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Abstract 
In order to achieve the practical characteristics of natural bipedal 
walking, a key feature is to realize “the straight knee state of walk-
ing” during stance and swing motions. Considering a straight knee 
necessitates that the shank link of each leg not to undergo the 
rotation angles which are greater than that of the thigh link. For 
this purpose, various methods have been proposed; the joint self-
impact constraint has been suggested for energy-efficient (natural) 
bipedal walking while realizing the straight knee constraint. 
The prominent objective of this research is to present a model 
based control method for trajectory tracking of a normal human-
like bipedal walking, by considering the joint self-impact constraint. 
To achieve this objective, the dynamical equations of motion of an 
unconstrained biped are taken, developed and then modified to 
consider the joint self-impact constraint at the knee joint. 
To control this complicated dynamical system, the available an-
thropometric normal gait cycle data are taken to generate the de-
sired trajectories of the thigh and knee joints of the self-impact 
biped. Due to the existence of complex nonlinear terms in the dy-
namical governing equations of self-impact biped, the authors pro-
pose to design a nonlinear intelligent controller by taking ad-
vantage of the adaptive neural network control method, which 
neither requires the evaluation of inverse dynamical model nor the 
time consuming training process. According to the simulation re-
sults, the tracking control of the biped robot is accomplished well 
and the biped walking seems naturally, despite of involving com-
plex nonlinear terms in the dynamical governing equations of the 
self-impact biped. 
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1 INTRODUCTION 

Human locomotion is the ability of human to move from one place to another; it may take place 
through walking, jogging, and running gaits, which are the three perspectives of the human locomo-
tion. Walking happens more frequently than the other two. It is defined as subsequent gait cycles; 
each walking gait cycle means the period from initial contact of one foot to the following initial 
contact of the same foot. 
 Human locomotion is imitated by biped robots for use under extreme environments and for on-
erous reiterative works in some industrial fields. Legs are adapted to cluttered environments allow-
ing the machine to stride over obstacles and limiting the damages to the environment thanks to 
their small support surface (Azevedo et al., 2004). It is known that the mobility of legged mecha-
nisms on rough terrains is better than that of wheels because legs can use isolated footholds to op-
timize support whereas a wheel requires a continuous path of support. In general, a biped robot 
consists of several links that are interconnected by actuated joints (Hurmuzlu et al., 2004) and can 
be considered as an organized moving mechanical system that has many degrees of freedom (Aoi et 
al., 2007). The study of biped walking is important to design and manufacture more efficient artifi-
cial limbs for paraplegic people (Pournazhdi et al., 2011). Also, the biped robots or humanoids with 
the human-friendly appearance are suitable for care giving companions, navigation and assistance 
robots (Oda et al., 2012). The understanding and development of biped walking robots have been 
researched since the 1970s (Ono et al., 2001). During this period, biped walking robots have trans-
formed into biped humanoid robots through the technological development (Kim et al., 2007). 
 One of the important goals of the research on humanoid robots is to make them coexist with 
human beings every day. For this, humanoids need to be able to behave “naturally” like human 
beings. This is certainly no exception to their bipedal locomotion. However, most currently existing 
biped robots do not walk naturally in that they bend their knees all the time during locomotion 
(Park et al., 2011). 
 Despite the fact that in most studies, modeling has been carried out ignoring the straight knee 
state of walking (Furusho et al., 1986; Cheng et al., 2000; Pettersson et al., 2001), in a few research 
works, some particular methods have been proposed in order to achieve a natural biped walking 
with straight knee (a detailed schematic of knee joint is depicted in Figure 1, when shank and thigh 
are aligned.).As a first attempt to accomplish the natural walking, it was proposed to consider a 
stretched knee. This was first introduced by Ogura et al. (2006). In the stretched knee technique, a 
singularity was introduced in the problem. In order to solve this problem, the idea was to avoid the 
singularity at the knee by settling the COG height lower so that the knee is always bent. In other 
words, by this technique, the knee joint is never straightened during the process of walking, which 
opposes the aim of natural walking (Ogura et al., 2006; Yoshida et al., 2012; Oda et al., 2012). 
 As a second attempt, a number of researchers have pointed out that the “stretched” state of knee 
should be considered as a constraint and not a singularity in the governing equations and do not 
avoid the stretched knee singularity. Noting that the body joints are the junctions of two or more 
system organs, the relative motion of some of these organs are restricted with respect to each other 
through the joint, which is referred to as self-impact joint. Considering joint self-impact phenome-
non, as a natural property, in modeling of the body can exhibit a more realistic behavior of the 
system. 
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 One way to consider the self-impact constraint is to assume a “stopper” at the knee joint, which 
was proposed in some research studies (Ono et al., 2000; Ono et al., 2001; Ono et al., 2004; 
Sangwan et al., 2004; Mukherjee et al., 2007; Huang et al., 2007; Hoshino et al., 2011; Zhihuan, 
2011). The other way is to assume a “brake” at the knee joint, which was suggested by some other 
researchers (Ono et al., 2002; Ono et al., 2006). In the first technique, the main assumption is that 
the knee joint has a stopper that constrains the motion within the period where the knee angle is 
more than the hip angle and the stance leg links would be fully straight. The other interesting as-
sumption is that this constraint takes place as a collision which is considered as a completely plastic 
impact. As a result, the modeling does not completely imitate natural walking (Ono et al., 2002; 
Ono et al., 2006). In the second technique, there was a bending angle held at the knee of the sup-
port leg. As a result, the biped model could walk faster than the fully straight support leg (stopper) 
model (Ono et al., 2000; Ono et al., 2001; Ono et al., 2004; Sangwan et al., 2004; Mukherjee et al. 
2007; Huang et al., 2007; Hoshino et al., 2011; Zhihuan, 2011). Despite this assumption, the model 
included only an almost straight knee state, which does not exactly reproduce natural walking char-
acteristics. 
 As the latest technique, Singh et al. (2008) modeled the impact at the lower (knee) joint of a 
self-impacting double pendulum using a spring–damper in combination with a logistic function in a 
computationally efficient manner. 
 When the self-impact constraint is imposed, the shank link of a leg cannot assume the rotation 
angles which are greater than that of the thigh link. Therefore, after the constraint is established 
(the constraint setting stage), the shank and thigh links may move together for some instants (the 
constrained motion stage) and natural walking is well imitated. In this paper, in order to use 
Singh’s technique on a biped, the governing dynamical equations are modified due to the system 
switch from the free motion state to a constrained one which is represented by considering a tor-
sional spring-damper system and two approximations of the Heaviside step function. These approx-
imations are applied to the equations of motion, in order to account for continuity and physical 
consistency of the derived set of motion equations. On the other hand, designing a controller for 
this modified system will be a fundamental problem, due to its discontinuity and nonlinearity. 
 

 
Figure 1: A detailed schematic of knee joint, when shank and thigh are aligned. 

 
The control of bipedal robots considering self-impact constraint can be studied by two approaches. 
One of these approaches is that the energy which is dissipated from the system during the con-
straint establishment must be compensated in each gait cycle.  Ono et al. obtained the dissipated 
energy due to joint self-impact stopper (Ono et al., 2000; 2001; 2004). In order to restore the dissi-
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pated energy per cycle, they applied a torque to the hip joint model; this torque was determined by 
a simple proportional controller. This approach is appropriate for regulation purposes and not for 
tracking control of the (desired motion of the) constrained biped during the gait cycle. Also, in 
these studies, joint self-impact phenomenon was considered as a constraint in the governing equa-
tions using impulse and momentum approach, which is able to model the constraint setting stage, 
but unable to model the constrained motion stage. 
 The other approach is to use an advanced controller suitable for both regulation and tracking 
control problems of the biped including the self-impact constraint; we propose to utilize an adaptive 
neural network controller for this purpose. To carry out this objective, the available data of normal 
human gait will be considered as the desired trajectories of the hip and knee joints, which is an-
thropomorphic joint trajectory approach (Ounpuu, 1994; Kamen, 2001). 
 This paper is organized as follows: First, dynamic modeling of a biped considering joint self-
impact constraint will be presented. Next, the control strategy for trajectory tracking control of the 
joint self-impact system will be described. The proposed control method, due to the nonlinear na-
ture of this phenomenon, is Adaptive Neural Network approach. Finally, the simulation results are 
reported and discussed. 
 
2 MATHEMATICAL DESCRIPTION OF DYNAMICAL MODELLING 

As mentioned earlier, walking is one of the main gaits of human leg locomotion and is composed of 
two distinct phases: single support phase (SSP) and double support phase (DSP). SSP accounts for 
a much larger share in a walking gait cycle and that is why this phase has been the main focus of 
research study in this field. 
 The governing equations of the unconstrained system will be presented in section 2.1. At the 
completion of each gait cycle step, when the free end of the biped (swing leg) contacts with the 
ground, an instantaneous exchange of the biped support leg takes place, these are described in sec-
tion 2.2 and section 2.3. We will model the joint self-impact phenomenon as a torsional spring-
damper system and then present the governing equations of the constrained system presented, see 
section 2.4. In section 2.5, a unit step (Heaviside) function will be used in dynamical modeling of a 
self-impact biped to account for both the constraint setting and the constrained motion stages of 
the constraint; and to have them characterized in a unified manner. In the last section, dynamics of 
a self-impact biped will be modified by using another step function approximation for the system’s 
physical consistency. 
 
2.1 Governing equations of unconstrained biped in SSP  

Figure 2 shows a schematics of an unconstrained biped. In this figure, 1  and 5  denote left and 
right knee rotation angles with regard to the vertical axis, respectively, 2  and 4  denote left and 
right hip rotation angles with regard to the vertical axis, respectively, and  is pelvis rotation angle. 
Dynamic equations of biped SSP based on Lagrange’s method can be derived as follows: 
 
 ( ) ( , ) ( )M C G             (1) 

where, 

Latin American Journal of Solids and Structures 12 (2015) 1074-1101 
 



Y. Bazargan-Lari et al. / Tracking control of a planar five-link bipedal walking system with point contact, considering self-impact joint constraint   1078 

 

 
Figure 2: Schematics of an unconstrained biped. 

 
cosij ij ijM M p q     a 5 5  positive definite and symmetric matrix of inertia. 

sinij ij j ijC C p h q   
  a 5 5  matrix related to the centrifugal and Coriolis terms. 

sini i iG G g      a 5 1  matrix of gravity terms. 
 , a 5 1  matrix of the applied external torques of motors. 
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2.2 Impact with ground phase 

At the completion of each gait cycle step, when the free end of the biped (swing leg) contacts with 
the ground, an instantaneous exchange of the biped support leg takes place, while the other end 
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(the previous supporting leg) detaches immediately the ground. It is assumed that this process takes 
place in an infinitesimal time interval, equal to the previous impact duration. The angular velocity 
of each joint will be subjected to a jump discontinuity, which should be changed according to the 
velocities of the links just before and after the jump. The equation of this change is given by 
 

  11 1T T
impact D J JD J J  

         
     (7) 

 
where impact  and   are vectors of generalized velocities immediately after and before the impact, 
respectively. Note that 
 

  11 1T T
impact D J JD J J  

         
     (8) 

 
where  ,e ex y  is the position of the tip of the swing leg is  given  by 
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          
  (9) 

 
also, ijD D     is a 7 7  inertia matrix and ijJ J     is a 2 7  Jacobian matrix, which are de-
fined as below, 
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2.3 Phase exchange of the support end 

As mentioned above, the roles of the swing and support leg exchanges. Therefore, in order to use 
the same set of motion equations of the SSP for both legs, the links numbering has to be relabeled. 
Such renumbering causes discontinuities in the angular displacements and velocities. This relabeling 
scheme is as follows: 

Link 1   Link 5 
Link 2   Link 4 

Link 3 does not change 

 These lead to the following transformation equations, as the overall effect of the generalized co-
ordinates immediately before and after the switch: 
 

 5 5
+

5 5 impactswitch

0

0

T

T

 

 

 





                   

  (14) 

where, 

+
impact





      

 and 
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







      

 

 
are the state space vectors specifying the coordinates and the velocities immediately before and 
after the switch, respectively, and   is the transformation matrix, which is defined as follows: 
 

 

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

T

                  

  (15) 

 
2.4 Description of dynamical modelling of joint self-impact in a constrained biped 

For an unconstrained biped, which is not a realistic model since there is no constraint in the knee 
joint, 1  and 5  may assume any values regardless of the amount of 2  and 4  rotation angle, re-
spectively (see Figure 2). However, for genuine mammalian legs this assumption, i.e. no constraint 
on angles of rotation, is not valid and shank cannot assume the rotation angles which are greater 
than that of thigh. This discrepancy will be accounted for in system modeling by considering a self-
impact constraint at the knee joints which will be activated when 1 2   and 5 4  . In this situ-
ation, unlike the case for an unconstrained biped, we will have 1 2   and 5 4   for a con-
strained biped.  
 Ono et al. (2000); (2001); (2004); Huang et al. (2007) considered the joint self-impact constraint 
as a stopper. On the other hand, Singh et al. (2008); Chatterjee et al. (1995) used a spring and 
damper between two colliding members to model self-impact elastic and inelastic damper. The lat-
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ter is a much better choice since it models both stages of the constraint setting and the constrained 
motion of the joint self-impact phenomenon. Figure 3 shows a self-impact biped as a model of a 
human leg while walking normally (Singh et al., 2008). 
 

 
Figure 3: Schematics of a self-impact biped. 

 
In Chatterjee et al. (1995) modelling, which is known as force-based method, the interaction force is 
described by a linear spring-damper element. The general form of this model is: 
 
 nF k c      (16) 
 
where, c  and k  are the equivalent torsional damping and stiffness coefficients, respectively. And 
are rotation angle and angular velocity (Singh et al., 2008). 
 In addition, the joint self-impact phenomenon should be modeled by forces that are continually 
exerted between members in the time period of the activation of the constraint. Singh et al. (2008); 
Chatterjee et al. (1995), used Heaviside step function in their modeling to represent this constraint 
for its limited activation time. Therefore, dynamical equations for joint self-impact biped with tor-
sional spring and damper as joint self-impact modeling will be modified as follows: 
 
 ( ) ( , ) ( ) ( , )M C G S                 (17) 
 
where, 1 1 4 40

T
S s s s s      , a 5 1  matrix of gravity terms; while the other terms are de-

fined above. 
 

       
      

1 1 1

1 1 1

1

4
i i i i i i

i
i i i i i i

U k c i
s

U k c i

     
     

  

  

           

 

 

  (18) 

 
 The terms 1s  and 4s  denotes the joint self-impact constraint in the left and right knees, respec-
tively. 
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2.5 Approximation of heaviside step function for continuous modelling of joint self-impact constraint 

In view of the fact that the step function creates discontinuities at the beginning of self-impact con-
straint, direct solution of equations with step function is not possible. To resolve this issue, Singh et 
al. (2008); Chatterjee et al. (1995) proposed to use the Fourier expansion (Harmonic) of the re-
sponse and replaced it in the governing equations. 
 Since there is no harmonic forces in the joint self-impact biped, Fourier expansion can cause 
complex nonlinear equations and substantial reduction in the accuracy of the solution. The key 
point is that the Heaviside step function at the joint self-impact setting stage (when 1 2   and 

5 4   for the left and right knees, respectively) is not differentiable. To solve the system of equa-
tions in a continuous domain, an approximation of the Heaviside function in the form of a continu-
ous function is needed. The following is an example of a function that can be used for the approxi-
mating the Heaviside function Singh et al. (2008): 
 

       1
1 1 2

1 1
1 tanh

2 1 j j
j j j j r

U r
e  

   


   
      


  (19) 

 
2.6 Physically consistent dynamical modelling of a constrained biped 

Considering the spring and damper model for joint self-impact constraint equation (16), the joint 
self-impact constraint moment can be expressed as follows: 
 
    1

left 1 2 1 2ctT k c          (20) 

    2
left 2 1 2 1ctT k c          (21) 

    3
right 5 4 5 4ctT k c          (22) 

    4
right 4 5 4 5ctT k c          (23) 

 
 In general, for two rigid members undergoing self-impact constraint, the contact moments should 
always be positive. The condition 0i

ctT   is always satisfied in the above model, if the self-impact 
constraint at its setting stage is perfectly elastic. But since self-impact constraint is a passive phe-
nomenon and there is some loss of energy involved at this stage, there can be a point where i

ctT   
crosses 0  and becomes negative, which would imply local adhesion; however, each of the two mem-
bers should be moving together (while the constraints are activated) or should be moving away 
from each other at the end of the constraint period of activation. Therefore, the “constraint mo-
ments” are in a direction that oppose the members’ separation. To correct this physically incon-
sistent situation, we need to assure that each of the two members should separate completely from 
each other when 0i

ctT  . 
 By replacing the above approximation in the previous equations and using approximation func-
tion for continuous improvement and correcting the physically inconsistency of the problem, the 
equations of motion of joint self-impact biped can be written as (Singh et al., 2008): 
 
 ( ) ( , ) ( ) ( , )M C G S                 (24) 
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where the modified approximated is  is, 
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 

 

 

 

  (25) 

 
3 TRACKING CONTROL OF THE JOINT SELF-IMPACT SYSTEM 

To the best our knowledge, there has not been any publication on tracking control of any joint self-
impact constrained biped system. The only research has been done by Bazargan-Lari et al. (2015), 
which deals with tracking control of a human swing leg. Also, there are a few articles on regulation 
problem of the constrained biped system by some researchers (Ono et al., 2000; 2001; 2002; 2004; 
2006; Sangwan et al., 2004; Mukherjee et al., 2007; Huang et al., 2007; Hoshino et al., 2011; Zhi-
huan, 2011) and also by the authors, Bazargan-Lari et al. (2011). 
  For the tracking problem, the gait cycles of normal walking taken from anthropomorphic joint 
trajectories, Ounpuu (1994); Kamen (2001), should be assigned as the desired trajectories of the 
thigh, knee and pelvis joints of the constrained biped. 
 Due to complex nonlinear terms in the dynamic equations of self-impact biped, we propose to 
design a nonlinear intelligent controller by taking advantage of the Adaptive Neural Network con-
trol method, which neither requires the evaluation of the system inverse dynamical model nor the 
time-consuming training process. 
 There are a number of available control schemes in order to achieve accurate trajectory tracking 
and good control performance. One of the most intuitive schemes, which relies on the exact cancel-
lation of the nonlinear dynamics of the manipulator system, is computed torque control method. 
 The main disadvantage of this method is that the exact dynamic model is required. For over-
coming the problems of this method, adaptive control strategies have been developed and have at-
tracted the interest of many researches, see for example: Craig et al. (1987); Slotine et al. (1987). 
An advantage of the adaptive control methods is the prior knowledge of unknown parameters is not 
a requirement. 
 To improve the performance of systems which have repetitive motions or operations, learning 
control schemes have been developed Arimoto (1990). A disadvantage of such a technique is that it 
is only applicable for operations which have repetition so that learning can take place. 
 There have been some developments in the use of neural networks for the control purposes, Mil-
ler et al. (1987); Miyamoto et al. (1988); Ozaki et al. (1991); Saad et al. (1994). In general, neural 
network control design has two steps. First the dynamic model of the system is approximated using 
neural network. Then, when this approximation, which is usually carried out off-line, is accurate 
enough, an appropriate control strategy there can be constructed. It is important to note that this 
approach does not have any built-in capability to deal with the changes in the system; therefore, 
incorporation of adaptive control becomes useful. 
 There have been some successful works by applying adaptive neural network (ANN) approach; 
they have been able to directly parameterize the control law by a suitable neural network, Sanner 
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et al. (1992); Tzirkel-Hancock et al. (1991). This has led to an overall closed-loop system with de-
cent stability properties. Another advantage of this method is the evaluation of inverse dynamic 
model, as well as the time-consuming training process are not required anymore (Lewis et al., 1995; 
Ge et al., 1996). By assuming no prior knowledge about the system, the neural networks can be 
initialized in zero with no problems. Also, ANN controller is robust and easy to use for real time 
implementation. 
 
3.1 Adaptive neural network control 

In the field of control engineering, neural network is often used to approximate a given nonlinear 
function up to a small error tolerance. In this paper, Gaussian radial basis function (RBF) neural 
network is considered. It is a particular network architecture which uses / numbers of Gaussian 
function of the form (Wei et al., 2005): 
 

 
   

2
( ) exp

T
i i

i

y y
a y

 



          
  (26) 

 
where n

i R   is the center vector and 2 R   is the variance. As shown in Figure 4, Each Gauss-
ian RBF network consists of three layers: the input layer, the hidden layer that contains the Gauss-
ian function, and the output layer. The output of the Network (̂ , )f W y  can be given by: 
 
 (̂ , ) ( )Tf W y W a y   (27) 
 
where 1 2( ) ( ) ( ) ( )la y a y a y a y      is the vector of basis function. Note that only the connections 
from the hidden layer to the output are weighted. 
 Gaussian RBF network has been quite successful in representing the complex nonlinear function. 
It has been proven that any continuous functions, not necessary infinitely smooth, can be uniformly 
approximated by a linear combination of Gaussians. 
 

 
Figure 4: Gaussian radial basis function. 
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4 NEURAL NETWORK MODELING OF THE JOINT SELF-IMPACT SYSTEM 

The dynamic equation of an n-degrees-of-freedom robot manipulator in joint space coordinates is 
given by: 
 
 ( ) ( , ) ( ) ( , )fM q q C q q q G q q q          (28) 

 
where , , q q q   the vectors 1n   are the joint angle, the 1n    joint angular velocity, and the 1n    
joint angular acceleration, respectively; ( )M q is the symmetric positive definite inertia matrix; 

( , )C q q q   is the  vector of Coriolis and centrifugal torques satisfying ( ) 2 ( , )M q C q q

  is a skew-
symmetric matrix; ( )G q is the 1n   vector of gravitational torques; ( , )f q q   is the 1n   vector of 
approximated joint self-impact constraint moment;   is the 1n    vector of actuator joint torques; 
f  is the contact force. 
 It is observed that both ( )M q  and ( )G q  are functions of q  only; hence, static neural networks 
are sufficient to model them. Assume that ( )kjm q  and ( )kg q  can be modeled as: 
 
 ( ) ( ) ( ) ( ) ( )T

kj kjl kjl dkj kj kj dkj
l

m q q q q q           (29) 

 ( ) ( ) ( ) ( ) ( )T
k kl kl gk k k gk

l

g q q q q q           (30) 

 
where , kjl kl R    are the weights of the neural networks, ( ), ( )kj klq q R   are the corresponding 
Gaussian basis functions with input vector q  and ( ), ( )dkj gkq q R    are the modeling errors of 

( )kjd q  and ( )kg q , respectively, and are assumed to be bounded. Whereas, for ( , )C q q  a dynamic neu-
ral network of q  and q  is needed to model it. Assume that ( , )kjc q q  can be modeled as: 
 
 ( , ) ( ) ( ) ( ) ( )T

kj kjl kjl ckj kj kj ckj
l

c q q z z z z           (31) 

 
where 

TT Tz q q R     , kjl R   is weight, is the corresponding Gaussian basis function with 
input vector q , and ckj  is the modeling error of ( , )kjc q q , which is also assumed to be bounded. 
Therefore, equation (28) can be rewritten: 
 

( ) ( , ) ( ) ( , )fM q q C q q q G q q q          

with: 

 ( ) ( ) ( )T
kj kj kj dkjm q q q      (32) 

 ( , ) ( ) ( )T
kj kj kj ckjc q q z z      (33) 

 ( ) ( ) ( )T
k k k gkg q q q      (34) 

 
 Using the GL matrix and its product operator introduced in section three, we can write ( )M q  as: 
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  (37) 

 
where   ,   ,  A ,   Z z ,  B  and   H q  are the GL matrices with their elements be-
ing kj ,  kj q , kj ,  kj z , k  and  k q  respectively, as defined in appendix, and   n n

ME q R  , 
  n n

CE z R   and   n
GE q R are the matrices with their elements being the modeling errors 

 dkj q ,  ckj z  and  gk q , respectively. 
 
5 CONTROL SYSTEM DESIGN 

Let ( )dq t  be the desired trajectory in the joint space and ( )dq t , ( )dq t  be the desired velocity and 
acceleration. Define: 
 
    ( ) de t q t q t    (38) 

      r dq t q t e t      (39) 

          rr t q t q t e t e t         (40) 

 
where   is a positive definite matrix. According to the lemma, which is represent in the Wei et al. 
(2005), the stability of e  and e  can be concluded by studyingr . 
 Denote the estimate of    by  ̂ , and define      ˆ    



. Hence,  ̂ ,  Â  and  B̂  rep-
resent the estimates of the true parameter matrices   ,  A  and  B  respectively. According to 
Wei et al. (2005), the control law can be found as: 
 

                 ˆˆ ˆ• • • sgn
TT

r r sq q A Z z q B H q Kr k r                    
    (41) 

 
where n nK R   and sk E , with        ,M r C r G fE E q q E z q E q q q      . The first three 
terms of the control law are the model-based control, whereas the Kr  term gives the proportional 
derivative (PD) type of control. Note that the PD control is effectively introduced to the control 
law through the definition of r  given in equation (40). The last term in the control law is added to 
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suppress the modeling errors of the neural networks. The parameters in the control law are updated 
by: 
 
   ˆ • k r kq q r  

   (42) 

   ˆ •k k r kQ z q r     (43) 

   ˆ •k k r kQ z q r     (44) 

 
where k , kQ  and kN  are positive definite and symmetric; and ̂ , ̂  are the column vectors with 
their elements being ˆ

kj  and k̂j , respectively. 
 
6 SIMULATION RESULTS 

In this section the results of simulation of tracking control of a self-impact biped will be presented. 
The simulation is performed via a commercial software and involves complex nonlinear terms in the 
dynamical governing equations which provide natural bipedal walking. Walking control of biped 
robots is classically performed via prescribed reference trajectory tracking. These trajectories can be 
of different types: (i) anthropomorphic joint trajectories (Vukobratovic et al., 1990), which is used 
in this paper, derived from human walking, (ii) torque trajectories (Goswami et al., 1996); Pratt et 
al., 1998) or (iii) optimal trajectories computed off-line (Chevallereau et al., 1997; Chessé et al., 
2001). 
 Table 1 shows the anthropometric dimensions and masses which match the parameters present-
ed in reference Kamen (2001). Also, the desired trajectories of the hip, knee and pelvis joints of the 
self-impact biped are taken from the available normal gait cycle data (Ounpuu, 1994; Kamen, 2001). 

 
Parame-

ter 
Description Value 

1 5,m m  Masses of shank links 0.1 kg  

3m  Mass of trunk link 0.1 kg  

2 4,m m  Masses of thigh links 0.1 kg  

1 5,l l  Lengths of shank links 0.1 kg  

3l  Length of trunk link 0.1 kg  

2 4,l l  Lengths of thigh links 0.1 kg  
c  Damping coefficient 2.4 N.s rad  
k  Stiffness coefficient 42 N rad  
r   Accuracy of the approximating function 10E5  

mn   Number of the static neural network nodes 12 Nodes  

cn   Number of the dynamic neural network nodes 24 Nodes  

gn   Number of the static neural network nodes 12 Nodes  
   The center Vector of the Gaussian RBF 0  
2   The Variance of the Gaussian RBF 10  

Table 1: The parameters used to simulate the locomotion of a self-impact biped. 
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6.1 The gait cycles of normal walking taken as the desired joint angles of the hip, knee and pelvis joints 

The desired trajectories of the left and right hip and knee joints of a typical human (Ounpuu, 1994; 
Kamen, 2001) are presented in Figure 5a and Figure 6a, respectively. In these figures, the periods in 
which the self-impact phenomenon occur are highlighted by A and B letters and colored in green 
and blue for both phases of stance and swing, respectively and separately (Figures 5b, 5c, 6b, 6c). 
The desired trajectory of the pelvis joint is also depicted in Figure 7. In order to provide the desired 
angular velocities of the hip, knee and pelvis joints, since there are no reported experimental data 
for them, one efficient way would be to take the numerical time derivative of the curves of Figures 
5a, 6a, 7. The obtained desired angular velocities of the hip, knee and pelvis joints can be seen in 
Figure 8. 
 

(a) 

 

(b) 

 

(c) 

 

    
(d) (e) (f) (g) 

Figure 5: (a) A typical human's left hip and knee normal gait cycles Ounpuu, (1994). 
(b) The period of the self-impact constraint activation in the stance phase. 
(c) The period of the self-impact constraint activation in the swing phase. 
(d) The beginning of the activation period, the stance phase. 
(e) The end of the activation period, the stance phase. 
(f) The beginning of the activation period, the swing phase. 
(g) The end of the activation period, the swing phase. 
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(a) 

 

(b) 

 

(c) 

 

    
(d) (e) (f) (g) 

Figure 6: (a) A typical human's Right hip and knee normal gait cycles Ounpuu (1994). 
(b) The period of the self-impact constraint activation in the swing phase. 
(c) The period of the self-impact constraint activation in the stance phase. 
(d) The beginning of the activation period, the swing phase. 
(e) The end of the activation period, the swing phase. 
(f) The beginning of the activation period, the stance phase. 
(g) The end of the activation period, the stance phase. 

 

 
Figure 7: Human's pelvis normal gait cycles, Ounpuu (1994). 
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Figure 8: A typical human's hip, knee and pelvis desired angular velocities. 

 
6.2 The block diagram of the proposed controller 

In this article, adaptive neural network method is proposed to be used for the trajectory tracking of 
a self-impact constrained biped. The structure of the controller is shown in Figure 9. 
 

 
Figure 9: The block diagram of the adaptive neural network controller. 

 
6.3 The simulation results 

The purpose of the present study is to simulate the tracking control of a self-impact biped. Figures 
10a, 11a, 12, 13a, 14a show the desired and tracked trajectories of the left knee, left hip, right hip, 
right knee and pelvis joints, respectively; as it can be seen, all the tracked and the corresponding 
desired trajectories remarkably match each other. The time histories of the errors between the 
tracked and the corresponding desired angles for these joints are shown in Figure 15a; the maxi-
mum errors for the activation periods are listed in Table 2. Also, the time histories of the errors 
between the tracked and the corresponding desired angular velocities for these joints are shown in 
Figure 16a; the maximum errors for the activation periods are listed in Table 3. Finally, Figure 17a 
shows the time histories of the applied torques for the same joints. 
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Joints 
Period of self-impact Maximum error 

Stance Swing Stance Swing 

Left 
Hip 0.5123-0.5861 1.3937-1.5075 0.8x10-5 1.3x10-3 
Knee 0.5123-0.5861 1.3937-1.5075 1.1x10-5 7.5x10-4 

Right 
Hip 1.2928-1.3658 0.6436-0.7575 5.5x10-5 1.1x10-3 
Knee 1.2928-1.3658 0.6436-0.7575 5.3x10-4 2.1x10-4 

Pelvis 
0.5123-0.5861 1.3937-1.5075 0.4x10-5 0.5x10-4 

1.2928-1.3658 0.6436-0.7575 1.2x10-4 0.25x10-4 

Table 2: The periods of self-impact constraint activation and the corresponding errors of the biped joints. 
 

Joints 
Period of self-impact Maximum error 

Stance Swing Stance Swing 

Left 
Hip 0.5123-0.5861 1.3937-1.5075 1.3x10-3 6.5x10-3 

Knee 0.5123-0.5861 1.3937-1.5075 1.5x10-3 1.2x10-2 

Right 
Hip 1.2928-1.3658 0.6436-0.7575 1.7x10-2 0.8x10-2 

Knee 1.2928-1.3658 0.6436-0.7575 1.8x10-2 1.5x10-2 

Pelvis 
0.5123-0.5861 1.3937-1.5075 0.4x10-3 0.6x10-3 

1.2928-1.3658 0.6436-0.7575 2.5x10-3 0.4x10-3 

Table 3: The periods of self-impact constraint activation and the corresponding 
errors of the biped joints angular velocity errors. 

 

(a) 

 

(b) 

 

 

(c) 
 
 

 
Figure 10: (a) The desired and tracked trajectories of left knee joint of a self-impact biped for two gait cycles. 

(b) The period of the self-impact constraint activation in the stance phase. 
(c) The period of the self-impact constraint activation in the swing phase. 
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(a) 

  
(b) (c) 

Figure 11: (a) The desired and tracked trajectories of Left hip joint of a self-impact biped for two gait cycles 
(b) The period of the self-impact constraint activation in the stance phase 
(c) The period of the self-impact constraint activation in the swing phase 

 

 
Figure 12: Human's pelvis normal gait cycles, Ounpuu (1994). 

 
Figures 16a, 17a show, respectively, sudden changes in the joint angular velocity errors and the 
applied motor torques when the self-impact constraint is activated. Despite these sudden changes, 
the controller makes the biped follow the joint desired trajectories very closely with insignificant 
errors and feasible torques. 
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(a) 

 

(b) 

 

 

(c) 
 
 

 
Figure 13:   (a) The desired and tracked trajectories of Right hip joint of a self-impact biped for two gait cycles. 

 (b) The period of the self-impact constraint activation in the swing phase. 
 (c) The period of the self-impact constraint activation in the stance phase. 

 

(a) 

 

(b) 

 

 

(c) 
 
 

 
Figure 14:  (a) The desired and tracked trajectories of Right knee joint of a self-impact biped for two gait cycles. 

 (b) The period of the self-impact constraint activation in the swing phase. 
 (c) The period of the self-impact constraint activation in the stance phase. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 15: (a) The time histories of the errors between the tracked and the corresponding desired angles for the 
joints of a self-impact biped. 
(b) The period of the self-impact constraint activation in the left leg stance phase. 
(c) The period of the self-impact constraint activation in the right leg swing phase. 
(d) The period of the self-impact constraint activation in the left leg swing phase. 
(e) The period of the self-impact constraint activation in the right leg stance phase. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 16: (a) Time history of the constrained biped joints angular velocity errors. 
(b) The period of the self-impact constraint activation in the left leg stance phase. 
(c) The period of the self-impact constraint activation in the right leg swing phase. 
(d) The period of the self-impact constraint activation in the left leg swing phase. 
(e) The period of the self-impact constraint activation in the right leg stance phase. 
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(a) 

 
 

(b) (c) 

  
(d) (e) 

Figure 17: (a) Time histories of the constrained biped joint torques. 
(b) The period of the self-impact constraint activation in the left leg stance phase. 
(c) The period of the self-impact constraint activation in the right leg swing phase. 
(d) The period of the self-impact constraint activation in the left leg swing phase. 
(e) The period of the self-impact constraint activation in the right leg stance phase. 
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7 CONCLUSIONS 

The objective of this paper was to present a model-based control method for trajectory tracking of a 
constrained biped in normal human walking, by considering the joint self-impact constraint. To 
achieve this objective, first, the dynamical equations of motion of an unconstrained biped were tak-
en, developed and then modified to consider the joint self-impact constraint at the knee joint. Two 
approximations of the Heaviside step function were applied to the equations of motion, in order to 
account for continuity and physical consistency of the derived set of motion equations. 
 To control this complicated system, the available anthropometric normal gait cycle data were 
taken to generate the desired trajectories of the thigh and knee joints of a self-impact biped. Due to 
the existence of complex nonlinear terms in the dynamical governing equations of the self-impact 
biped, the authors proposed to design a nonlinear intelligent controller by taking advantage of the 
adaptive neural network control method, which neither requires the evaluation of inverse dynamical 
model nor the time-consuming training process. 
 According to the simulation results, the anthropometric normal gait cycle data of the rotation 
angles of the hip, knee and pelvis joints of both legs were well followed by the simulated constrained 
biped. The joint self-impact constraint was activated in two occasions for each leg, one correspond-
ing to the swing phase period and the other one to the stance phase period. In these periods, even in 
the presence of sudden changes in the hip and knee angular velocities during the constraint activa-
tion stages, the hip, knee and pelvis joints tracked their desired values of the rotation angles with 
acceptable errors. Also, comparable results were obtained for the joint angular velocities. The re-
sults showed that the system was well controlled with insignificant errors and in a proper time peri-
od by feasible controlled applied torques, despite the existence of complex nonlinear terms in the 
dynamical governing equations of the system. 
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APPENDIX A: GL Matrix and Operator 
In this section, the definition of GL matrix, denoted by    and its product operator •   are briefly 
discussed. To avoid any possible confusion,     is used to denote the ordinary vector and matrix (Ge, 
1996). 
 Let 0I  be the set of integers and , nkj

kj kj R   , where 0kjn I , 1,2, ,j n  , 1,2, ,k n  . The 
GL row vector  k  and its transpose  

T

k are defined in the following way: 
 

   1 2k k k kn      (A1) 

   1 2
T T T T

k k k kn      (A2) 

 
 The GL matrix  k  and its transpose  Tk are defined accordingly as 
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 For a given GL matrix     
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 The GL product of  Tk  and    is n n  matrix defined as: 
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 The GL product of a square matrix and a GL row vector is defined as follows. Let k  T
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       then we have: 
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 Note that the GL product should be computed first in a mixed matrix product. For instance, in 
   •A B C  the matrix    •A B  should be computed first, and then follow by the multiplication 
of    •A B  with matrix C . 
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