the relative importance of the various parameters on deflection.

Table 2: Sensitivity analysis for Model - A1 with Feed Forward Back Propagation*

Input variables MPE MAD RMSE CC R2

All (Eq. 5) 0.048 2.820 0.002 0.991 0.981
No B -0.135 3.005 0.002 0.989 0.98
No L -0.500 3.352 0.003 0.985 0.970
No S -0.120 4.000 0.003 0.985 0.969
No Tt -0.772 4.000 0.003 0.979 0.957
No σ0 0.685 5.476 0.005 0.970 0.941
No mp 0.232 6.111 0.0005 0.964 0.927
No V -0.823 11.117 0.0007 0.925 0.851

Table 3: Sensitivity analysis for Model - A2 with ANN

Input variables MPE MAD RMSE CC R2

All (Eq.6) -0.091 3.123 0.000 0.999 0.999
No

(
B
L

)
0.940 6.713 0.000 0.991 0.982

No
(

Tt
2S

)
-0.456 6.157 0.000 0.991 0.983

No
(

mpV 2

σ0T 3
t

)
-0.467 19.370 0.081 0.913 0.831

In view of the variability in the outcome resulting from the application of different analytical
schemes, it is felt that the network which requires all input quantities may be followed for
generality.
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6 Discussion of results for ANN models

As dictated by the use of Gaussian function all patterns were normalized within range of 0.0 to 1.0
before their use. Similarly all weights and bias values were initialized to random numbers. While
the numbers of input and output nodes are fixed, the hidden nodes in the case of FFBP were
subjected to trials and the one producing the most accurate results (in terms of the Correlation
Coefficient) was selected. The optimization of the training procedure automatically fixes the
hidden nodes in the case of the CFBP. The training of these networks was stopped after reaching
the minimum mean square error between the network yield and true output over all the training
patterns. For the RBF network various values of spread between 0 and 1 were tried out and the
one of 0.01 resulting in the best performance on both training and testing data was selected.

The information on number of nodes required to achieve minimum error taken in the case
of each training scheme used (i.e. FFBP, CFBP, and RBF) is shown in Table 4 for Model -A1
and A2, respectively. As a matter of general information, which is not of real significance in
this study, it can be seen that the cascade correlation algorithm, designed for efficient training,
trained the network with fewer epochs than the FFBP network, but the RBF network was
trained in a significantly less number of epochs, indicating its training efficiency.

Table 4: Network Architecture∗

Model Algorithm
Network Configuration Learning Rate Momentum Function
I H O 0.5 0.7

Model - A1
FFBP 7 8 1 0.5 0.7
CFBP 7 9 1 0.5 0.7
RBF 7 12 1 0.5 0.7

Model - A2
FFBP 3 6 1 0.5 0.7
CFBP 3 8 1 0.5 0.7
RBF 3 10 1 0.5 0.7

The network architecture of the two models, given by Eqs. 5 and 6, is given in Figs. 5 and
6 respectively for BP/RBF training scheme. The error estimation parameters (MPE, MAD,
RMSE, CC and R2) on the basis of which the performance of a model is assessed are already
given in Tables 2 and 3.

The training and validation of the two models is shown in Figs. 7 and 8. The trained values
of connecting weights and bias for the two models are given in Tables 5 and 6 obtained from
FFBP training scheme.

The histograms of error in the prediction of deflection for the two models along with the
regression model and Shen’s model are plotted in Fig. 4. The percentage error in the prediction
of deflection for different data sets is plotted in Figs. 9 and 10 for the two models (Model -
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Figure 5: Model - A1: use of raw variables

Figure 6: Model - A2: Use of grouped variables

A1 Model - A2). The predicted value of deflection has been plotted against its observed value
in Figs. 11 and 12 for the two models. Though the results of non-normalized data are not
presented but it has been observed that the normalization considerably improved the training
of the model.

The examination of Tables 2 and 3 and Figs. 11 to 12 show that when it comes to overall
accuracy of predicting deflection, all error criteria viewed together point out that the simple feed
forward network trained using the common BP algorithm is either as good as or even slightly
better than more sophisticated networks.

It also shows that the use of grouped variables as input (Model - A2) may be more beneficial
than that of the raw variables (Model - A1), provided an appropriate training scheme is chosen,
where perhaps grouping of variables had resulted in averaging out their scale effects. The most
suitable network, FFBP Model - A2, has the highest CC = 0.999 and R2 = 0.999; and lowest
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Figure 7: Epochs versus squared error of raw variables by back propagation

Figure 8: Epochs versus squared error of grouped variables by back propagation

MPE = -0.091, MAD = 3.123, and RMSE = 0.000. All the ANN models featured small RMSE
during training; however, the value was slightly higher during validation. The models showed
consistently good correlation throughout the training and testing.

In the end therefore the network configuration (FFBP Model - A2) along with corresponding
weight and bias matrix given in Table 6 is recommended for general use in order to predict the
deflection.

The mean error in the prediction of deflection by proposed model may be compared with
the performance of neural network models in Fig. 4, wherein the mean error in prediction by
ANN Model - A2 is only 3%. The histogram of percentage error of neural network model shown
in Fig. 4 may be compared with the corresponding histogram for the propose model shown in
Fig. 4. It is observed from these figure that the percentage error in 100% of the data is less
than 3% for the neural network model, whereas the percentage error in the proposed regression
model in the same percentage of data is less than 43.3%. This clearly indicates the supremacy

Latin American Journal of Solids and Structures 5 (2008)



Neural network approach for failure analysis of rectangular plates under wedge impact 183

Table 5: Connection Weights and Biases (Refer to Fig. 5) (Output Bias = -0.120)

No. of
Neuron

Input Weights
Output
Weights

Input
Biases

a b c d e f g r
1 -0.096 -0.013 0.996 -1.144 -0.636 0.0192 0.973 -0.805 1.983
2 0.232 0.548 -0.300 -0.735 -1.195 0.039 0.715 1.120 -1.557
3 0.267 -1.285 -0.444 0.848 0.670 0.497 0.043 1.005 -0.249
4 -0.268 1.249 0.526 -1.224 0.549 0.457 1.663 0.859 -0.116
5 -0.483 0.733 1.070 -0.599 -0.518 0.734 -0.627 0.933 0.774
6 -0.010 -0.698 -1.173 -0.911 -1.055 0.432 0.117 1.094 -0.568
7 0.234 0.014 0.807 0.297 0.328 0.377 -0.346 -0.413 -2.205
8 0.422 0.206 0.601 -0.289 0.308 -0.925 1.294 1.127 2.000

Table 6: Connection Weights and Biases (Refer to Fig. 6) (Output Bias= -0.637))

No. of Neuron
Input Weights Output Weights

Input Biases
a b c r

1 0.739 1.648 -1.183 -0.486 -3.912
2 0.686 0.316 1.065 0.718 -3.404
3 -0.562 0.121 0.991 2.260 0.424
4 -0.856 -0.437 2.140 -0.548 -1.109
5 -1.882 0.095 -0.679 -2.236 -2.241
6 -0.641 0.621 0.816 1.158 -4.705

of the neural network model over the regression models.
It may be necessary to modify these transverse velocity fields for other cases, such as conical,

hemispherical or other shaped impactors, or for impacts at non-central locations for rectangular
plates. If the impact energies are sufficiently large, then a plate might crack. The threshold
conditions for cracking have not been examined here, since these have been explored by many
authors, including some recent studies on the impact failure of beams and circular plates. With
the above proposed models, all information, such as velocities of plate, velocities and locations of
traveling hinge lines, displacements of plate, forces between the striker and plate and durations
during whole response process, can be obtained.
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Figure 9: Percentage error for Model - A1

Figure 10: Percentage error for Model - A2

7 Conclusions

A regression based empirical model has been developed for the prediction of maximum perma-
nent deflection created in a rectangular plate struck by a rigid wedge at the centre of plate.
The proposed regression model is more accurate predictor of maximum deflection created from
wedge than the historical models based upon the data used to generate the model.

The data used in the development of statistical models was reanalyzed for the prediction of
maximum deflection by employing the technique of neural networks with a view towards seeing
if better predictions are possible. Predictions based on grouped dimensionless forms of the data
(L/B, Tt/2S and mpV

2
/
σ0T

3
t ) were better than those based on the original dimensioned data

L, B, S Tt, mp, σ0 and V ). The neural network with one hidden layer was selected as the
optimum network to predict deflection. The network configuration of Model - A2 with FFBP is
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Figure 11: Observed versus predicted W for Model - A1

Figure 12: Observed versus predicted W/tt for Model - A2
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recommended for general use in order to predict the deflection.
On the basis of sensitivity analysis of ANN models, it is observed that the set of (L/B

and Tt/2S) makes it second most significant parameter after mpV
2
/
σ0T

3
t . But in view of the

variability in the outcome resulting from application of different analytical schemes, it is felt
that the network which requires all input quantities may be followed for generality. The neural
network model is far better than the regression model for the prediction of the deflection. The
recommended ANN model may be used with confidence to study any combination of parameters,
which have not been experimentally obtained, but lie within the range of input parameters.
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