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Abstract 
In this work, we study a problem of thermoelastic interaction 
due to moving heat source in an isotropic infinite medium 
under Green and Naghdi model of type III (GNIII). The form 
of vector-matrix differential equation in the Laplace trans-
form domain, the basic equations have been written, which is 
then solved by an eigenvalue technique. The analytical solu-
tion in the Laplace transforms domain with eigenvalue ap-
proach has been obtained. Numerical results for the displace-
ment, temperature and the stress distributions are represent-
ed graphically. Some comparisons have been shown in figures 
to estimate the effect of heat source velocity and time in the 
physical quintets. 
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1 INTRODUCTION 

Lord and Shulman (1967) formulated an important generalized thermoelasticity theory with one 
relaxation time (LS model). After five years of L-S Model, Green and Lindsay (1972) introduced 
another generalized thermoelasticity theory with two relaxation time (GL model). In both of these 
theories, the basic equations of thermoelasticity are modified to eliminate the paradox of infinite 
velocity of heat propagation. These theories have practical importance in problems involving high 
heat fluxes for minor intervals.  
 Green and Naghdi (1991; 1992; 1993) proposed three new thermoelastic theories based on entro-
py equality rather than the usual entropy inequality. The heat-flux vector are different in each the-
ory in the constitutive assumptions. These theories called thermoelasticity of type I, type II, and 
type III, where we obtain the classical system of thermoelasticity when the theory of type I is line-
arized.  
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 Many investigators have treated the non-isothermal problems of the theory of elasticity, and so 
it become important. This is due to their many applications in widely diverse fields. In the extreme-
ly high temperature, the nuclear field and temperature gradients originating inside nuclear reactors 
influence their design and operations. In the high velocities of modern aircraft give rise to aerody-
namic heating, which produces intense thermal stresses that reduce the strength of the aircraft 
structure. The counterparts of our problem in the contexts of the thermoelasticity theories have 
been considered by using numerical and analytical methods (Mukhopadhyay, 2006; Mukhopadhyay 
and Kumar, 2009; Jiangong and Tonglong, 2010; Kumar and Chawla, 2010; Abbas et al., 2011; 
Abo-Dahab and Abbas, 2011; Abbas, 2011; 2012; 2013; 2014a; 2014b; 2014c; Abbas and Abo-
Dahab, 2014; Abbas and Zenkour, 2014). In which, Abbas solved different problems by eigenvalue 
approach in the Laplace transformation domain. Abbas and his collogues solved one and two-
dimension problems by finite element method.  Kumar and Chawla studied the wave propagation 
at the boundary surface of elastic layer overlaying a thermoelastic without energy dissipation half-
space. Mukhopadhyay and his collogues used the state space approach for several problems.  
 Chandrasekharaiah and Srinath (1998a, 1998b) studied the Thermoelastic interactions without 
energy dissipation due to a point and line heat source. He and Cao (2009) considered generalized 
magneto-thermoelastic problem in thin slim strip subjected to a moving heat source. Youssef (2009, 
2010) established the thermoelastic interactions in a unbounded medium with cylindrical and spher-
ical cavity subjected to moving heat source.  
 In the present paper we have applied the technique of eigenvalue approach developed in Das et 
al. (1997) to solve generalized thermoelastic interaction problem subjected to a moving heat source 
using GNIII model. The eigenvalue approach gives exact solution in the Laplace domain without 
any assumed restrictions on the actual physical quantities. The governing equations of the mathe-
matical model is presented when the beam is quiescent first. Laplace transforms techniques with 
eigenvalue approach are used to get the general solution for any set of boundary conditions. Numer-
ical results are represented graphically. The moving heat source velocity have a significant effect on 
all distributions.  
 
2 BASIC EQUATION AND FORMULATION OF THE PROBLEM 

Following Othman and Abbas (2012), the system of equations that include the displacement, the 
stress, the strain and the temperature for a linear, homogenous and isotropic thermoelastic continu-
um without body forces take the following form: 
 The equations of motion 
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The equation of heat conduction 
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The constitutive equations are given by 
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  02 ,ij ij ije e T T            (3) 

 
where ,    are the Lame's constants; K  is the thermal conductivity;   is the density of the medi-
um;  3 2 t      and t  is the coefficient of linear thermal expansion; ec  is the specific heat 
at constant strain; t  is the time; 0T  is the reference temperature; K   is the material constant T  is 
the temperature; characteristic of the theory; ij  is the Kronecker symbol; iu  are the components of 
displacement vector and Q  is the moving heat source; ij  are the components of stress tensor. Let 
us consider a homogeneous isotropic thermoelastic solid at a uniform reference temperature 0T  oc-
cupying the region 0x   where the x -axis is taken perpendicular to the bounding plane of the 
half-space pointing inwards. For one-dimensional problem the displacement vector u  and tempera-
tures field T  can be expressed in the following form: 
 
    , ,  0,  0,  , .x y zu u x t u u T T x t      (4) 
 
 Then the equations (1) to (3) take the following form 
 

  
2 2

2 2
2 ,

u T u

xx t
   

  
  

 
  (5) 

 
2 3 2

02 2
,e

T T T u
K K c T Q

t t t xx t x
 

                   
  (6) 

    02 ,xx
u

T T
x

   


   


  (7) 

 
 For convenience, we introduce the following non-dimensional variables  
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 Equations (5)-(7), and after suppressing the primes, we obtain 
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where 
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 We consider that the medium is subjected to a moving heat source in the following non-
dimensional form 
 
  oQ Q x vt    (11) 

 
where oQ  is constant and   is the delta function.  
 
3 APPLICATION 

We assume that the medium is initially at rest. The undisturbed state is maintained at reference 
temperature. Then we have 
 

  
 

 
 , 0 , 0
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u x T x
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We consider boundary conditions of two types: 
Case (I) 
 
      10, 0, 0, H ,xx t T t T t     (13) 

Case (II) 

  
 0,

0, 0, 0,
T t

u t
x


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
  (14) 

 
where ( )H t  denotes the Heaviside unit step function and 1T  is a constant. 
 Applying the Laplace transform define by the formula 
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 Hence, we obtain the following system of differential equations 
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 Equations (16) and (17) can be written in a vector-matrix differential equation as follows Das et 
al. (1997) 
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 Now, the eigenvalue approach are used to solve the equation (21) as Das et al. (1997) 
 The characteristic equation of the matrix A  takes the form 
 
   2 4

31 42 31 42 34 43 0.a a a a a a R R      (22) 

 
 The roots of the characteristic equation (22) which are also the eigenvalues of matrix A  are of 
the form 1 2, R R  . The eigenvector 1 2 3 4, , ,

T
X X X X X   


, corresponding to eigenvalue R  can be 
calculated as: 
 
 2

1 34 2 31 3 1 4 2, , , .X a R X R a X RX X RX       (23) 

 
 From equations (23), we can easily calculate the eigenvector jX



, corresponding to eigenvalue 
, 1,2, 3, 4iR i  . For further reference, we can write 
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 Thus, the complementary solution of equation (21) take the form 
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where the terms containing exponentials of growing nature in the space variable x have been dis-
carded due to the regularity condition of the solution at infinity, 1B  and 2B  are constants to be 
determined from the boundary condition of the problem.  
 The general solutions V



 of the nonhomogeneous system (21) are the sum of the complementary 
solution cV



 of the associated homogeneous system and a particular solution pV


 of the nonhomoge-
neous system. The inhomogeneous terms in (21) contain the exponential function /sx ve , therefore, 
the particular solution pV



 should be sought in the form of a vector quasi-polynomial 
 
 /sx v

pV Ae




,  (26) 

 
where A



 is a constant vector. From (25), (26) and (21), the general solutions of the field variables 
can be written for x  and s  as: 
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s

v
   

 
 To complete the solution we have to know the constants 1B  and 2B , by using the boundary 
conditions (19) for case (I) while the boundary conditions (20) for case (II). 

 
4 NUMERICAL INVERSION OF THE LAPLACE TRANSFORMS 

For the final solution of the temperatures, the displacement, the concentration, the stress and chem-
ical potential distributions in the time domain, we adopt a numerical inversion method based on the 
Riemann-sum approximation method is used to obtain the numerical results. In this method, any 
function in the Laplace domain can be inverted to the time domain as 
 

 1
2

=0

e
( , ) Re[ ( , )] Re ( 1) , ,

mt N
n

n

in
f x t F x m F x m

t t

                 
   (30) 

 
where Re  is the real part and i  is the imaginary number unit. For faster convergence, numerical 
experiments have shown that the value that satisfies the above relation is 4.7m t  (Tzou, 1996). 
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5 NUMERICAL RESULTS AND DISCUSSION 

In the present work, the thermoelastic interactions due to moving heat source under Green and 
Naghdi of type III model is analyzed by considering an isotropic unbounded medium. The material 
parameters are given as following Abbas (2009) 
 

 10 -1 -2 10 -1 -2
07.76 10 (kg)(m) (s) , 3.86 10 (kg)(m) (s) , 293 K ,T       

2 -1 -3 2 2 -1 -23.68 10 (kg)(m)(K) (s) , 3.831 10 (m) (K) (s) ,eK c     

3 -3 6 -1
18.954 10 (kg)(m) , 17.8 10 (K) , 0.5,  1.tx t T        

 
 Using this data set, the temperature T , displacement u  and stress xx  are numerically comput-
ed for different values of the distance x and their graphical representation is presented in figures 1-
12. As expected, in both the cases, the velocity of moving heat source has a great effect on the dis-
tribution of field quantities. The time have a great effect on all distributions. 
 Case (I): The figures 1-6 is investigating the variation of the non-dimensional temperature, dis-
placement and stress when the traction free and subjected to a thermal shock on the surface 0x  . 
Figure 1-3 display the effects of velocity of moving heat source  0.2, 0.4, 0.6v   when 0.5t  . It 
can be found that the temperature, magnitude of displacement and the magnitude of the stress 
decreases as the velocity increases before the intersection of the three curves. However, after the 
intersection, its increases as the velocity increases. Figure 4-6 show the variations of non-
dimensional temperature, displacement and stress with distance for different value of time 
 0.2, 0.6, 1.0t   when the moving heat source velocity  0.2v   remains constant. It can be 
found that the temperature, magnitude of displacement and the absolute of the stress increases as 
the time increases. From figures 1-6, the temperature starts with  1 1T T   at the origin and 
increases due to the moving heat source then decreases until attaining zero beyond a wave front for 
the generalized theory, which agree with the boundary conditions. The displacement component 
attains maximum negative values and gradually increases until it attains a peak value at a particu-
lar location in close proximity to the surface and then continuously decreases to zero. The stress, 
always starts from the zero value and terminates at the zero value to obey the boundary conditions. 
 Case (II): The figures 7-12 is investigating the variation of the non-dimensional temperature, 
displacement and stress when the surface thermally insulation and fixed. Figures 7-9 show the ef-
fects of velocity of moving heat source when time remains constant while, figures 10-12 show the 
effects of time when the velocity of moving heat source remains constant.  

 
6 CONCLUSIONS 

Two cases have been considered in our application. The first one for the traction free and subjected 
to a thermal shock on the surface while the second case for the surface thermally insulation and 
fixed. The eigenvalue approach gives exact solution in the Laplace domain without any assumed 
restrictions on the actual physical quantities. The velocity of moving heat source have a significant 
effect in on all distributions. 
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Figure 1:  The variation of temperature with distance for different values of v  (Case I). 

 

 
Figure 2:  The variation of displacement with distance for different values of v  (Case I). 

 

 
Figure 3:  The variation of stress with distance for different values of v  (Case I). 
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Figure 4:  The variation of temperature with distance for different values of t  (Case I). 

 

 
Figure 5:  The variation of displacement with distance for different values of t  (Case I). 

 

 
Figure 6:  The variation of stress with distance for different values of t  (Case I). 
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Figure 7:  The variation of temperature with distance for different values of v  (Case II). 

 

 
Figure 8:  The variation of displacement with distance for different values of v  (Case II). 

 

 
Figure 9:  The variation of stress with distance for different values of v  (Case II). 
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Figure 10:  The variation of temperature with distance for different values of t  (Case II). 

 

 
Figure 11:  The variation of displacement with distance for different values of t  (Case II). 

 

 
Figure 12:  The variation of stress with distance for different values of t  (Case II). 
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