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Abstract

This paper presents shape optimization of nearly incompressible hyperelastic structural
problems. Initially, the Mooney-Rivlin hyperelastic model is reviewed. The finite element
solution using a perturbed Lagrangian description and the Newton-Raphson method are dis-
cussed. The projected pressure method is used to solve the mixed problem using a standard
one-field finite element procedure. The expressions of shape sensitivity are presented. Fi-
nally, the shape optimization of an engine mount geometry is considered using 2D and 3D
finite element models.
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1 Introduction

The formulation of the non linear hyperelasticity problem has been still studied due to the
need of more precise material constitutive equations, the application of the incompressibility
constraint and numerical stability. Alternative finite element techniques were developed [5,6,8]
to the classical mixed formulation [33]; meshfree solution methods have also been used [5, 9].

The incompressible or nearly-incompressible hyperelasticity, including geometric non linear-
ities, has been the basis of the elastic formulation of finite elastoplasticity [29]. Consequently, it
is important in the analysis of practical problems of impact and fabrication processes based on
plastic deformation such as forging, lamination and stamping.

In [15], a meshfree based code was applied to the sensitivity analysis and optimization of elas-
tometer components, modeled with nearly-incompressible non linear hyperelasticity. Later, [24]
extended this work including contact with friction. The advantage of the response analysis
method applied in these works is the attainment of the same precision with a smaller number of
degrees freedom when compared to low order h finite elements for situations of severe deforma-
tion of the domain. In shape optimization applications, the advantage of meshfree methods is
the trivial process needed to mesh update since there is not interpolation distortion. The process
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consists only in replacing the functional support without changing its geometry. The disadvan-
tage is the more complex procedure to obtain the discrete form of the sensitivity equations. The
finite element method still continues to be applied to reversible problems [10].

The application of shape optimization and the finite element method in hyperelasticity was
presented in [12, 17]. Instead of treating the solution of the equilibrium equation as a sub
problem of the optimization cycle, this equation is modeled as an equality restriction of the
optimization problem. Based on that, the non linear equilibrium and optimization problems
are solved simultaneously. This represents a significative reduction in the total time needed to
reach the optimum design. However, this strategy does not allow the mesh updating without
interrupting the optimization process, even if there is distortion during the sequence of geometry
changes. There is also little flexibility in the application of external actions (i.e. loads applied
in different load steps) and equilibrium problems that are dependent on the load history are not
considered.

In [21], from the response and sensitivity analysis formulations for non linear geometric and
hyperelasticity, a meshfree method was used. Frictionless contact, infinitesimal plasticity and
transient dynamics already used with the finite element method were incorporated. Extensions
to finite plasticity and frictionless contact were also considered and applied to optimization of
stamping processes [23]. One of the main interests in the research on optimization and sensitivity
of non linear structural problems have been the application of systematic design methods to
fabrication processes in plastic deformation [1, 2, 13,14,25,34] and plastic injection [30–32].

Other approaches have been used to avoid mesh regeneration during the optimization pro-
cess [19,20,22]. The main idea is to embedded the design domain in a larger fixed fictitious do-
main. An Eulerian formulation may be also used as well adaptive procedures based on wavelets.
However, the examples considered in the references are for 2D domains.

This work considers the shape optimization of nearly incompressible hyperelasticity and large
deformation problems based on the finite element method. In [5,9], meshfree methods were used.
Initially, a review of the hyperelasticity model and the finite element solution with the Newton-
Raphson procedure is considered. The equations for shape sensitivity analysis are then deduced.
Finally, the procedures are applied to the shape optimization of an internal combustion engine
cushion. The geometry is modeled with NURBS and the procedures for velocity fields, geometry
updating and mesh distortion control discussed in [27, 28] are used. The main contribution of
the paper is the combination of finite element analysis, shape sensitivity analysis, minimization
procedure, mesh distortion control, NURBS and geometry updating to the shape optimization
od 3D hyperelastic problems.

2 Hyperelasticity model

In this section, the symbols Lin+, Orth+ and Psym are used to denote, respectively, the sets of
tensors with positive determinant, rotations and symmetric positive definite tensors.
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Consider the constitutive equation of a Cauchy elastic material T = Υ (F) based on the first
Piola-Kirchhoff tensor T [26]. The strain power density is T · Ḟ = Υ (F) · Ḟ. Consider a scalar
function W (F) such that

Ẇ (F) = DW (F,X) [Ḟ] =
∂W

∂F
(F) · Ḟ = Υ (F) · Ḟ. (1)

In this case, the first Piola-Kirchhoff stress tensor is the derivative of W (F,X) with respect to
F with X fixed, that is,

T = Υ (F,X) = DW (F,X) =
∂W

∂F
(F,X) . (2)

The previous relation is valid for a material without internal restrictions in which the components
of Ḟ are independent. The functional W (F) is called strain energy density.

For objective isotropic elastic materials then W (FQ) = W (F) or W (QF) = W (F) for Q ∈
Orth+. W (F) can be determined by its restriction to Psym, that is, W (F) = W (RU) = W (U)
or W (F) = W (VR) = W (V), where U,V ∈ Psym are obtained from the polar decomposition
of F. Therefore, W can also be written as a function of C or B.

Combining isotropy and objectivity, it is possible to show that W
(
QUQT

)
= W (U).

W is therefore an isotropic scalar function of U [26]. It is also a function of the invariants
ι1 (U) , ι2 (U) , ι3 (U) or equivalently a symmetric function of the eigenvectors λ1, λ2, λ3 of U, in
such a way that W (U) ≡ W (V) = W (λ1, λ2, λ3)
= W (λ1, λ3, λ2) = W (λ3, λ1, λ2).

According to Rivlin, the strain energy function can be written in terms of an infinite power
series of the three invariants I1, I2, I3 of the right Cauchy-Green deformation tensor C = U2 =
FTF. It is assumed that W is continuously differentiable with respect to I1, I2, I3 and can be
written as an infinite power series of (I1 − 3), (I2 − 3) and (I3 − 1) as [26]

W (C) =
∞∑

i,j,k=0

Aijk (I1 − 3)i (I2 − 3)j (I3 − 1)k . (3)

Expressions usually applied are obtained for Aijk = 0 (k = 1, 2, 3, . . . /i, j 6= 0)

W (I1, I2, I3) =
∞∑

i,j=0

Aij0 (I1 − 3)i (I2 − 3)j +
∞∑

r=1

A00k (I3 − 1)k (4)

or Aijk = 0 (j, k = 1, 2, 3, . . . /i, j 6= 0)

W (I1, I2, I3) =
∞∑

i,j=0

Ai00 (I1 − 3)i +
∞∑

r=1

A00k (I3 − 1)k . (5)
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For incompressible materials, I3 = detF = J = 1 and W is dependent only of the other two
invariants. In this case, the Rivlin series (3) reduces to

W̄ (I1, I2) =
∞∑

i,j=0

Aij (I1 − 3)i (I2 − 3)j . (6)

The Rivlin infinite series is usually truncated in the Mooney-Rivlin or neo-Hookean forms given,
respectively, as [26]

W̄ (I1, I2) = A10 (I1 − 3) + A01 (I2 − 3) , (7)

W̄ (I1, I2) = A10 (I1 − 3) . (8)

The material constants in (7) and (8) obtained from experiments are generally appropriated
only for moderated finite deformations. They may not reproduce precisely experimental data for
very large deformation [6]. Reasonable results have been obtained in the numerical simulation
of rubber using the cubic and the modified cubic functions given, respectively, by [8, 9]

W̄ (I1, I2) = A10 (I1 − 3) + A20 (I1 − 3)2 + A30 (I1 − 3)3 , (9)

W̄ (I1, I2) =
α

β

[
1− e−β(I1−3)

]
+ A10 (I1 − 3) + A20 (I1 − 3)2 + A30 (I1 − 3)3 . (10)

On the other hand, (7) and (8) allow to study satisfactorily the behavior of hyperelastic materials
for the development of numerical algorithms [21,24].

For isotropic material, the strain energy functional can be written as W ≡ W (C). Therefore,

Ẇ (C) = DW (C,X) [Ċ] =
∂W

∂C
(C) · Ċ.

It may be observed that

Ẇ (F) =
∂W

∂F
(F) · Ḟ = T · Ḟ = S · Ė =

∂W

∂C
(C) · Ċ = Ẇ (C) .

From there, the following total Lagrangian constitutive equation, which relates the second Piola-
Kirchhoff tensor and the Green strain tensor, can be written as

S (C,X) = 2
∂W

∂C
=

∂W

∂E
. (11)

The simplest form of incompressibility constraint, which is valid for detF = 1, is a scalar
function h sufficiently regular such that

h (F) = 0. (12)

If h is an objective function, then h (QF) = h (F) for every Q ∈ Orth+,F ∈ Lin+. Considering
the same hypotheses assumed for W , h can be written as a function of the deformation only.
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In terms of the tensor U, h (F) = h (RU) = h (U) = 0, R ∈ Orth+. For the tensor C,
h̃ (C) = h̃

(
U2

)
= h

(
C1/2

)
= 0.

The differentiation of (12) gives

ḣ (F) ≡ ∂h

∂F
(F) · Ḟ = 0. (13)

From the variational principle, a multiple of ∂h/∂F can be added to the constitutive equation
without affecting the strain power for all deformation gradients compatible with (12). This
results in the restricted constitutive equation

T = Υ (F) + q
∂h

∂F
(F) , q ∈ Re. (14)

Therefore,

DJ [∆F] = (detF) tr
(
F−1∆F

)
= (detF)

(
F−T ·∆F

) ⇒ ∂J

∂F
= (detF)F−T .

As detF = 1, then
∂h

∂F
(F) = F−T .

Substituting the above expression in (14), the equations T = Υ (F)+qF−T and S = F−1T =
F−1Υ (F)+qC−1 result, respectively, for the first and second Piola-Kirchhoff tensors. Using the
relation σ = TFT (detF)−1 between the Cauchy stress tensor σ and the first Piola-Kirchhoff ten-
sor T, it is possible to determine the Cauchy stress constitutive equation with incompressibility
constraint

σ = Σ (F) + qI, Σ (F) = Υ (F)FT . (15)

The main invariants of the tensor C∗ = F∗TF∗ are Ī1 = I1I
−1/3
3 , Ī2 = I2I

−2/3
3 and Ī3 = 1,

where F∗ = J−1/3F. From these relations, the terms related to distortion and dilatation of the
constitutive equation can be separated.

Consider a configuration change of a generic compressible material body expressed in terms of
the isochoric displacement gradient F∗ = J−1/3F. In this case, the strain energy is W ∗ (F∗, J) ≡
W (F).

For hyperelastic materials,

T =
∂W

∂F
=

∂W ∗

∂F
=

∂W ∗

∂F∗
∂F∗

∂F
+

∂W ∗

∂J

∂J

∂F
. (16)

Applying the definition of F∗ then

∂F∗

∂F
=

∂
[
J−1/3F

]

∂F
=

∂
(
J−1/3

)

∂F
⊗ F + J−1/3

(
∂F
∂F

)

= J−1/3

(
I − 1

3
F∗−T ⊗ F∗

)
, (17)
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where I is the fourth order symmetric identity tensor.
Substituting (17) in (16) then

T = J−1/3

[
∂W ∗

∂F∗
− 1

3
tr

(
∂W ∗

∂F∗
F∗T

)
F∗−T + J

∂W ∗

∂J
F∗−T

]
.

Therefore, the first Piola-Kirchhoff tensor can be written as [26]

T =
∂W

∂F
=

∂W ∗

∂F∗
∂F∗

∂F
= J−1/3

(
∂W ∗

∂F∗
+ q∗F∗−T

)
, (18)

where

q∗ = −1
3
tr

(
∂W ∗

∂F∗
F∗T

)
+ J

∂W ∗

∂J
. (19)

Taking into account that C = J2/3C∗, it is possible to determine analogously the respective
equation for the second Piola-Kirchhoff tensor as

S = J−2/3

[
∂W ∗

∂E∗
− 1

3

(
C∗ · ∂W ∗

∂E∗

)
C∗−1 + J

∂W ∗

∂J
C∗−1

]
.

As the Cauchy stress is given by σ = J−1TFT , then from (18)

σ = J−1

[
∂W ∗

∂F∗
F∗T − 1

3
tr

(
∂W ∗

∂F∗
F∗T

)]
+

∂W ∗

∂J
I.

The part of σ related to dilatation is the mean normal stress p̄. From the above expression,
it assumes the form

p̄ =
1
3
tr (σ) =

∂W ∗

∂J
.

The terms ∂W ∗
∂J and J−1

[
∂W ∗
∂F∗ F∗T − 1

3tr
(

∂W ∗
∂F∗ F∗T

)]
are related to dilatation and distortion,

respectively.
It is possible to demonstrate that for nearly-incompressible materials, the strain energy

density can be decomposed as the sum of distortional W̄ and volumetric W̃ energies as [6]

W
(
Ī1, Ī2, I3

)
= W̄

(
Ī1, Ī2

)
+ W̃ (I3) . (20)

For nearly-incompressible materials, the dilatation energy can be rewritten as [5]

W̃ (I3) =
1
ε
G (J) , (21)

where ε is a small parameter that indicates the compressibility degree. Formally, ε → 0 and
G (J) → 0 (faster than ε) corresponds to the incompressibility condition. In this case, it is
possible to eliminate W̃ (I3) in (20). An example of a function W̃ (I3) is ( [5])

W̃ (I3) =
1
ε

[
1
2

(
J2 − 1− 2 lnJ

)]
. (22)
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In this case, the hydrostatic pressure is

p̄ =
∂W ∗

∂J
=

∂W̃

∂J
=

1
ε

(
J − 1

J

)
.

For nearly-incompressible materials, J is close to 1 and

p̄ ≈ 1
ε

(J − 1) =
1
ε

(
ρ0

ρ
− 1

)
.

A usual solution found in the literature is to consider the above approximation which corre-
sponds to the following dilatation energy density functional [3, 5–9,15,21]

W̃ (I3) =
1
2ε

(J − 1)2 (23)

together with (7), (8), (9) or (10) for incompressible material. Therefore, they are functions of
isochoric deformation gradients F∗ and generate approximately incompressible forms of these
material models. For example, [21]

W
(
Ī1, Ī2, J

)
= A10

(
Ī1 − 3

)
+ A01

(
Ī2 − 3

)
+

κ̃

2
(J − 1)2 . (24)

The term κ̃ = 1/ε is physically interpreted as the bulk modulus.

3 Numerical techniques for response analysis

3.1 Nearly-incompressible and incompressible Materials

For a nearly-incompressible isotropic hyperelastic material, the strain energy density functional
is given by (20) and (21). It is demonstrated that the solution of the hyperelastic problem, ex-
pressed in a standard variational form, exists if W̄ and G follow certain hypotheses [5]. Consider
the limit behavior of the variational principle for ε → 0+, that is,

Πε (xε) = inf
χ∈V

Πε (χ) , (25)

where V is a suitable Hilbert functional space in such a way that detF > 0 and

Πε (χ) =
∫

B

[
W̄

(
Ī1 (χ) , Ī2 (χ)

)
+

1
ε
G (J (χ))

]
dV −Wext (X, χ (X) ,∇χ (X)) . (26)

The related limit problem then becomes

Π(0)
(
x(0)

)
= inf

χ∈V(0)
Π(0) (χ) ,
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with
Π(0) (χ) =

∫

B
W̄

(
Ī1 (χ) , Ī2 (χ)

)
dV −Wext (X, χ (X) ,∇χ (X)) .

In this case, the space V(0) incorporates the constraint detF = 1 in its construction. It is
possible to show that a sequence of nearly-incompressible problems generated by ε → 0+ gives
a subsequence of solutions {xε} that converges to x(0) [5]. In other words, starting from a
sequence of approximated incompressible problems, which have a demonstrated solution, it is
then possible to obtain the solution of an incompressible problem according to a given precision.

3.2 Perturbed Lagrangian formulation

In practice, it is difficult and not necessary to construct a space V(0)
h that satisfies exactly the

incompressibility constraint detF = 1. It is not convenient also to utilize usual finite element
spaces for Vε

h when ε → 0+. It is more efficient to use a modified variational principle and the
mixed finite element formulation.

The nearly-incompressibility form is obtained in terms of the saddle-point problem for (x, p),
that is,

Π (x, p) = inf
χ∈V

sup
q∈Q

Π(χ, q) , (27)

where

Π (χ, q) =
∫

B

[
W̄

(
Ī1 (χ) , Ī2 (χ)

)
+ q (J (χ)− 1)

− G∗ (q)] dV −Wext (X, χ (X) ,∇χ (X)) ,

G∗ (p) = sup
J>0

[
ph (J)− 1

ε
G (J)

]
, (28)

h (J (x)) ≡ h (∇x) = detF− 1 = J − 1 = 0.

The variational form (27) is called perturbed Lagrangian formulation, because it relates to
the traditional Lagrangian formulation through the addition of the term −G∗ (q) that relaxes
the incompressibility condition.

Let (x, p) be a stationary point of the functional Π. Then the variation δΠ is null, that is,
∫

B

[
∂W̄ (x)

∂Ī1
δĪ1 +

∂W̄ (x)
∂Ī2

δĪ2 + pδJ + (J (x)− 1) δp − G∗′ (p) δp
]

dV − 〈
W ′

ext (x) , δx
〉

= 0.

As δx and δp are independent variations, the above equation can be rewritten as the following
system of equations

∫

B

[
∂W̄ (x)

∂Ī1
δĪ1 +

∂W̄ (x)
∂Ī2

δĪ2 + pδJ

]
dV − 〈

W ′
ext (x) , δx

〉
= 0,∀δx ∈ V

∫

B
(J (x)− 1) δp dV −

∫

B
G∗′ (p) δp dV = 0,∀δp ∈ Q.
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It is the starting point for the application of the mixed formulation to the problem.
From the assumed properties for W

(
Ī1, Ī2, J

)
, it follows that

∂W

∂Ī1
δĪ1 +

∂W

∂Ī2
δĪ2 +

∂W

∂J
δJ =

(
∂W

∂Ī1

∂Ī1

∂E
+

∂W

∂Ī2

∂Ī2

∂E
+

∂W

∂J

∂J

∂E

)
· δE = S · δE.

Although ∂W
∂J = p, it is more convenient from the numerical point of view to consider it as an

independent variable. Therefore, (29)1 is the equation obtained from the variational principle
with the strain energy functional given in (20) and introducing the additional variable p. The
constraint is represented variationally by equation (29)2. It can be solved simultaneously to
(29)1 [33] or included in the problem using reduced selective integration [18] and projection
methods [6].

3.3 Newton-Raphson Method for the Perturbed Lagrangian Formulation

For the saddle-point problem (27) defined in the time interval In+1, the solution can be obtained
by solving a stationary point condition in terms of (29) rewritten bellow as

δΠ(sn+1, δs) = DΠ(sn+1) [δs]

=
{

a (xn+1, δx) + b1 (δx, pn+1)− l (δx) = 0
b2 (xn+1, δp)− g (pn+1, δp) = 0

. (29)

with xn+1 ∈ Xn+1,∀δx ∈ V, pn+1, δp ∈ Q, e sn+1 =
[

xn+1 pn+1

]T
, δs =

[
δx δp

]T
. The

terms of the previous expression are

a (xn+1, δx) =
∫

B

[
∂W̄ (xn+1)

∂Ī1
δĪ1 +

∂W̄ (xn+1)
∂Ī2

δĪ2

]
dV =

∫

B
S̄n+1 · δE dV, (30)

b1 (δx, pn+1) =
∫

B
pn+1δJ dV, (31)

b2 (xn+1, δp) =
∫

B
(J (xn+1)− 1) δp dV, (32)

g (pn+1, δp) =
∫

B
G∗′ (pn+1) δp dV. (33)

The application of the Newton-Raphson method to (29) results in the following iterative
procedure

δΠ
(
(k)sn+1, δs

)
+ DδΠ

(
(k)sn+1, δs

) [
(k+1)∆s

]
= 0,

(k+1)sn+1 = (k)sn+1 + (k+1)∆s,
(34)

and k + 1 → k, until
∥∥(k+1)∆s

∥∥ ≤ ε > 0, observing that (k+1)∆s =
[

(k+1)∆u (k+1)∆p
]T

for
the finite variation applied to (k)sn+1.

Latin American Journal of Solids and Structures 5 (2008)
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The linearized term of (34) has the following general form

DδΠ(s, δs) [∆s] =
{

DδWint (s, δs) [∆s]−DδWext (s, δs) [∆s]
DδWp (s, δs) [∆s]

(35)

Developing the first term of (35)

DδWint (s, δs) [∆s] =
∫

B
C̄ (x) : DE [∆u] ·DE [δx] dV

+
∫

B
S̄ ·

[
1
2

(∇∆uT ∇δx +∇δxT ∇∆u
)]

dV

+
∫

B
δJDp [∆p] dV +

∫

B
pDδJ [∆u] dV. (36)

The stress terms and the tangent elasticity tensor are defined as

S = S̄ + S̃, (37)

C̄ (x) =
∂S̄
∂E

(x) =
∂2W̄

∂E2
(x) , (38)

where

S̄ =
∂W

∂Ī1

∂Ī1

∂E
+

∂W

∂Ī2

∂Ī2

∂E
, (39)

S̃ = p
∂J

∂E
, (40)

The expansion of the other terms in (36) results in

δJ =
∂J

∂E
·DE [δx] , (41)

DδJ [∆u] =
∂J

∂E
·DδE [∆u] + DE [δx] ·D

[
∂J

∂E

]
[∆u] , (42)

pDδJ [∆u] = p
∂J

∂E
·DδE [∆u] + DE [δx] · pD

[
∂J

∂E

]
[∆u]

= S̃ ·
[
1
2

(∇∆uT∇δx +∇δxT∇∆u
)]

+ C̃ (s) : DE [∆u] ·DE [δx] , (43)

and

C̃ (s) =
∂S̃
∂E

(s) = p
∂2J

∂E2
(x) . (44)
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Substituting (40) to (43) in (36), the term DδWint (s, δs)
[∆s] can be rewritten in the following more convenient form

DδWint (s, δs) [∆s] =
∫

B
C (s) : DE [∆u] ·DE [δx] dV

+
∫

B
S ·

[
1
2

(∇∆uT∇δx +∇δxT∇∆u
)]

dV

+
∫

B
DE [δx] · ∂J

∂E
Dp [∆p] dV, (45)

where C = C̄ + C̃ and S = S̄ + S̃.
Developing the second equation of (35), it follows that

DδWp (s, δs) [∆s] =
∫

B
δp

[
DJ (x) [∆u]−DG∗′ (p) [∆p]

]
dV

=
∫

B
δp

[
DE [∆u] · ∂J

∂E
−DG∗′ (p) [∆p]

]
dV. (46)

If the load is deformation independent, then DδWext (s, δs) [∆s] = 0 and the algorithm (34)
assumes the form

δa
(

(k)sn+1; (k+1)∆x, δx
)

+ δb
(

(k)sn+1; δx, (k+1)∆p
)

= ln+1 (δx)− a
(

(k)xn+1, δx
)

− b1

(
δx, (k)pn+1

)
(47)

δb
(

(k)sn+1; (k+1)∆x, δp
)

= δg
(

(k)pn+1,
(k+1)∆p, δp

)

− b2

(
(k)xn+1, δp

)
+ g

(
(k)pn+1, δp

)
(48)

with (k+1)sn+1 = (k)sn+1+ (k+1)∆s; k+1 → k till
∥∥(k+1)∆s

∥∥ ≤ ε > 0. The terms of the previous
expression are

δa
(

(k)sn+1; (k+1)∆x, δx
)

=
∫

B
C

(
(k)sn+1

)
: DE

[
(k+1)∆u

]
·DE [δx] dV

+
∫

B
S

(
(k)sn+1

)
· 1
2

[
∇(k+1)∆uT∇δx +∇δxT∇(k+1)∆u

]
dV,

δb
(

(k)sn+1; δx, (k+1)∆p
)

=
∫

B
DE [δx] · ∂J

∂E
(k+1)∆p dV,

δb
(

(k)sn+1; (k+1)∆x, δp
)

=
∫

B
δp

{
DE

[
(k+1)∆u

]
· ∂J

∂E

}
dV,

δg
(

(k)pn+1,
(k+1) ∆p, δp

)
=

∫

B
δp

{
DG∗′

(
(k)pn+1

) [
(k+1)∆p

]}
dV.
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3.4 Pressure projection method

The pressure projection method [6] is a generalization of the nearly-incompressible non linear
hyperelastic B-bar model [18, 29] proposed for incompressible linear elasticity. Such techniques
are called assumed deformation methods because they assume an interpolation for the deforma-
tion and tension fields independently of the adopted approximation for the displacement field.
The hydrostatic pressure is projected in the least square sense on a previously chosen functional
space and then rewritten in terms of displacements.

The projection technique consists in the problem of approximating a square integrable scalar
function pe (x) in the domain of an element e in the least square sense through a linear com-
bination of a sequence of functions Q (x) = {Q1 (x) , Q2 (x) , . . . , Qn (x)}. It is necessary to
determine the vector pe = [p1, p2, . . . , pn]T that minimizes ‖pe (x)−Qpe‖2

L2(Be), where ‖·‖L2(Be)

is the L2-norm in the element domain e.
The pressure projection method assumes the linear volumetric deformation/hydrostatic pres-

sure hypothesis (κ̃ constant) which is reasonable in nearly-incompressible problems since the
volumetric deformation is very small. Pressure projection corresponds to assuming a polyno-
mial expansion for p inside the integration domain for the discrete problem. After that (29)2
and (48)2 are solved for the variable p as a function of the displacement. This result is then
substituted in (29)1 and (48)1 in such a way that the resulting discrete system depends only on
displacement.

The Babuska-Brezzi conditions supply the basis to choose the pressure and displacement
functional spaces in a consistent way [4]. An usual choice is to utilize elements with La-
grange quadratic interpolation for the displacement field associated with the pressure linear
expansion [6, 8, 33]. Numerical results have shown that constant interpolation inside the in-
tegration domain is satisfactory for hyperelasticity applications [9, 21]. For example, elements
with serendipty quadratic displacement interpolation and constant pressure interpolation also
respect the Babuska-Brezzi conditions. This choice facilitates the pressure condensation inside
each element.

Applying (29)2 to an integration domain Be ⊂ B with constant pressure p̂e, the following
result is obtained

∫

Be

(J − 1) δp dV −
∫

Be

G∗′ (p̂e) δp dV = 0.

Therefore,

G∗′ (p̂e)
∫

Be

dV =
∫

Be

(J − 1) dV.

In the case of a nearly-incompressible material, G (J) = 1
2 (J − 1)2 is a reasonable choice for

G (J) [5, 21]. Therefore,

G∗ (p) =
1
2
εp2 =

1
2κ̃

p2 ⇒ G∗′ (p) =
p

κ̃
.
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Finally, the following expression is obtained

(k)p̂en+1 =
κ̃∫

Be
dV

∫

Be

[
J

(
(k)xn+1

)
− 1

]
dV. (49)

It defines the hydrostatic pressure condensation in the domain Be. This expression can then be
substituted in (48) and the variable (k)pn+1 is eliminated.

It can be seen in (49) that the projection method is a smoothing technique used to eliminate
local oscillations of the pressure values. Therefore, it is coherent with the mixed formulation in
which the pressure calculation is treated as a constraint to be respected in the mean sense.

Applying a similar procedure to the linearized system (48), it is possible to solve the second
system of equation for the variable ∆p, that is,

∫

B
DG∗′ (p) [∆p] dV =

∫

B

{
DE [∆u] · ∂J

∂E
+ J − 1−G∗′ (p)

}
dV.

Assuming p̂e constant and using the previous expression for G∗ (p), then

(k+1)∆p̂e =
κ̃∫

Be
dV

∫

Be

{
DE

[
(k+1)∆u

]
· ∂J

∂E

(
(k)xn+1

)

+ J
(

(k)xn+1

)
− 1−

(k)p̂en+1

κ̃

}
dV, (50)

which is substituted in the first equation of the system.

4 Shape sensitivity analysis

4.1 Hyperelasticity without constraints

A family of structural problems may be defined by the association of the following variational
problem to each domain Bτ

aBτ (xτ , δxτ ) = lBτ (δxτ ) , ∀δxτ ∈ Vτ . (51)

Consider a bilinear form given by

aBτ (xτ , δxτ ) =
∫

Bτ

Sτ · δEτ dV =
∫

Bτ

Θτ (∇τuτ ,∇τδuτ ) dV. (52)

Its total derivative with relation to the parameter τ is

[aBτ (xτ , δxτ )]· =
∫

B
(Θ′τ + Vs · ∇τΘτ + ΘτdivVs)m (det F) dV. (53)
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142 Cláudio A.C. Silva and Marco L. Bittencourt

For τ = 0,

[a (x, δx)]· =
∫

B

(
Θ′ + V · ∇Θ + ΘDivV

)
dV, (54)

where
Θ′ = (S · δE)′ = S′ · δE + S · δE′,

∇Θ = ∇ (S · δE) = ∇S · δE + S · ∇δE.

The terms in the previous equations are

S′ =
∂S
∂τ

= DES
[
E′

]
= W,E,E : E′ = C (x) : E′,

F′ =
∂F
∂τ

=
∂ (∇x)

∂τ
= ∇x′ =

∂ (∇u)
∂τ

= ∇u′,

E′ =
∂E
∂τ

=
1
2

(
F′TF + FTF′

)

= DE [u̇] + EV (u)− 1
2

[
(∇∇uV)T F + FT (∇∇uV)

]
,

EV (u) = −1
2

[
(∇u∇V)T F + FT (∇u∇V)

]
,

δE′ =
∂δE
∂τ

=
1
2

(
δFT ′F + FT δF′

)
+

1
2

(
δFTF′+FT ′δF

)

= DδE [u̇] + δEV (u) +

+
1
2

[
(−∇∇δuV)T F + FT (−∇∇δuV)

]

+
1
2

[
δFT (−∇∇uV)+ (−∇∇uV)T δF

]
,

δEV (u) =
1
2

[
(−∇δu∇V)T F + FT (−∇δu∇V)

]

+
1
2

[
δFT (−∇u∇V)+ (−∇u∇V)T δF

]
,

∇δE =
1
2

[∇ (
δFTF + FT δF

)]

=
1
2

[
(∇∇δu)T F + FT (∇∇δu)

]

+
1
2

[
δFT (∇∇u)+ (∇∇u)T δF

]
,
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∇S = C (x) : ∇E,

∇E =
1
2

[∇ (
FTF

)]
=

1
2

[
(∇∇u)T F + FT (∇∇u)

]
.

Therefore,

[a (x, δx)]· =
∫

B
{C (x) : DE [u̇] · δE + S ·DδE [u̇] dV +

+
∫

B
C (x) : EV (u) · δE + S · δEV (u) + S · δEDivV} dV. (55)

It is usual to rewrite (55) as the sum

[a (x, δx)]· = δa (x; u̇, δx) + a′V (x, δx) , (56)

where

a′V (x, δx) =
∫

B
{C (x) : EV (u) · δE + S · δEV (u) + S · δEDivV} dV. (57)

In the case of geometry independent loads, the sensitivity of l (δx) with relation to the
variation of B is

l̇ (δx) = l′V (δx)

=
∫

B
[(∇b0)V + b0DivV] · δx dV +

∫

Γ2

[(∇t)Vt (V · n)Divn] · δx dA. (58)

Consequently, the sensitivity of the variational equation is given by

[a (xn+1, δx)]
· = l̇n+1 (δx)

or
δa (xn+1; u̇n+1, δx) + a′V (xn+1, δx) = l′V n+1 (δx) .

From these results, the variational equation for the direct method of shape sensitivity is [11]

δa (xn+1; u̇n+1, δx) = l′V n+1 (δx)− a′V (xn+1, δx) , (59)

where δa (xn+1; ·, ·) is the bilinear form of the last analysis iteration and xn+1 is the solution of
the response analysis in the iteration In+1.

The adjoint method for shape sensitivity is identical to the method developed for discrete
parameter sensitivity, with the emphasis on the hypothesis of symmetric δa (xn+1; ·, ·) [11]. Using

Latin American Journal of Solids and Structures 5 (2008)
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the adjoint equation, it is possible to eliminate the direct dependence with relation to u̇n+1 and
∇u̇n+1 and the sensitivity expression of the functional ψ can be rewritten as

ψ̇ = l′V n+1 (λ)− a′V (xn+1, λ) +
∫

B
[−G,u · ∇un+1V − G,∇u · ∇ (∇un+1V)] dV

+
∫

B
[GDivV + V · ∇G] dV (60)

or

ψ̇ = l′V n+1 (λ)− a′V (xn+1, λ) +
∫

B
(GDivV − G,∇u · ∇un+1∇V) dV. (61)

4.2 Nearly-incompressible hyperelasticity

Consider now the following expressions

S′ = S̄′ + S̃′ = DES̄
[
E′

]
+ DES̃

[
E′

]
+ DpS̃

[
p′

]

= W̄,E,E : E′ + W̃,E,E : E′ + W̃,E,p : p′

= C̄ (x) : E′ + C̃ (s) : E′ + J,Ep′,

ṗ = p′ +∇p ·V ⇒ p′ = ṗ−∇p ·V,

∇S = C (x) : ∇E + J,E ⊗∇p.

The total derivative of the first equation in (29) in τ = 0 is given by

[a (x, δx) + b1 (δx, p)]· =
∫

B
[C (s) : DE [u̇] · δE + S ·DδE [u̇]] dV +

∫

B
J,Eṗ · δE dV

+
∫

B
[C (s) : EV (x) · δE + S · δEV (x) + S · δEDivV ] dV

= l̇ (δx) = l′V (δx) ,

or

[a (x, δx) + b1 (δx, p)]· = δa (s; u̇, δx) + δb (s; δx, ṗ) + a′V (x, δx) + b′1V (δx, p) = l′V (δx) ,

For the second equation in (29), the result is

[b2 (x, δp)− g (p, δp)]· =
∫

Be

(J,E ·DE [u̇]−DG∗′ [ṗ]) δp dV

+
∫

Be

[J,E ·EV (x) + (J − 1−G∗′)DivV] δp dV = 0,

or

[b2 (x, δp)− g (p, δp)]· = δb (s; u̇, δp)− δg (p, ṗ, δp) + b′2V (x, δp)− g′V (p, δp) . (62)
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The following system of equations in the unknowns ẋn+1 and ṗn+1 is obtained

δa (sn+1; u̇n+1, δx) + δb (sn+1; δx, ṗ) = l′V n+1 (δx)− a′V (xn+1, δx)− b′1V (δx, pn+1) , (63)

δb (sn+1; u̇n+1, δp) = δg (pn+1, ṗn+1, δp)− b′2V (xn+1, δp) + g′V (pn+1, δp) . (64)

Applying the pressure projection method, it is possible to eliminate ṗ in the system (64)
using the expression

˙̂
epn+1 =

κ̃∫
Be

dV

∫

Be

[J,E ·DE [u̇n+1] + J,E ·EV (xn+1)

+
(
J − 1−G∗′

n+1

)
DivV

]
dV. (65)

In all the previous cases, the system response sensitivity until time tn+1 involves only un-
knowns of the time step tn+1. It is independent of the equilibrium states of the previous time
steps. In this way, the final system response sensitivity can be determined through a post-
processing of the response analysis using only the equilibrium equation data of the last load
step. The hyperelastic problem is reversible and the system response can be completely charac-
terized by the initial and final states only.

5 Results

Engine suspension mounts are elements composed of rubber and metal, usually steel, designed to
work as low and constant stiffness springs in the working range. These components are used as
interfaces among subsets of mechanical systems to absorb vibrations. An example of application
is the cushion of a vehicle power train (engine, clutch and gear). This set is fixed to the chassis
of the vehicle by a suspension system composed of arms and cushions. It is possible to determine
the cushion optimum positioning and the necessary stiffness from the natural frequencies and
the vibration modes of each subsystem. The following step consists in adopting components
that most approximate these stiffness characteristics or to design new cushions that fulfill the
specifications in an optimum way.

A determined value of vertical stiffness is required for an engine mount application. Consider
the cushion shown in Figure 1(a) and subjected to the load and boundary conditions of Figure
1(b). A plane deformation model is considered. The coefficients of the Mooney-Rivlin rubber
material are A10 = 0.138740 N/mm2, A01 = 0.05933 N/mm2, κ̃ = 6599.2 N/mm2; for the steel
the linear isotropic properties are E = 207 × 103 N/mm2 and ν = 0.3. The geometry will be
modified to fulfill suspension design specifications of the power train.

By making use of the two meshes shown in Figure 2, a vertical displacement of 9.0 mm was
imposed on the upper face of the steel core in nine equal load steps. The force × displacement
plots are compared in Figure 3. It can be seen that the two meshes give practically identical
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(a) Initial cushion geometry. (b) Boundary conditions, load and materials.

Figure 1: Cushion two dimensional model.

(a) Structured mesh of quadrangu-

lar elements.

(b) Non structured mesh of trian-

gular elements.

Figure 2: Mesh generation for the problem solution. Rubber volume of 1571.14802762 mm3.
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(a) Quadrangular elements.
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(b) Triangular elements.

Figure 3: Force curves for vertical displacements with each mesh.

stiffness responses. According to these plots, the vertical stiffness of this component close to the
displacement of −3.0 mm is 1.216 N/mm, while the application requires 0.810 N/mm. Therefore,
the displacement of −3.0 mm must be attained for a force of −1.215 N in the symmetric model.
The rubber volume can be decreased in order to reduce the cushion stiffness.

In terms of an optimization problem, the objective function is to minimize the rubber volume
with the condition that the rubber core displacement be 3.0 mm for a vertical force of −1.215 N.
The geometry parametrization is shown in Figure 4. The design variables are the coordinates x

and y of the internal control points of two B-splines of degree 2 with 5 control points [28]. The
initial values and the upper and lower bounds of each one of the 12 design variables are shown in
Table 1. An additional restriction is that the strain energy does not exceed 2.5 Nmm. There are
a total of 25 inequality restrictions, since each limit induces an inequality restriction in addition
to the restriction in the strain energy and one equality restriction (steel core displacement).

The Herskovits interior point algorithm [16], the adjoint method of sensitivity, the mesh
updating procedures and the velocity field with boundary fictitious displacements [27, 28] were
used. Despite the quadrilateral structured mesh allows a more efficient solution, it could not
be used because the first attempt to change the mesh (with the velocity fields and an external
mesh generator) was rejected based on the mesh distortion criteria described in [28] for this
element type. Consequently, the optimization algorithm could not continue the iterations. The
problem solution with a non-structured triangular mesh is reached with 7 iterations and a total
of 21 response analyses. The finite element mesh updating was based only on the repositioning
of nodes using the velocity fields in all of the design modifications. It was not necessary to
regenerate the mesh with an external generator. The evolution of the rubber volume in the
sequence of iterations is shown in Figure 5(a). The value of the normalized displacement equality
restriction is illustrated in Figure 5(b). This restriction is violated initially and satisfied within
the required precision at the end of the optimization process.
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Figure 4: Design variables and respective bounds.

Table 1: Design variable values: initial, lower and upper bounds, optimum design [mm].
Variable Initial Lower Upper Optimum

1 117.4580 114.00 119.50 115.32006385
2 74.2140 50.00 80.00 67.74753867
3 127.3475 120.00 134.00 125.65323697
4 65.5350 40.00 80.00 56.16166904
5 137.2370 135.00 140.00 136.87073865
6 56.8560 45.00 70.00 49.10233489
7 110.5000 107.00 112.00 110.29317133
8 32.3240 30.00 40.00 38.72662048
9 120.2500 113.00 127.00 121.79908887

10 23.7650 15.00 35.00 32.65529169
11 130.0000 128.00 133.00 131.71769505
12 15.2060 12.00 30.00 21.15286329
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Figure 5: Two dimensional model results.

(a) Non-deformed geometry. (b) Deformed geometry (uy =

−2.99994492 mm).

Figure 6: Optimal design. Rubber volume: 1125.55779686 mm3. Strain energy: 1.84717475
Nmm.
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Figure 7: Historic of design variables [mm].

The mesh of the optimum design is shown in Figure 6. The final design is attained with
a precision of 0.0001 for the convergence criterium of the minimization algorithm. At this
iteration, the steel core vertical displacement is −2.99994492 mm and the rubber volume is
1079.00569837 mm3, which represents a reduction of 28.36% with relation to the original volume
of 1571.14802762 mm3. The final mesh quality is quite reasonable. The historic of the design
variables is shown in Figure 7.

A three dimensional cushion model is shown in Figure 8, where the boundary conditions
are similar to the ones shown in Figure 1(b). Due to symmetry in directions x and z, only one
quarter of the component was modeled. Making use of the two meshes shown in Figure 9, a
vertical displacement of 1.0 mm was imposed on the upper face of the steel core in two equal load
steps. The results show a stiffness of 40.684 N/mm in the neighborhood of this displacement.
The application of this component requires a stiffness of 29.628 N/mm.

As in the 2D example, it is possible to formulate an optimization problem. The objective
function is to minimize the rubber volume and simultaneously requires that the steel core dis-
placement is 1.35 mm for a vertical force of −10.0 N for the symmetric finite element model
(−40.0 N in the complete model). The geometry parametrization is shown in Figure 10. The
design variables are the control point coordinates of the four NURBS surfaces. The initial values
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(a) (b)

Figure 8: Cushion initial geometry.

(a) Hexahedra. (b) Tetrahedra.

Figure 9: Deformed meshes of the initial geometry.
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and the upper and lower bounds of each one of the 21 design variables are indicated in Table
2. An additional restriction is that the strain energy does not exceed 8.0 Nmm. There are 43
inequality restrictions and one equality restriction related to the steel core displacement. The
mesh generation uses tetrahedral for more flexibility in the geometry modification during the
optimization cycle.

Figure 10: Design variables with respective limits.

The optimization problem is solved in 15 minimum iterations with precision of 0.0005 and
21 finite element analyses. The evolution of the rubber volume in the sequence of iterations
is shown in Figure 11. Figure 12 illustrates the mesh of the optimum design. The vertical
displacement of the steel core is −1.34999357 mm. The rubber volume is 28897.08171555 mm3

and represents a reduction of 18.26% compared to the original volume of 35351.15674344 mm3.
It should be observed that the quality of the final mesh is quite reasonable.

6 Conclusions

This paper presented the shape optimization of 3D hyperelastic problems. The Mooney-Rivlin
material model was used with the pressure project method. This method has an equivalent
behavior when compared to the mixed formulation in terms of the pressure interpolation order.
It also simplifies the implementation of incompressible material models in finite element codes
based on displacements. The pressure constant and displacement quadratic interpolations were
satisfactory for the nearly-incompressible material model. The elastomers of automotive cush-
ions are relatively rigid and have moderate finite deformation. Therefore, the Mooney-Rivlin
constitutive equation gives good results for such application. The use of meshes of triangles
and tetrahedra with mesh updating and distortion control procedures were fundamental in the
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Table 2: Design variables: meaning, initial values, upper and lower bounds, optimum value [mm].
Variable Dir Initial Lower Upper Optimum

1 z 17.500000 14.0 18.5 14.01396844
2 z 22.500000 18.0 23.5 19.77219330
3 z 27.500000 23.5 28.5 23.51660888
4 y 55.891667 50.0 60.0 53.94129887
5 z 27.500000 23.5 28.5 23.52235259
6 y 65.535000 50.0 70.0 64.66501579
7 z 22.500000 20.0 24.5 24.45383121
8 y 75.178333 65.2 80.0 66.47478445
9 z 17.500000 15.0 18.5 16.57283684

10 y 74.214000 65.2 80.0 65.21299637
11 y 65.535000 50.0 70.0 61.87324420
12 y 56.856000 50.0 60.0 52.56456103
13 y 32.324000 28.0 35.0 34.84412684
14 y 23.765000 22.0 27.0 26.91077027
15 y 15.206000 14.0 18.5 18.47609098
16 y 14.255000 13.0 17.0 15.75345511
17 z 27.500000 23.5 28.5 23.52427786
18 y 23.765000 20.0 26.0 25.30741137
19 z 22.500000 18.0 23.5 18.39308939
20 y 33.275000 30.0 36.0 33.78082667
21 z 17.500000 14.0 18.5 14.95128675
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Figure 11: Objective function evolution (rubber volume).
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(a) Non-deformed geometry. (b) Deformed geometry (uy =

−1.34999357 mm).

Figure 12: Optimum design. Rubber volume: 28897.08171555 mm3.

optimization cycle.
The behavior of the optimization procedure may be considered very good for the considered

hyperelastic example. It is well known that large deformation hyperelasticity may present many
difficulties for its numerical solution. For shape optimization of such problem, it is necessary to
guarantee a controlled mesh distortion and geometry updating. These aspects were completely
achieved for the example of a real 3D engineering problem.
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