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Abstract 
In this study, the governing equations of a rotating cantilever pipe 
conveying fluid are derived and the longitudinal and lateral in-
duced vibrations are controlled. The pipe considered as an Euler 
Bernoulli beam with tip mass which piezoelectric layers attached 
both side of it as sensors and actuators. The follower force due to 
the fluid discharge causes both conservative and non-conservative 
work. For mathematical modeling, the Lagrange–Rayleigh–Ritz 
technique is utilized. An adaptive-robust control scheme is applied 
to suppress the vibration of the pipe. The adaptive-robust control 
method is robust against parameter uncertainties and disturb-
ances. Finally, the system is simulated and the effects of varying 
parameters are studied. The simulation results show the excellent 
performance of the controller. 
 
Keywords 
Rotating flexible pipe; cantilever pipe conveying fluid; piezoelectric 
layers; adaptive-robust control scheme. 
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1 INTRODUCTION 

In several partial engineering examples we can find rotating cantilever beams such as maneuvering 
spacecraft and aircraft engines. Reducing the induced vibration amplitudes of these structures is 
very important to increase the performance of them. 
 Fung and Yau (1999) have modeled a clamped-free rotating flexible robotic arm by Euler-
Bernoulli beam theory. The arm rotated horizontally about the clamped axis while the other end 
was constrained to move against a curve, the arm had an end mass attached at its tip. The dynam-
ic stability of plane transverse oscillations of two cantilevered pipes inter connected along their out-
er radii and conveying different fluids with different flow speeds was studied by Langthjem and 
Sugiyama (1999). Lim et al. (2003) have examined the vibration of a flexible cantilever tube with 
nonlinear constraints when it was subjected to internal flow by experimental and theoretical analy-
sis. A numerical analysis was made of the dynamic stability of a cantilevered steel pipe conveying a 
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fluid by Dzhupanov and Markova (2003). The pipe was modeled by a beam restrained at the left 
end and supported by a special device at the other end. 
 Fung and Yau (2004) investigated the vibration behavior and control of a clamped-free rotating 
flexible cantilever arm with fully covered active constrained layer damping (ACLD) treatment. The 
arm was rotating in a horizontal plane in which the gravitational effect and rotary inertia were 
neglected. 
 Yoon and Son (2006) have studied the effects of the open crack and a moving mass on the dy-
namic behavior of a simply supported pipe conveying fluid. They also investigated the effects of a 
tip mass and fluid flow on the dynamic behavior of a rotating cantilever pipe conveying fluid (Yoon 
and Son, 2007). They did not apply any active control to suppress the pipe vibrations. The investi-
gation of the three-dimensional nonlinear dynamics of unrestrained and restrained cantilever pipe 
conveying fluid was undertaken by Gagnon et al. (2007). Paidoussis et al. (2007) have investigated 
the three-dimensional nonlinear dynamics of a vertical cantilevered pipe conveying fluid, additional-
ly constrained by arrays of four or two springs or a single spring at a point along its length. Using 
Lagrange’s equations and an improved transverse displacement expansion, the non-linear free and 
forced vibrations of simply supported thin circular cylindrical shells were investigated by Rougui et 
al. (2007). Lin and Qiao (2008) have studied vibration and stability of an axially moving beam in 
fluid and constrained by simple supports with torsion springs. Wang et al. (2010a) studied the non-
linear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated 
harmonic force moving in a concentric circular path at a constant velocity. The dynamic response of 
a cantilever rotating circular cylindrical shell subjected to a harmonic excitation about one of the 
lowest natural frequency was investigated by Wang et al. (2010b). Askari and Daneshmand (2010) 
have considered the coupled-vibration analysis of a cantilever cylindrical shell partially submerged 
in a fluid with a continuous, simply connected and non-convex domain. 
 Optimal control of a thin-walled rotating beam was considered using a higher-order shear defor-
mation theory by Chandiramani (2010). Rinaldi and Paidoussis (2010) are investigated the dynam-
ics of a flexible cantilevered pipe fitted with a special end-piece. 
 A set of simplified boundary conditions for a flexible beam connected to a rigid body at one end 
and free at the other end, which was applied to the case of a fluid- conveying, fluid-immersed pipe, 
was presented by Hellum et al. (2011). Wang and Dai (2012) studied the vibration and stability 
properties of fluid-conveying pipes with two symmetric elbows fitted at downstream end. The non-
linear planar dynamics of a fluid conveying cantilevered pipe was investigated by Ghayesh et al. 
(2013). By modifying the classical equations of motion with consideration of the size effects of mi-
cro-flow and microstructure, the in-plane and out-of-plane flexural vibrations of micro-scale pipes 
conveying fluid with clamped–clamped ends are examined theoretically by Wang et al. (2013). Fo-
cusing on the effects induced by different length ratios between the two segments, Dai et al. (2013) 
studied the dynamics of fluid-conveying cantilevered pipe consisting of two segments made of differ-
ent materials. Li et al. (2014) described the fluid–structure interaction behavior of pipelines by con-
sidering the effects of pipe wall thickness, fluid pressure and velocity. Rahman and Alam (2012) 
investigated the vibration suppression of smart cantilever beams which consists of a beam as the 
host structure and piezoceramic patches as the actuation and sensing elements. Rathi and Khan 
(2012) used active vibration control and smart structure to reduce the vibration of a system by 
automatic modification of the system structural response. 
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 In this paper an adaptive-robust control technique is proposed to suppress the vibration of a 
rotating cantilever pipe conveying fluid with a tip mass. The piezoelectric layers, which are at-
tached to both sides of the pipe, are used as the sensors/actuators. The Lagrange method is used to 
derive the nonlinear coupled dynamic equations of the system and, as there is no simplification in 
the governing equations, these equations are complicated and nonlinear. The whole controlled dy-
namical system is simulated and the simulation results show the effectiveness of the control system. 
 Applying a modern control to suppress the vibration of a rotating cantilever pipe conveying fluid 
with tip mass by using the piezoelectric layers is the novelty of this study. 

 
2 SYSTEM DYNAMICS 

In this study a flexible cantilever pipe conveying fluid and a tip mass are assumed. Fig. 1 shows the 
schematic view of this pipe which connected to the rotating cylindrical hub. 
 

 
Figure 1. Schematic view of the rotating cantilever pipe. 

 
The pipe is considered as a cantilever Euler-Bernoulli beam with length L, thickness h, radius , 
density , and Young’s modulus E . The piezoelectric layers are attached to the pipe as sen-
sors/actuators. Each piezoelectric layer has thickness , density , Young’s modulus  and the 
equivalent piezoelectric coefficient . The new position of point  after deformation is the point 

.  is the displacement vector of the point  to B and has two components  and  which 
are axial and lateral deformation along the i and j axes, respectively. Also, , , and  are the 
magnitude of the tip mass, the velocity of the fluid flow, and the arc length stretch, respectively.  
 The governing equations of motion are derived base on the Lagrange method, which may be 
expressed as: 
 

   (1) 

 
where  and  are potential and kinetic energy, respec-
tively.  is the work due to conservative external forces and  is the vector of generalized forces 
which is related to the non-conservative external forces. The subscripts p, f, PZT, and t stand for 
the pipe, fluid flow, piezoelectric layers, and tip mass, respectively. 
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2.1 Kinetic Energy of the System 

For calculation of the kinetic energies, the velocities should be known. Consider the element B of 
the pipe; the velocity of this element can be determined as 
 
 0 / ( )B B O    v v v ω x w   (2) 

 
whereO  is the base point of the pipe which is connected to the rotating hub and 0v  is the velocity 
of this point. /B Ov  is the relative velocity of element B  with respect to the point O. ω  is the angu-
lar velocity of the hub, and x determine the position of the element before deflection.  The parame-
ters of Eq. (2) are expressed as follows: 
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herein r  is the radius of the hub and (˙) illustrates the derivative with respect to time and ,i j  are 
the unit vectors. By substituting Eq. (3) in Eq. (2) the velocity of the point B can be determined as 
follows: 
 
 1 2 2 1( ) ( )B w w i r w x w j         v   (4) 
 
 If U is the relative velocity of fluid flow with respect to the pipe, the velocity vector of it will be 
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 v   (5) 

 
 Referring to the velocity vectors, the kinetic energies of the system are as follow 
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where N  is the number of piezoelectric layers and fM  is the fluid mass per unit length of the pipe.  
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 There is a geometric relation between arc length, s, and the Cartesian variables, 1w  and 2w , 
which can be used to substitute the variable s instead of 1w  in equations.  
 

 
2

2
1 0

1
d

2

x w
s w x

x

            (7) 

 
2.2 Work and Potential Energy of the System 

The elastic energy of the pipe, which contains longitudinal and bending displacements, can be de-
termined as: 
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   (8) 

 
 The stress in piezoelectric layers can be expressed as (Fazelzadeh el al., 2010)  
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where the subscript np  represents the nth piezoelectric layer and ( 1... )

n nz n pE v h n N   is the 
electric field in the nth piezoelectric layer. nv  is the voltage which is related to the nth patch of 
piezoelectric layers. The first two terms on the right hand side of Eq. (9) are the stresses due to the 
mechanical effects and the last one is the stress due to electrical effect of the piezoelectric layers. 
Using Eq. (9) the potential energy of the piezoelectric layers is 
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where z is the axis perpendicular to the piezoelectric surface, dv  is a volumetric differential, and nd  
is the electric displacement for the nth patch. The electric displacement is: 
 

 
n

n
n p

p

v
d

h
   (11) 

 
wherein

np is the dielectric constant of the piezoelectric material which forms the nth patch. The 

last term in Eq. (10) is the electric energy stored in the piezoelectric material. 
 The fluid discharge creates follower force that divided into two components. One is the conserva-
tive component of tangential follower force that creates conservative work that is given by 
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 The other part is non-conservative force that creates non-conservative work ncW . 
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2.3 Rayleigh–Ritz Formulation 

Due to the intricacy of the governing equations, their solution may be achieved by an approximate 
solution procedure. To this end, 2w  and s  can be represented by a series of trial shape functions, 

1i
  and 2i

 , satisfying the boundary conditions, which each is multiplied by a time dependent gen-
eralized coordinate 
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herein 1 ( )iq t  and 2 ( )iq t  are time dependent generalized coordinates and n is the number of mode 
shapes. 
 Substituting Eq. (14), instead of the parameters s  and 2w , in above equations and using Eq. 
(1), the governing equations of motion are derived as: 
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where sv  and av  are the sensors and actuators voltages, respectively. 

elastelectapK  and
 elastelectspK denote 

the matrices of the elastic-electric effect of the piezoelectric actuator and sensor layers, respectively. 
 

 
1 2elastelect elastelect Na s

p p pee pee pee
K or K K K K

     
  (16) 

 
where

npee
K  is the vector of the nth column of the elastic-electric matrix. 
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and electpK  is a diagonal capacitance matrix of the piezoelectric patches (Azadi et al., 2015) 
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where the 1N   vector np  has zero entries except for entry n which is equal to 1

nph . If the prop-
erties of all piezoelectric patches are the same, the capacitance matrix, 

electpK , will be (Azadi et al., 
2013) 
 

 1
electp p p p N N N NK L b I I

     (19) 

 
herein N NI   is the N N  identity matrix. The other parameters in Eq. (15) have been defined in 
appendix A. 
 
3 ADAPTIVE-ROBUST CONTROLLER DESIGN 

In this section, an adaptive-robust control algorithm is described to suppress the vibration of a ro-
tating conveying fluid pipe. The proposed control method is a combination of adaptive and robust 
controllers, and so presents a useful controller in the presence of parameter uncertainties and dis-
turbances. The possibility of on-line computation and decreasing the calculations are among the 
practical effective properties of the adaptive- robust controller.  
 The vector of the controller input is proposed to have the following form De et al. (1996)  
 
 1

0
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a Dp
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DK  is a constant positive definite matrix, and 
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where Λ is a constant positive definite matrix and. 
 Equation (20), (15) and (22) give: 
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where 

 w Y M C K     q q q   (24) 
 
in which   is the vector of the estimated and exact base dynamic parameters of the system. 
 0u  can be chosen as, Lewis et al. (1993): 
 
  2

0 ( )u          (25) 
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where   is a positive valued functions and   is a scalar that satisfy the following equation. 
 
 w     (26) 
 
and from the properties above Lewis et al. (1993): 
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where [ ]e  q q , and the constant bounds δi’s  depend on DK , Λ, ck , kk , mk , Mk , M̂ , Ĉ , and K̂  
and can be a priori calculated in a complicated and lengthy process (De et al., 1996). Herein mk  
( Mk   ) denotes the strictly positive minimum (maximum) eigenvalue of M for all configurations 
of q . kc and kk are some upper bounded positive constants for the C and K matrices. 

2
[1 ]S e e  is the coefficient vector of parameters. 

 Note that the equation (27) does not need to be changed, although the constant bounds do not 
have their previous values. These parameters can be updated by the following adaptation mecha-
nism: 
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where γ  is a positive definite matrix, ˆ    , and ̂  and ˆ     can be defined as: 
 
 ˆ ˆ ,S S        (29) 
 
 The following Lyapunov function can be used for the stability analysis of the system: 
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where K  is a positive constant. 
 Taking the time derivative of equation (30) leads to: 
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 Substituting the control law (20) in the dynamic equations of the system leads to: 
 
 D oM C K w u          (32) 
 
 By replacing equations (28) and (32) in equation (31) the following equation is obtained. 
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where the last term in equation (33) is equal to zero because of the skew symmetry property of 

2M C  (De et al., 1996). With respect to the equations (26) and (27) we can show that: 
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 1T T
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   (34) 
 
 By assuming K    and substituting the equations (25) and (29) in equation (34), this equa-
tion can be simplified as: 
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 As the summation of the two last terms in equation (35) is less than zero, the following non 
equality is produced. 
 
 T

DV K     (36) 

Therefore, one may write: 

   2
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where min  is the smallest eigenvalue of matrix DK . This implies that: 
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 Since V  is negative semi-definite, it can be stated that V  is a non-increasing function and, 
therefore, it is upper bounded by V(0), then:  
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which shows 2

nL  . To establish a stability result for the position error, one may write the trans-
fer function relationship between the error and the filtered error, σ, as: 
 
   1

( ) ( ). ( ) . ( )s G s s sI s 


   q   (41) 
 
where s is the Laplace variable. Since  G s  is a strictly proper, asymptotically stable transfer func-
tion and 2L  , one may conclude that 
 
 lim     0

t
q   (42) 

 
 Therefore, the position error, and also the velocity error asymptotically tend to zero. 
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4 SIMULATION RESULTS 

In order to observe the response of the closed-loop control system and performance of the adaptive-
robust controller, the governing equation of motion has been solved using Newmark integration 
method and the motion of the pipe is simulated. The parameters of the system are summarized in 
Table 1. The following family of functions for 1 ( )i x  and 2 ( )i x  used here, are defined as (Azadi et 
al., 2014): 
 

 
1 2 2 2

1 2

( ) {6 (1 ) [5 6 ( / ) ]}
and 

(1 )(2 )(3 )i i

ix L i x L i x L x L

i i i i
 

     


  
  (43) 

 
Length of pipe (m) 1 
Out-radius of pipe (m) 0.025 
In-radius of pipe (m) 0.02 
Bending stiffness (N*m2) 8.9782 
Density of pipe (kg/m3)  2.766x103 
Hub radius (m) 0.05 

Table 1: Parameter values (Rougui et al., 2007). 
 
The effects of the angular velocity of the pipe and the fluid velocity are studied. The simulation 
results are presented for four cases in which the angular velocities are 1   and 2 rad/s; and fluid 
velocities are 0.5U   and 1 m/s. It is noteworthy to say that the pipe start to rotate from rest to 
a constant angular velocity,  , during  8 seconds. To show the high performance of the controller 
algorithm, the controller gains are considered to be same for all four cases. The piezoelectric layer is 
attached to the middle of the pipe and is 0.2 m length. Fig. 2 compares the lateral tip deflection of 
the pipe with the results reported by Cai et al. (2004). Reasonable agreement between the present 
results and previous ones is seen. The transient time in this figure is considered to be 15 seconds.  
Figs. 3-6 show the lateral tip vibrations of the pipe. These figures illustrate that using piezoelectric 
actuator; the lateral tip vibrations of the pipe are suppressed rapidly. Although increasing the fluid 
velocity increase the amplitude of the vibrations, using piezoelectric actuator, the lateral vibration 
of the pipe is damped. Comparing Figs. 3 and 4, it is illustrated that by increasing the fluid flow 
velocity the transient tip deflection of the pipe increases approximately two times, but by applying 
the voltages to the piezoelectric actuator at the same time tip deflection is damped. It shows that 
the flow velocity has a little effect on the controller performance. Figs. 3-6 show that the effect of 
the increasing angular velocity on the transient lateral tip vibration is more than the effect of the 
fluid velocity, but in the steady state condition the effect of the flow velocity is more highlighted. 
The magnitude of the lateral generalized coordinates versus time is illustrated in Figs. 7-10. These 
magnitudes are presented for four mentioned cases. The behavior of the generalized coordinates is 
similar to the tip vibration of the pipe. Figs. 11-14 show the longitudinal vibrations of the tip of the 
pipe. Comparing Figs. 3-6 and 11-14 shows that although by applying the controller to the system 
the rate of decreasing the amplitude of the lateral and longitudinal vibrations of the pipe are ap-
proximately similar, but the lateral vibrations are damped more rapidly and the amplitude of these 
vibrations converge to zero during a short period of time. The time histories of the longitudinal 
generalized coordinates of the pipe are shown in Figs. 15-18.  
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 Finally, Figs. 3-17 show the evidences of high effectiveness of the controller algorithm to sup-
press the flutter vibrations of the wing/store system. 
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Validation of the pipe lateral tip vibrations  Figure 2:
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Figure 3: Latitude tip vibration of the Pipe 
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Figure 6: Latitude tip vibration of the Pipe ( 1 m/sU  , 2  rad/s  ). 
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Figure 7: Time history of the lateral generalized coordinates of the pipe ( 0.5 m/sU  , 1 rad/s  ): (a) First 

generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 
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Figure 8: Time history of the lateral generalized coordinates of the pipe  ( 1 m/sU  , 1 rad/s  ): (a) First 

generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 
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Figure 9. Time history of the lateral generalized coordinates of the pipe  ( 0.5 m/sU  , 2  rad/s  ): (a) First 

generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 
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Figure 10: Time history of the lateral generalized coordinates of the pipe  ( 1 m/sU  , 2  rad/s  ): (a) First 

generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 
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Figure 11: Longitudinal tip vibration of the pipe 

( 0.5 m/sU  , 1 rad/s  ). 
Figure 12: Longitudinal tip vibration of the pipe 

( 1 m/sU  , 1 rad/s  ). 
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Figure 13: Longitudinal tip vibration of the pipe 

( 0.5 m/sU  , 2  rad/s  ). 
Figure 14: Longitudinal tip vibration of the pipe 

( 1 m/sU  , 2  rad/s  ). 
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Figure 15: Time history of the longitudinal generalized coordinates of the pipe  ( 0.5 m/sU  , 1 rad/s  ): (a) First 

generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 
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Figure 16: Time history of the longitudinal generalized coordinates of the pipe ( 1 m/sU  , 1 rad/s  ): (a) 

First generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 
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Figure 17: Time history of the longitudinal generalized coordinates of the pipe ( 0.5 m/sU  , 2  rad/s  ): (a) 

First generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 
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Figure 18: Time history of the longitudinal generalized coordinates of the pipe ( 1 m/sU  , 2  rad/s  ): (a) 

First generalized coordinate (b) Second generalized coordinate (c) Third generalized coordinate. 

 
5 CONCLUSIONS 

In this study, the governing equations of motion of a rotating cantilever pipe conveying fluid have 
been derived, using Lagrange method. The pipe has been considered as an Euler-Bernoulli beam 
with tip mass. The piezoelectric layers have been attached both side of the pipe as sensor and actu-
ator. The jet of the fluid cause a follower force applied to the pipe. The follower force and the rota-
tion of the pipe induced the longitudinal and lateral vibrations to the system. An adaptive robust 
control scheme is applied to the system to suppress the lateral vibration of the pipe. The system is 
simulated and the effects of the angular velocity, and fluid flow on the lateral and longitudinal vi-
bration of the system and the performance of the controller have been studied. The presented re-
sults showed that this controller is robust against different conditions. 
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