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Abstract 

A combined plate element is presented for the analysis of transverse 

and longitudinal vibrations of a thin plate which carries a load moving 

along an arbitrary trajectory with variable velocity. Depending on the 

acceleration of the point load on its trajectory on the plate surface, 

the combined element, which is a combination of the 24 DOF plate 

element and an equivalent mass element, represents transverse (z) 

inertia, Coriolis and centripetal and longitudinal (x, y) inertia effects 

of the moving load. In order to obtain the combined element, mass, 

damping and stiffness matrices of the equivalent mass element repre-

senting the mass are first derived by using the relations between nodal 

forces, nodal deflections and deflection-shape functions of the plate 

element and the inertia and other forces of the moving mass according 

to the global coordinates on the plate and local coordinates on the 

plate element. Then, the obtained property matrices of the equivalent 

mass element and property matrices of the plate element were added 

together in order to obtain the combined plate element. For verifica-

tion, the suggested technique was applied on a simply supported 

beam-plate under a moving load, and agreements were obtained with 

existing literature. In addition, intensive analysis and simulations were 

conducted at different dimensionless mass rates (mass of the 

load/mass of the plate) and angular velocities for a circular motion on 

a CCCC plate, and the results are provided. Furthermore, analysis 

results are provided for moving force condition which neglects the 

inertia, Coriolis and centripetal effects of the load, and it was shown 

that the moving mass assumption generated very different results with 

moving load assumption especially at high mass ratio and velocity 

values. Analysis results made it clear that the dynamic behaviour of 

the plate was differently affected by an orbiting mass depending on its 

mass ratio, orbiting radius and angular velocity 
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1 INTRODUCTION 

Vibration of solids and structures under moving loads  is a significant problem for civil and machine 

constructions and has been studied by several researchers. One of the important studies in this area, 

Nikkhoo et al. (2012), examined the dynamic behavior of a thin plate excited by a moving mass 

using the Eigen function expansion method, whereas some researchers investigated the dynamic 

behavior of a Mindlin plate (Gbadeyan and Oni, 1995; Faria and Oguamanam, 2004; Gbadeyan and 

Dada, 2006; Amiri et al., 2013). Among the important FEM studies, Wu (2007) presented a moving 

load element taking into consideration the effects of the load for the dynamic analysis of inclined 

plates under moving loads. In another study, Wu (2005) used scale beams and scaling laws for the 

analyses of a rectangular plate under the effect of a line load. Some researchers (Eftekhari and 

Jafari, 2012) presented a method which is the combination of differential Quadrature (DQ) method 

and integral Quadrature (IQ) method of the Ritz method for a vibration problem of the plates sub-

jected to masses that travel with acceleration. Representing the moving mass with all effects in a 

new finite element formulation, Esen (2013) presented a method that can be used in the analysis of 

transverse vibrations of thin rectangular plates under the effect of constant-velocity-moving loads. 

In a similar fashion, the same topic was studied semi-analytically by Sharbati and Szyszkowski 

(2011), using a composite beam element. Similar to the mesh refinement method provided in Faria 

and Oguamanam (2004), dynamic behaviors of angled stratified composite plates were examined 

with FEM in Ghafoori and Asghari (2010). Nowadays the importance of dynamic behavior of struc-

tures subjected to accelerated loads is increasing, and some researchers (Lee, 1996; Wang, 2009; 

Mamandi et al., 2010; Esen, 2011) studied the dynamic behavior of composite and uniform beams 

under accelerated loads.  Using the FEM, some researchers (Wu et al., 2001; Gerdemeli et al., 2011) 

have modelled the moving mass problem for beams. The separation phenomenon which can occur at 

some values of travelling velocities and system parameters during their travel can cause fundamen-

tal change in the dynamic behavior of structures (Lee, 1998). As for different engineering applica-

tions of moving mass structure problems, (Meirovitch, 1967; Yoshida and Weaver, 1971; Bathe, 

1982;  Reddy, 1984; Yang, 1986; Taheri, 1987; Bachmann, 1995; Kadivar and Mohebpour, 1998; 

Fryba, 1999; Wilson, 2002; Clough and Penzien, 2003;  Szilard, 2004; Mohebpour et al., 2011; Oni 

and Awodola, 2011; Awodola, 2014) can be considered important and valuable references for analyt-

ical and FEM solutions and analysis of dynamic systems.  

 A plate excited by an orbiting mass has considerable importance in mechanical engineering, es-

pecially in the analysis of rotating machines. The researches that study the dynamic behaviors of 

disk file memory units in computer industry and circular saws widely used in wood products indus-

try can be mentioned among additional applications. Both systems mentioned above can be mod-

elled as circular plates excited by a moving mass (Cifuentes and Lalapet, 1992). The studies on 

dynamic behavior of the plates under the influence of masses moving on arbitrary trajectories on 

their surfaces, which are among some construction and mechanical engineering applications, are 

limited, and some simplified systems were analytically studied in the literature, i.e., Fayaz and 

Nikkhoo (2009); Nikkhoo and Fayaz (2012). In addition, taking into consideration the variable mo-

tion velocities of the mass, additional studies, which will examine the effects of variable velocity 

along with other effects, are needed. In analytical solutions, the analyzed system has to be simpli-

fied, so that the basic mathematical complexity encountered in moving load problems can be over-

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CEMQFjAE&url=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%252F978-94-011-9685-7&ei=EGc2VMjaD-6X7Qai7IDACQ&usg=AFQjCNGfl-I-QswzT3glFiLohlk6wgXkYA&sig2=C7RtYdhSBOwesg2WoBKVpw&bvm=bv.76943099,d.ZGU
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come, which sometimes urges researchers to neglect the inertia effects of the mass and the damping 

in the system, and in some cases, moreover, it causes simplification of the geometry and prevents 

the acquisition of the real behavior of the designed system. Further studies are necessary to analyze 

the dynamic behavior of structural systems without neglecting all inertia effects and damping in the 

system in moving mass-structure systems and taking into consideration variable-velocity accelerat-

ing and decelerating situations of the mass as well as its motion on different trajectories on struc-

tural systems. The new method suggested by this study which does not require the limitations men-

tioned above has the advantage of being used by adapting to the classical finite elements method; in 

addition, it meets an important need by modelling the transverse and longitudinal dynamic behav-

ior of thin plates subjected to moving loads and under variable geometry and boundary conditions, 

along with the damping effects of the system and convective acceleration components of the varia-

ble velocity mass as well as variable mass travel orbits.  

 In this paper, the discreet governing equation of motion of a thin rectangular plate on which a 

mass travels with variable velocity in arbitrary orbit was obtained by combining the mass, stiffness 

and damping matrices of the mass with the property matrices of the plate. Property matrices of the 

accelerated mass were calculated through the time-dependent second-order total differential of the 

deflection function at variable mass contact point and the nodal forces and deflections of the plate 

element which the moving mass applies. Inertia effects were taken into consideration in the evalua-

tion of in-plane and out of plane dynamic responses of the plate. Using the method recommended in 

this study, the dynamic response of the systems under moving loads with mass motions on orbiting 

path which can be found in rotating machines and similar systems as well as on rectilinear path 

which can be found in slab type bridges and similar structural systems can be analyzed.  

 

2 PROBLEM DEFINITION  

In the formulation the following assumptions will be adopted (Fig. 1) 

 The mass inertia is considered. 

 The mass is always in contact with the plate. 

 The plate is thin and small displacements in the plate occurred according to Kirchhoff theory. 

 The plate is of constant thickness and constant mass of unit area. 

 The trajectory of the mass is defined by time-dependent px t  and py t  coordinates. 

  

 Under the above assumptions and neglecting damping, the equation of motion for constant mass 

velocity can be written as follows: 

 

 
22

4
2 2

d ( , , )
( ( )) ( ( ))

d

p p
p p p

w x y tw
D w m g x x t y y t

t t
  (1) 

 

 In Eq. (1), D is the bending rigidity, 3 212 1D Eh v , where E, υ, and h represent Young's 

modulus of elasticity, Poisson’s ratio and thickness respectively and μ is the  mass of unit area of 

the plate.  And , ,w w x y t  is the vertical deflection of the plate’s mid-surface at point with co-

ordinates x and y at time t, while px x t  and py y t  represent the Dirac-delta func-

http://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDgQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FYoung%2527s_modulus&ei=EV0AUeDaBMGShgeT5ICQBQ&usg=AFQjCNGmJ12M9N2Nc32_pKR1EGez5OpTRA&sig2=Nfno4RhdEkcthO5vVX2nhg&bvm=bv.41248874,d.ZG4
http://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDgQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FYoung%2527s_modulus&ei=EV0AUeDaBMGShgeT5ICQBQ&usg=AFQjCNGmJ12M9N2Nc32_pKR1EGez5OpTRA&sig2=Nfno4RhdEkcthO5vVX2nhg&bvm=bv.41248874,d.ZG4
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tions in x and y directions, respectively. The symbols pm  and g are the moving mass and gravita-

tional acceleration, respectively. 

 Assuming that px   and py  coordinates, which define the mass motion on the plate, are function 

of time and the acceleration ( 2 2d , , dp pw x y t t ) on the right side of Eq. (1) is calculated from the 

second-order total differential of plate deflection function (Fryba, 1999): 
 

 

2 22 2 2 2 2

2 2 2 2

2 2 2 2

( ), ( )2 2

d ( , , ) d d d d
[  +2

d d d dd

d d d d
                  2 2 + ]

d d d d p p

p p

x x t y y t

w x y t w x w y w w x y

t t x y t tt x y t
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x t t y t t x yt t

  (2) 
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Figure 1: A moving mass travelling along an arbitrary trajectory on the surface of a rectangular plate and the kth 

plate element on which the moving mass applies. 

 

 The solution of the motion equation given in Eq. (1) can be obtained for any prescribed initial 

and boundary conditions by using analytical methods given in the literature, i.e. in Bachmann 

(1995); Nikkhoo and Fayaz (2012).  In this study, including damping, the more accurate dynamic 

behaviour of the mass-plate system can be determined with the method which will be explained 

below. The finite element formulation of the system is obtained, evaluating the contact forces be-

tween the mass and the plate on the right hand side of the Eq. (1) 

 

2.1 Finite element formulation of a mass that moves along an arbitrary path on a plate with variable velocity  

According to the local x, y, z coordinates of the plate element seen in Figure 2 and the positions 

mx t  and my t  of the mass on the plate element, the in-plane forces ( xF  and yF ) and out-of-

plane force ( zF ) on p, which is the contact point induced by pm  due to the vibration and curvature 

of the plate element are as given in Gbadeyan and Oni (1995), respectively: 
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( ( )) ( ( ))
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  (3.a) 
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with, 
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Figure 2: The rectangular plate element on which the moving mass pm  applies at time t , with dimensions a and b 

and equivalent nodal deflections and forces. 

 

where , ,x p pw x y t , , ,y p pw x y t , , ,z p pw x y t  are deflections in x, y and z directions respectively at 

contact point. While 0x , 0y  and 0xv , 0yv  are respectively initial positions and velocities of the mass 

when time is “zero”; mxa  and mya  are components of acceleration vector of the mass in x and y di-

rections. For vibrations of the plate in longitudinal x  and y  directions, the derivation procedure of 

accelerations 
xm

u and 
ym

u , in Eq. (3.b), are provided in Appendix A. For the uniformly-accelerated 

motion according to (3.b) and (3.c), the vertical acceleration in Eq. (2) is in the following form: (3) 

 

 0 0 0 0

0

2 2
0( ) ( ) 2( )( ) 2( )

       2( )  
x y x y x x
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mz x x m y y m x m y m xy m x
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  (4) 

 

Eq. (4) was substituted into the last equation of (3.a).  It becomes: 
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where   “ ′ ”, “ ∙ ” are, respectively, spatial and time derivatives of deflections; and, since the mass 

moves along the deflected shape of the plate, one can divide the vertical force zF  into three compo-

nents that are 

 

 2 2
0 0 0 0[ ( ) ( ) 2 ( )( ) ] p x x mx y y my xy x mx y my mx x my ym w v a t w v a t w v a t v a t a w a w   (5.b) 

  pm w   (5.c) 

 0 02 [ ( ) ( )] p x x mx y y mym w v a t w v a t   (5.d) 

 

Eqs. (5.b), (5.c) and (5.d) are, respectively, the centripetal force, the inertia force and the Coriolis 

force components.  The subscripts “ x”  and “y” show that the function of deflection is derived by x 
and y, respectively.   

 The rectangular plate element in Figure 2 is a 24- DOF conforming plate element with C(1)  con-

tinuity conditions at element boundaries. It includes constant twist ( 2w x y ) at corner nodes. 

Therefore, each corner nodal deflection is (Szilard, 2004): (5) 

 

 1 2 3 4 5 6

      ( =1,2,3,4 :  nodes of the plate element) 

T T

i i i i i i i z x y x y xy i
u u u u u u u w w w

i
  (6) 

 

where zw , xw  and yw  are, respectively, the vertical deflection, the longitudinal x and y deflections 

of ith nodal point, and 
ix
and 

iy
, 

ixy
are, respectively, rotation about x and y-axis and twist of 

nodal point i.  
 For simplification let us use three types of indexes: i =2, 8, 14, 20 for longitudinal x, i =3, 9, 15, 

21 for longitudinal y, i =1, 4, 5, 6, 7, 10, 11, 12, 13,17, 18, 19, 22, 23, 24 for transverse z and i =1, 

2, ..., 24 for everything together.  The following indexes can be defined as: 

 

 2,8,14,20xI   (7.a) 

 3,9,15,21yI   (7.b) 

 1,4,5,6,7,10,11,12,13,16,17,18,19,22,23,24zI   (7.c) 

 1,2,...,24x y zI I I I   (7.d) 

 

 The equivalent nodal forces of the kth plate element are obtained using all forces in Eqs. (3) and 

(5) and the shape functions of the 24 DOF plate element given in Figure 2  (Clough and Penzien, 

2003; Wu, 2007):  

 

  , ( ) 
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where i ( i I ) are shape functions of the plate element given by Szilard (2004), see Appendix. B. 

 The relations between shape functions and deflections (in- plane x and y deflections and out of 

plane z deflection) of the plate element at position x and y, and time t, are (Szilard, 2004): 
 

 ( , )x i i
i Ix

w x y u   (9.a) 

 ( , )
y

y i i
i I

w x y u   (9.b) 

 ( , )
z

z i i
i I

w x y u   (9.c) 

 

 The deflections of the contact point of the mass on the plate element in terms of the nodal de-

flections of the plate element can also be obtained as follows: 
 

 

x

mx j j
j I

u   (10.a) 

 

y

my j j
j I

u   (10.b) 

 

z

mz j j
j I

u   (10.c) 

 
where iu  ( i I ) are the deflections of the nodes of the plate element at which the moving mass 

pm  locates. Substituting Eqs. (9) and (10) into Eq. (8) and writing the resulting expressions yield: 
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where the superscripts “x” and “y” define that the shape functions are derived by x and y, respec-

tively. When the Eqs. (11.a), (11.b) and (11.c) are rearranged in terms of the nodal forces f, nodal 

deflections u, nodal velocities u  and nodal accelerationsu , the following matrix equation can be 

obtained: (7)(8)(9)(10)(11) 
 

 f m u c u k u   (12) 

Where, 

 1 2 23 24 1 2 23 24

1 2 23 24 1 2 23 24

... ,    ...

... ,  ...

T T

T T

f f f f f u u u u u

u u u u u u u u u u
  (13) 
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,   ( )

,   ( )

,   ( )
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i p i z

i p m i x

i p m i y

f m g i I

f m a i I

f m a i I

  (14) 

 

 In Eq. (11), all the non-zero coefficients of [m]24x24, [c]24x24 and [k]24x24 are  

 

 0 0

0 0 0 0

2 2

,  ( , )

2 ( ) 2 ( ) ,  ( , )

( ) ( ) 2 ( )( )

      + + ,  ( , )

x y

x y x y

x y

ij p i j
x y

ij p x m i j p y m i j z

xx yy xy
ij p x m i j p y m i j p x m y m i j

x y
p m i j p m i j z

m m i j I

c m v a t m v a t i j I

k m v a t m v a t m v a t v a t

m a m a i j I

  (15) 

 

 The [m], [c] and [k] matrices in the Eq. (12) obtained by addition of inertia force, Coriolis force 

and centripetal force which are induced by moving mass pm , are the instantaneous  mass, damping 

and stiffness matrices, respectively, of the equivalent mass element in the FEM modelling of the 

entire system. The position of the mass changes continuously, and so do these matrices representing 

the mass. The rectangular plate element given in Figure (2) has 6 deflection DOFs at nodal points 

at each corner; thus, the size of [m], [c] and [k] matrices that represent the travelling mass are iden-

tical to the element matrices of the plate element, which is 24x24. The following section will deal in 

detail with that, when simulating the dynamic behaviour of the plate due to mass motion, the in-

stant overall mass, damping and stiffness matrices of the entire system during time integration of 

the equation of motion of the system are being reconstructed by combining [m], [c] and [k] matrices 

which change at every ∆t time step.  

 

2.2 Equation of motion of a plate under the influence of a moving mass 

The equation of motion of a system consisting of a moving mass and plate is as follows:  

 

 [ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )}M z t C z t K z t F t   (16) 

 

where  [ ]M , [ ]C  and [ ]K  are mass, damping and stiffness matrices of the entire system respectively 

at time t, whereas { ( )}z t , { ( )}z t and { ( )}z t are the acceleration, velocity and deflection vectors, re-

spectively; finally, { ( )}F t  is the external force vector of the entire system. 

 The coefficients of mass eM  and stiffness eK  matrices of a plate element without any mass addi-

tion can be found from Szilard (2004). According to the finite element segmentation and boundary 

conditions of the given plate system, the overall mass M and stiffness K matrixes of the entire sys-

tem are constructed from elemental eM  and eK  matrices. When there is a moving mass on the 

plate, the mass and stiffness matrices of the entire system can be obtained by taking into considera-

tion the inertia and centripetal forces induced by the moving mass; therefore, the coefficients of 

instantaneous overall mass and stiffness matrices of the entire system are: 

 

 ,   ( , 1 : total system DOF)ij ij ij ijK K M M i j n   (17.a) 
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except for the coefficients of the element k  

 

  kj  kj  kj  kj ,    ( , )ki ki ij ki ki ijK K k M M m i j I   (17.b) 

 

 Equations (17.a) and (17.b) show that when mass is on element k, we add [m] and [k] matrices 

given in equation (11) to the element mass and stiffness matrices of kth plate element. In order to 

calculate instant values of time-dependent [m], [k] and [c] matrices, it is necessary to instantly ob-

tain the mt x t a  and mt y t b  equations representing the position of the mass on kth 

plate element and evaluate shape functions according to t  and t  values and substitute them 

in equations (B1 and B2). For this reason, the instant values of mx t , my t  and k for a constant 

mass velocity on a path parallel to x  are determined as follows: (17) 

 

 

( ) ( 1)

( ) ,  constant

int( ) 1

m x

m

x x

x t vt k l

y t e

k el ba vt l

  (18) 

 

where int() is the integer part of the value of the expression in the parenthesis. For a variable mass 

velocity: 

 

 

0

2
0
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2
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m

x p x
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x t x k l
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  (19) 

 

 For other mass trajectories, for example, for a circular trajectory (see Figure 4), the global 

px t  and py t  and local of mx t  and my t  positions and element k on the plate can be de-

termined by using the radius of the circular path, xl  and yl  dimensions of the plate, angular veloc-

ity of the mass, and a and b dimensions of the rectangular plate element:  

 

 

( ) int ( )
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2 cos

2 sin

( , ), int ( ) 1,   int ( ) 1

( , )  ( - 1) ,  ( 1 : ,  1 : )

m p p
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p x
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m p p

m

x t x x a a

y t y y b b

x l r

y l r

k E i j i x a j y b

E i j j i Nx i Nx j Ny

  (20) 

 

where Nx and Ny are the mesh numbers in x and y directions respectively. 

 For other mass trajectories except linear and circular ones, if the time-dependent function of an 

arbitrary path on a plate can be determined, depending on this function and the velocity of the 

mass, by determining global px t  and py t  and local mx t  and my t  positions and element k, 
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and using the method explained here, moving mass problems at several different trajectories can be 

modelled. As alternative to Eq. (20), re-meshing the plate with quadrilateral elements (available in 

almost every commercial FE programme) in such a pattern that the nodes can be used to define the 

trajectory, can be used as given by Faria and Oguamanam (2004). 

 In order to take into consideration the effect of damping on the structure, damping matrix can 

be obtained by using the Rayleigh damping theory where damping matrix C is proportional to the 

combination of mass and stiffness matrices (Clough and Penzien, 2003). 

 

 0 1C a M a K   (21) 

 

 0 2 2

2 ( )i j i j j i

j i

a   (22.a) 

 1 2 2

2( )j j i i

j i

a   (22.b) 

 

where the terms i  and j  are damping ratios related to natural frequencies i  and j .  
 In this case, the coefficients of the overall damping matrixes of the system under moving mass 

are: (22) 
 

  ( , 1 : total system DOF)ij ijC C i j n   (23) 

except for, 

  k  k     ( , )ki j ki j ijC C c i j I   (24) 

 

 Overall force vector of the system is formed by equating all coefficients except nodal forces of 

element k to zero. Thus, the instant force vector of the entire system is as follows:  

 

 1 2 23 24( ) 0 ... ... ... 0
T

k k k kF t f f f f   (25) 

 

with ki if f  ( i I )  which is given in Eq. (13). 

  

3 NUMERICAL RESULTS 

3.1 Verification of the method 

To verify the present method with existing literature, the Newmark direct integration method is 

used along with 0.25  and 0.5  values to obtain both the solution of equation (15) and 

verification example, where  and  are parameters that define the sensitiveness and stability of 

the Newmark procedure. It has been reported that when  takes 0.25 value and  0.5, this numer-

ical procedure is unconditionally stable (Wilson, 2002). 

 Let us take a simple supported isotropic beam-plate transversed by a F = 4.4 N. The dimension-

al and material specifications of the plate are identical with those chosen in Reddy (1984) i.e. xI   

10.36 cm; yI 0.635 cm, h 0.635 cm; E 206.8 GPa, 10686.9 kg/m3; fT 8.149 s, where 
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fT  is the fundamental period. In Table 1, dynamic amplification factors (DAF), which are defined 

as the ratio of the maximum dynamic deflection to the maximum static deflection, are compared 

with several previous numerical, analytical and experimental results available in literature. It is 

noted that T is the required time for moving load to travel the plate. It is seen that the results ob-

tained by the new finite element (column 3) are very close to the analytical solution Meirovitch 

(1967). 
 

V (m/s) fT T  1 2 

15.6 0.125 1.047 1.025 

31.2 0.25 1.354 1.121 

62.4 0.5 1.270 1.258 

93.6 0.75 1.575 1.572 

124.8 1 1.706 1.701 

156 1.25 1.711 1.719 

187.2 1.5 1.547 1.700 

250 2 1.538 1.548 

(1) Present method. 

(2) Analytical solution from Meirovitch (1967). 

Table 1: Dynamic amplification factors (DAF) versus velocity. 

 

3.2 Case study: Orbiting mass 

In order to examine the effect of the mass that moves in an orbit on the plate, a square thin plate 

with all edges meeting CCCC conditions as well as with 1x yl l  m dimensions and 0.01h  m 

thickness values was chosen. Other properties of the plate are identical to the previous plate. The 

damping matrix C  of the whole system was calculated with equations (23 and 24) by using the 

damping ratios of 1 0.005  and 2 0.006  (which correspond to the system’s natural frequencies 

1 , 2 ). Figure 4 shows a square CCCC plate which carries a mass with an angular velocity of  

at a circular path with a radius of r. The plate was divided into plate elements that it consists of 

121 elements and 144 nodes with 11X11 meshing. The Cartesian coordinate system of the plate was 

placed at such a location where left edge and back edge combine at 0x , 0y , O point and the 

middle point of plate thickness is z 0 and downward positive. Local coordinates of the plate ele-

ments were located at the left back corner similar to the plate. Global px t  and py t  coordinates 

of the mass on plate were evaluated depending on the coordinate system as well as the element on 

which the mass is located during motion, whereas local mx t , my t  coordinates are evaluated 

depending on the local coordinate system. 

 Starting position of the mass is the point where θ angle on the trajectory is zero; the motion of 

the mass is clockwise with constant angular velocities. Scalar value of the tangential velocity of the 

mass is constant but the direction of the velocity is constantly changing; therefore, a centripetal 

acceleration affects the mass towards the central point of the trajectory. At any θ angle, the global 

coordinate of the mass on the plate and its local coordinate on the element are calculated with Eq. 

(20). The number of the element which hosts the mass is determined by matrix mapping algorithm 

also given in Eq. (20). Angular vibration frequencies at the first four vibration modes of the chosen 

plate are 1 567.0254 rad/s, 2 3 1154.3784 and 4 1720.3322 rad/s. Analysis is con-



819   İ. Esen / A new FEM proc. for transv. and long. vibration analysis of thin rect. plates subjected to a variable velocity mov. load along an arbitrary trajectory 

 

Latin American Journal of Solids and Structures 12 (2015) 808-830 

 

ducted separately for constant angular velocities of the mass during one tour and in a certain time 

period (75 1T ), where 1T  is the period of the first fundamental vibration mode.  
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Figure 4: A CCCC plate with an orbiting mass that moves on a circular path with a radius of r and at an angular 

velocity of . 

 

 For mass ratios 0.05, 0.1, 0.25, 0.5 and 1, the behaviour of the plate at different angular 

velocities and different trajectory radiuses is shown with graphics. The mass ratio  is defined by 

ratio of the mass of the moving load to the mass of the plate. Figure 5 shows the dynamic deflec-

tions of the central point of the plate in one-tour motion situation of the masses with 0.05, 0.1, 

0.25 mass ratios at a circular trajectory of radius r 0.25 m, which angular velocity starts at 1 up 

to  100 rad/s with increments of 1 rad/s. These deflections are defined as the ratio of maximum 

values of the absolute time-dependent deflections of the central point of the plate as DAF 

= max 2, 2, 2, 2x y st x yl l t l l  to the deflections that the mass would have generated if it had 

remained static at the central point of the plate. The amount of deflection that will be created by a 

static force at the central point of the thin plate under a square CCCC boundary conditions can be 

calculated with 2 32, 2 0.061st x y p xl l m gl Eh  formula, Clough and Penzien (2003). The mass 

of the plate is 78.5 kg; moving mass is 3.925 kg, 7.85 kg 19.625 kg, 39.25 kg and 78.5 for 0.05, 

0.1, 0.25, 0.5 and 1, respectively. 

 

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Angular velocity  (rad/s)

D
A

F

 

 

=0.05

=0.1

=0.25

 

Figure 5: Angular velocity-dependent dynamic behaviour of maximum deflections that develop at the central point 

of the plate in case of motion with various mass ratios of the mass at circular orbit with r 0.25 m, DAF (dynamic 

amplification factors). 
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 Close examination of Figure 5 shows no considerable increase in deflection on the plate in masses 

with relatively low mass ratio, i.e. 0.05 and 0.1. DAFs obtained in the given velocity interval 

are usually under 2 and fluctuate between 0.75 and 2, depending on the angular velocity of the 

mass. Nevertheless, when the mass ratio is 0.25, DAF considerably increases at some angular 

rotation velocities. Maximum DAF is obtained as 4.3 at 30 rad/s velocity. The second highest 

DAF is witnessed as 3.82 at 9 rad/s velocity. The analyses here are conducted basing on one 

rotation of the mass, and the results show the transient effect of the mass. What kind of dynamic 

behaviour can be witnessed in the plate in case of a continuous effect posed by the mass at a con-

stant angular velocity? Analyses results for this question will be provided below.  

 In Figure 6 the absolute deflections that are generated due to the assumption that the mass is a 

moving load. If the graph is examined carefully it can be seen that the graphs occur identical for all 

mass ratios in the case that each graph is given as DAF. It is seen that maximum DAF occurs at 

around 2 at 16, 32 and 48 rad/s angular rotation velocities at the orbit. This is no surprise as it 

is the result of the fact that neglects the inertia effects of the mass due to moving load assumption. 

These graphs once more tell that moving load approach is rather inadequate for reflecting the real 

behaviour of the plate. Nevertheless, at relatively smaller mass ratios, i.e. 0.05 and 0.1 (Figure 

7), it should be noted that considerable differences do not develop between moving mass and mov-

ing load assumption. 
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Figure 6: In the case of moving load assumption, absolute maximum deflections and DAF (dynamic amplification 

factors) that develop at the central point of the plate in the case of motion of the mass at various velocities and mass 

ratios at circular r 0.25 radius. 

 

 When the mass ratio is increased, i.e. at 0.5 value, the first resonance occurs at 6 rad/s 

and DAF increases to 10.17. The second resonance develops at 9 rad/s and DAF is amplified to 

58.014, which is its highest value. The third peak is witnessed at 76 rad/s as 6.96. When the 

mass ratio is increased further, the peak value at 1 develops with 778.1 at 7 rad/s, and it 

reaches 30.32 even at a very low rotation velocity such as 3 rad/s and changes the stability of 

the system. For the mass ratio 1, the reliable angular velocity is 2 rad/s and DAF is 1.41.  

 The effect of the motion of the mass at different radiuses is given in Figure 8. The solid line 

shows the graphs for 30 rad/s and the dotted line shows the graphs for 88 rad/s. (In Fig-

ure 5, DAF reached its peak at 0.25 mass ratio and 30 rad/s). This velocity was particularly 

chosen in order to understand whether the plate behaviour remains the same or changes at this 

velocity and at other orbit radiuses. If the rotation velocity is 88, this is because the velocity 
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shows almost minimum DAF at all mass ratios. This velocity is chosen in order to see the plate 

behaviour at different radius travels. 
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Figure 7: DAFs of absolute deflections formed on the plate by a mass moving at angular velocities 

1-100 rad/s and r 0.25 m rotation radius, depending on mass ratios; 

solid line is for moving mass and dotted line is for moving load. 
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Figure 8: DAFs of central point of the plate versus rotation orbit radius r  when the mass moves with 30 and 

88 rad/s, for mass ratios of 0.05, 0.1, 0.25 and 0.5. 

 

 When Figure 8 is examined in detail, it is seen that the 88 rad/s rotation velocity which 

yields small DAF values at small mass ratios such as 0.05 and 0.1 change the stability of the system 
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at some radiuses at bigger mass ratios such as 0.25 and 0.5. For 0.25 mass ratio, the radiuses of 

r 0.32 and 0.40m and even 0.46m, which is very close to the edge of the plate, and for ε =0.5 

mass ratio, the radiuses of r 0.32 and 0.40, are considered highly risky. At 30 rad/s rotation 

velocity, r 0.3 and 0.37 m radiuses for 0.05 mass ratio, r 0.23 m radius for 0.1 mass ratio, 

r 0.14 radius for 0.25 mass ratio and r 0.26, r 0.35 and r 0.40 m radiuses for 0.25 m and 

0.5 mass ratios are rotation radiuses where DAF reaches its peak. From these results, it can be 

concluded that a rotation velocity and mass ratio which is reliable for one radius will not necessarily 

be reliable for another radius.  

 Figure 9 presents the behaviour of a plate depending on mass ratios which are at a certain radius 

orbit, at 30 rad/s velocity and at a definite period of travel, i.e. 175t T , r  0.375 m, where 

the mass takes 4 tours a second at its orbit on the plate in t  0.837758 seconds. At mass ratios of 

0.05 and 0.25, deflections of the plate are small and stable, whereas at 0.1 deflections tend to in-

crease slowly and constantly; at 0.5 and 1 mass ratios deflections tend to increase rapidly. Figure 10 

gives the change generated by the effect of constant mass ratio 0.5 at 30 rad/s velocity for 

moving mass and load assumption. As for motion at r 0.125 motion orbit radius, deflections de-

crease in time, whereas they constantly and slowly increase at 0.25 radius; they tend to increase 

rapidly at 0.375 and 0.475 m and change the plate stability. Thus, it can be observed that the de-

signs should take continuity of motion on orbit into consideration. So much so that if the plate is 

subjected to constant interaction with the mass at an angular velocity that corresponds to a very 

small peak, resonance will develop albeit slowly after some time as Figs. 9 and 10 show. 
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Figure 9: For an excitation period of 175T , deflections of the central point of the plate for orbiting radius 

r 0.375 m, with 30 rad/s and, mass ratios of 0.05, 0.1, 0.25 and 1. 
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Figure 10: Deflections of the central point of the plate for: 0.5, 30 rad/s., r 0.125, 0.25, 0.375, 0.475 m. 

 

 Figure 11 gives the situations that examine the behaviour of the plate in the interval until the 

angular frequency of the first fundamental vibration mode at very high angular velocities, i.e. 1  

576.0254 rad/s, at an orbit with a certain radius on the plate. 

 In this analysis, the angular velocity was started at 1 0.01, increased by 0.01 increments 

and reached to 1  velocity in 100 steps, where the 0.01 step ratio is 5.760254 rad/s, and angular 

velocities between two steps are not shown in the analysis. As a result, resonance developed at  

9 rad/s velocity at 0.5 mass ratio, but as this velocity was omitted in these graphs, this impact 

cannot be observed. For this reason, the graphs given below should be evaluated under the light of 

this reality. These graphs are provided so as to give a general idea; they also confirm that at mass 

motions with this kind of orbit, analysis steps should be kept as small as possible while analysing 

resonance behaviour of the system. As Figure 11 manifests, small mass ratios, i.e. 0.05 and 0.1 

and smaller, and at low angular rotation velocities until 10.2 , moving mass and moving load ap-
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proaches yield similar results. For this reason, at very small mass ratios and rotation velocities, 

moving load approach can be used for those who want to get quick results. However, as the angular 

velocity increases, graphs change differently. It can be seen that, for all mass ratios, graphs yield 

many huge or small peaks at different velocities. With more precision, analysis results for orbit ra-

dius of r 0.25m with 1 rad/s increments, from 1 to 577 rad/s and 0.25 mass ratio are 

provided in Figure 12 in 3-d fashion. For the mass ratio of 0.25 and rotation orbit radius of 

r 0.25 m, deflections of the central point of the plate are given in Figure 12 depending on the θ 

angle at which the mass is located on the plate and the  angular velocity of the mass, where the 

vertical axis shows the real deflections of the central point of the plate, and horizontal x and y axes 

show the angular velocity of the mass according to the position angle of the mass as per the refer-

ence system. When Figure 12 is examined in detail, it can be seen that θ angles with high deflection 

values are mostly bigger than 180 degrees, because when the mass is rotating on the plate, the vi-

bration velocity and acceleration of the plate system increases due to the mass motion. 
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Figure 11: DAFs of central point for 1 0.1-1, orbiting radius r 0.25 m, 0.05, 0.1, 0.25, 0.5, moving 

mass and moving load cases. 

 

 In real engineering systems, the effects of these parameters have to be controlled with very small 

changes in the planned working interval of the system taking into consideration the rotation veloc-

ity, mass ratio and rotation radius of the designed system. Otherwise, the system can be risked if 

one parameter that can create resonance in the system is gone unnoticed. 

 Similar situation is also witnessed in motion on a rectilinear path, Esen (2013). It is obvious 

that, as the mass ratio grows, the resonance affecting frequency decreases with the inverse propor-

tion. At relatively larger mass ratios such as 0.25 and 0.5, at angular velocity values of ap-
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proximately 10.52  and higher, deflections that develop with the impact of high velocity and mass 

decrease as [c] and [k] matrixes repress the motion-equation of the plate.  Despite all this difficul-

ties, each mass ratio has a reliable orbiting radius and rotation velocity and each orbiting radius 

and rotation velocity has a mass ratio with which motion can be constantly ensured without chang-

ing the stability of the plate mass system. In practical design, the method recommended in this 

paper can be applied to easily determine the other reliable parameters depending on a certain pa-

rameter.  For example, as can be seen in Figure 9, r 0.375 m looks reliable for this plate with 

30 rad/s, 0.05, 0.25 values. In Figure 10, the rotation radius of r  0.125 m is reliable 

for 0.5, 30 rad/s, whereas in Figure 8, all radiuses under r 0.2 m are reliable.  

 

 

Figure 12: Deflections of the central point of the plate at 0.25 mass ratio and r 0.25 rotation orbit radius 

depending on the θ angle with which the mass is located on the plate and ω angular speed of the mass. 

 

 The longitudinal deflections of the contact point in x  and y  directions due to centrifugal accel-

eration of the moving mass are given in Figure 13,  for 0.25, r 0.25 m and constant angular 

velocities of 10, 30 and 90 rad/s, depending on dimensionless position ( 2t ) of the rotating mass 

around the circular path. The black lines are for direction x , while the red ones are for direction y .  

When the Figure 13 is examined closely, especially for higher angular velocities the longitudinal 

deflections of the may increase to a significant level in terms of the strength of the plate.  Since the 

studied plate is square and isotropic, the maximum deflection for both x  and y  directions is 

0.002972 mm; but due to rotation of the mass there is a phase angle of 90 degrees between the x  

and y  deflections as shown from Figure 13. As another result, one can estimate that the longitudi-

nal deflections will increase with the rise in the amount of the mass, the rotation radius and angular 

velocity. 
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Figure 13: For  angular velocities of 10, 30 and 90 rad/s, the longitudinal x and y deflections of 

the contact point of the plate at 0.25 mass ratio and r 0.25 m rotation orbit 

radius depending on the dimensionless position ( 2t ). 

 

4 CONCLUSIONS 

Equation of motion of a thin rectangular plate under the excitement of a moving mass has been 

derived representing all effects of the mass by taking into consideration the in-plane and out of 

plane acceleration components of the mass. In the finite element model of the equation of motion, 

the inertia effects induced by moving mass have been integrated to the system by deriving time-

dependent equivalent mass [m ], damping [c] and stiffness [k] matrices which represent the inertia 

force, the Coriolis and centrifugal force components, respectively. As an alternative to the analytical 

methods which are disadvantaged due to the fact that it is almost impossible to reach a solution 

taking into consideration inertia effects, damping and variable mass velocities in plate systems un-

der the effect of a mass that moves on variable passage paths, the author presented a method that 

takes into account effects discarded in the moving FORCE model. The proposed method can be 

used for the calculation of the dynamic behaviour of moving mass-plate system along with variable 

mass-travelling velocities and all effects of the mass and vibration damping effects of the system for 

various mass trajectories and which can be easily implemented by adapting to the classical FEM 

method.  

 For the orbiting motion, it has been indicated that, besides the size and angular velocity of the 

mass, the radius of the orbit is also an essential factor in behaviour of the plate. Moreover, it has 

been shown that larger masses rapidly decrease the resonance excitation frequency. The changes in 

orbiting motion of continuous rotating for time 175t T  s have been simulated, and it has been 

understood that the results of a transient one-tour motion and continuous motion are rather dis-

similar and that orbiting motion can generate more non-linear results. In continuous orbiting mo-

tion, the vibration velocity of the system increases, and thus the kinetic energy, system gains more 

energy in time which can cause resonance of the system. For this reason, this paper recommends 

that, in orbiting motion analyses, in order to comprehend the steady state behaviour of the system, 

the analyses should be based on at least four tours or a time of 175T  second affecting on the plate 
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at selected mass size, rotation angular velocity and determined orbit radius parameters. Despite the 

non-linear behaviour of the system in orbiting motion, each mass ratio has a reliable orbiting radius 

and rotation velocity, and each orbiting radius and rotation velocity has a mass ratio with which 

motion can be constantly ensured without changing the stability of the plate mass system.  

 The most important one of the few parameters that administers the general behaviour of the 

plate is the change in vibration frequency of the system depending on the size and position of the 

mass on the plate.  In orbiting motion, there are some additional factors such as the effect of veloc-

ity, deflexion of the velocity vector with the effect of centripetal acceleration, and positive or nega-

tive signs of the components of tangent velocity at some mass contact angles depending on the plate 

coordinate system. All these impacts non-linearly affect motion equations and the behaviour of the 

system. In practical design, other reliable parameters can be easily determined depending on a cer-

tain parameter applying the method recommended in this study.  
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APPENDIX A. Derivation procedures of Eqs. (3.b) 

Since the longitudinal deflections of the plate are very small when compared with the vertical de-

flections. The contact forces in x and y directions xF  and yF  are 

 
2 2

2 2
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 ( ( )),    ( ( ))

d d

x p p y p p
x p p y p p

w x y t w x y t
F m x x t F m y y t

t t
  

 

where , ,x p pw x y t  and , ,y p pw x y t , respectively, represent the longitudinal x and y displacements at 

positions px , py  and time t.  In this case for the longitudinal x vibration of the plate one can obtain 

the following equations: 
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For the longitudinal y vibration of the plate one can:  

 

d ( , , ) ( , ) ( , )
 0 0 ( , ) ( , ) ( , )

d
y p p y y

y y y

w x y t w y t w y ty t
w y t y w y t w y t

t y t t t
 (A3) 

2

2

d ( , , ) ( , ) ( , )
 0 0 ( , ) ( , ) ( , )

d

y p p y y
y y y

w x y t w y t w y tx t
w y t y w y t w y t

x t t tt
 (A4) 

 

APPENDIX B.  Shape functions of the plate element in Eq. (7). 
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where np  and nq  (n 1, 2, 3, 4 ) are hermitical polynomial components that represent plate shape 

functions in x and y-axes respectively. The symbols a and b are the length and width of kth plate 

element respectively, whereas mx t  and my t  are variable distances between the moving mass and 

the left end-local coordinate of the kth plate element, at time t, as shown in Figure (2).  

 


