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Abstract 
In this research, the general governing set of differential equations 
for axisymmetric thick FG pressurized cylinders with exponential 
function of material properties is derived based on third order shear 
deformation theory. Afterwards, a general analytical solution of 
governing equations based on Eigen values problems is conducted 
for cylinders under clamped ends condition. Furthermore, a numer-
ical modeling is done in order to compare the results of two differ-
ent solution and prove the accuracy of analysis. The displacements 
and stresses resulted from FEM and TSDT are depicted for a case 
study along the radial and longitudinal direction of the cylinder. 
Afterwards, the effect of internal and external pressure, FGM in-
homogeneity constants and higher order approximation is investi-
gated. The results of SDT and FEM show good agreement and 
prove the fact that usage of FGM cylinders causes lower values of 
displacements and stresses. 
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1 INTRODUCTION 

Axisymmetric hollow cylindrical shells are common structural elements in many engineering appli-
cations, including pressure vessels, submarine hulls, ship hulls, wings and fuselages of airplanes, 
containment structures of nuclear power plants, pipes, exteriors of rockets, missiles, automobile 
tires, concrete roofs, chimneys, cooling towers, liquid storage tanks, and many other structures. In 
order to optimize the weight, mechanical strength, displacement and stress distribution of a shell, 
one approach is to use shells with functionally graded materials. FGMs or heterogeneous materials 
are advanced composite materials with microscopically inhomogeneous characters.  

The first order shear deformation theory (FSDT) for homogeneous thick cylindrical shells was 
expressed by Mirsky and Hermann (1958). Reddy and Liu (1985) developed a simple higher order 
shear deformation shell theory, in which the transverse shear strains are assumed to be parabolically 
distributed across the shell thickness and which contains the same number of dependent unknowns 
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as in the first-order shear deformation theory, and no shear correction factors are required. Green-
spon (1960) compared the results of different theories of thick-walled cylindrical shells. Fukui and 
Yamanaka (1992) used the Navier solution for derivation of the governing equation of a thick-
walled FGM tube under internal pressure and solved the obtained equation numerically by means 
of the Runge-Kutta method. Simkins (1994) used the FSDT for determining displacement in a long 
and thick tube subjected to moving loads. Eipakchi et al. (2003) have investigated the governing 
equations of homogeneous cylinders with variable thickness using FSDT and represent the solution 
of the equations using perturbation theory. Eipakchi et al. (2008) further extended their previous 
work by considering homogenous and isotropic conical shells with variable thickness using FSDT 
and SSDT (second-order shear deformation theory) and solved the conducted equations by pertur-
bation theory.  

Hongjun et al. (2006) indicated the exact solution of FGM hollow cylinders in the state of plane 
strain with exponential function of elasticity modulus along the radius. Zhifei et al. (2007) analyzed 
heterogeneous cylindrical shells with power function of elasticity modulus by the usage of multilayer 
method with homogeneous layers. Thick-walled FGM cylinders in plane strain state with exponen-
tially-varying material properties were solved by Tutuncu (2007) using Frobenius method. Tutuncu 
and Temel (2009) determined axisymmetric displacements and stresses in functionally graded hol-
low cylinders, disks and spheres subjected to uniform internal pressure by the usage of plane elastic-
ity theory and complementary functions method. Zamani Nejad et al. (2009) developed 3-D set of 
field equations of FGM thick shells of revolution in curvilinear coordinate system by tensor calculus. 
Ghannad and Zamani Nejad (2010) presented the general method of derivation and the analysis of 
internally pressurized thick-walled cylinders with clamped-clamped ends. Eipakchi (2010) calculated 
stresses and displacements of a thick conical shell with varying thickness under nonuniform internal 
pressure analytically using third-order shear deformation theory (TSDT). Ghannad and Zamani 
Nejad (2012) presented a complete elastic solution of pressurized thick cylindrical shells made of 
heterogeneous functionally graded materials by the usage of plane elasticity theory. Kumar et al. 
(2013) investigated static analysis of skew composite shells by developing a finite element (FE) 
model based on higher order shear deformation theory (HSDT). They assumed a realistic parabolic 
variation of transverse shear strains through the shell thickness and considered Sander's approxima-
tions to include the effect of three curvature terms in the strain components of composite shells. 
Ghannad et al. (2013) presented a closed form analytical solution for clamped-clamped thick cylin-
drical shells with variable thickness made of functionally graded materials subjected to constant 
internal pressure based on FSDT.       

Considering the literature review prove the lack of exact or accurate analytical solution for thick 
FGM cylinders with an exponential variation of material properties. In order to consider the effect 
of shear stresses and strains, shear deformation theory is used for analytical solution of axisymmet-
ric thick FG pressurized cylinders under clamped ends condition in this paper. The governing set of 
differential equations for an axisymmetric pressurized cylinder have been derived based on third-
order shear deformation theory and a general solution is conducted for clamped boundary condi-
tions. The material properties of FG cylinder are assumed to be heterogeneous with radially varying 
elastic modulus continuously along the thickness with an exponential function and constant Pois-
son’s ratio. The results of SDT are compared with the results of a numerical modeling for pressur-
ized FG cylinder based on FEM. Beside the investigation of internal and external pressure effect, 
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the higher order approximation is compared with lower one and improvement of the results by the 
usage of higher order approximation has been shown. 
 
2 BASIC FORMULATION 

Considering the rotation of the elements in the cross section of a cylinder, the shear strain is not 
zero. Taking into account shear stresses and strains, deformation at every layer of the cylinder 
could be simulated by the usage of shear deformation theory based on principal work. Therefore, 
the displacement field could be assumed as a polynomial of a variable ( )z  through the thickness of 
cylinder. As the number of terms in the polynomial function increase, the approximate solution will 
be improved. Writing the radius of every layer in terms of radius of mid-plane R  and distance of 
every layer with respect to mid-plane z , we have (Figure 1): 
 
 r R z    (1) 
 
x  and z  are the length and the thickness variables. The parameters x  and z  have been changed 
in the following intervals: 
 

 0 ,
2 2
h h

x L z        (2) 

 
where h  and L  are the thickness and the length of the cylinder. 
 

Clamped

Clamped

 
Figure 1: Geometry of the thick pressurized cylindrical shell. 

 
Based on TSDT, the component of deformation can be stated by variables that includes the dis-
placement and rotation. For an axisymmetric cylindrical shell, axial and radial components of dis-
placement field are assumed to be in the following form (Eipakchi, 2010): 
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  (3) 
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0( )u x  and 0( )w x  are the displacement components of the middle surface. Also, 1( )u x  and 1( )w x   
are the rotations of the normal to the middle surface with respect to the x - and z - axes, respec-
tively. 0 1 2 3, , , u u u u  and 0 1 2 3, , , w w w w  are the unknown functions of x  used to determine the 
displacement field. 

The mechanical kinematic relations in the cylindrical coordinates system for an axisymmetric 
cylinder are: 
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  (4) 

 
Considering the dimensionless radial coordinate  r  as the ratio of radial coordinate  r  upon 

internal radius  ir :  
 

 
i

r
r

r
   (5) 

 
Modulus of elasticity E  is supposed to be an exponential function of the dimensionless radial 

coordinate: 
 
  1( ) n r

iE r E e    (6) 
 
Here iE  is the modulus of elasticity at the inner surface of the cylinder ( ir ) and n is the inhomoge-
neity constant of FG material. The Poisson’s ratio,  , for a thick-walled cylindrical pressure vessel 
of FGM varies in a small range. Furthermore, its effects on mechanical stresses are insignificant. 
For simplicity, the Poisson’s ratio is assumed to be constant. 

On the basis of the constitutive equations for inhomogeneous and isotropic materials, the stress-
strain relations are as follows: 
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  (7) 

 
where   and   are the Lame’s constants. Considering variable elasticity modulus for the FGM 
materials, these two parameters are as follows: 
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  (9) 

 
The distribution of elasticity modulus in Eq. (6) could be re-written as a function of z  by sub-

stituting r  from Eq. (1) into Eq. (5): 
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The axial forces based on normal components of stress are as follows: 
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The bending moments based on normal components of stress are as follows: 
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The higher-order bending moments based on normal components of stress are as follows: 
 

 
 

 
  

2

2

2

1

d

1

h xx

h
z z

z RP

P z z

P z R
 






                                   

   (13) 

  
  

2

3

2

1
d

h

x x

h

S z R
z z

S 






                     
   (14) 

 
The shear force based on shear stress is as follows: 
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The torsional moment based on shear stress is as follows: 
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The higher-order torsional moments based on shear stress are as follows: 
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 Based on the principle of virtual work, the variation of strain energy of the elastic body  U  is 
equal to the variation of external work due to pressure  W .  
 
 U W    (19) 

 
where U  is the total strain energy of the elastic body and W  is the total external work due to 
internal and/or external pressure. The strain energy is 
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and the external work is 
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where sff



 is the surface force of the pressurized cylinder. Furthermore, iP  and oP  are the horizon-
tal pressures in the internal and external surfaces. Variation of the strain energy can be expressed 
as follows: 
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and the variation of the external work is 
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Substituting Eqs. (4), (7) and (10) into Eqs. (22) and (23), using Eq. (19) and carrying out the 
integration by parts, the equilibrium equations for the cylindrical shell with constant thickness un-
der internal and external pressure are obtained in the form of: 
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  (24) 

 
where PF  stand for non-homogeneity of the governing equations which have been resulted from the 
loading of pressure. The subscript x  and z  in the right terms of each equation show the compo-
nent of PF  along the axial and radial direction, respectively. We have: 
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and the boundary conditions at two ends of the cylinder are 

 
 0 1 2 3 0 1 2 3 0

0
L

x x x x x xz xz xzR N u M u P u S u Q w M w P w S w                   (26) 

 
Eqs. (24) express the main governing equations based on the TSDT for the cylindrical shells un-

der internal or external pressure. Eq. (26) is the boundary conditions which should be satisfied at 
two end of the cylinder. 
 
3 ANALYTICAL SOLUTION 

In fact, Eqs. (24) are the set of differential equations. In order to solve the set of Eqs. (24), forces 
and moments should be written by the usage of Eqs. (11) to (18) in the terms of stresses. The 
stresses could be written in the terms of strains by using Eq. (7). By the usage of Eqs. (4), the 
strains are converted into the displacement filed components. Finally, a set of linear non-
homogenous differential equations with constant coefficients would result, as follows: 
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 are the coefficient matrices and  F  is the force vector, which can 

be expressed as the set of non-homogeneity of differential equations'.  y  is the unknown vector 
including the components of displacement field as: 
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Matrix C     in the Eq. (27) which reverse would be needed in the next calculations is singular. 
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In Eqs. (24), it is apparent that 0u  does not exist, but 0d du x  does. In order to calculate dis-

placements in Eqs. (4), 0d du x  is needed. Therefore, by assuming 0d du x   as a new parame-
ter which could be indicated in the following terms: 
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Applying the mentioned changes, the unknown vector  y  in the set of differential Eqs. (27) 

would be rewritten as follows: 
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Non-homogeneity of the differential Eqs. (27) would be derived as follows: 
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                                  

  (32) 

 
The corresponding coefficient matrices  A ,  B  and  C  of the new differential Eqs. (27) have 

been defined in appendices. 
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The solution of Eqs. (27) consists of general and particular parts: 
 
      

g p
y y y    (33) 

 
For the general solution,     mx

g
Vy e  is substituted in homogeneous Eq. (27). 

 
    2 0mxe m A m B C V                  (34) 

 
Considering that mxe  is not equal to zero, the following determinant which is equal to zero 

would result. 
 
 2 0m A m B C               (35) 

 
The above determinant is a sixteen-order polynomial which is a function of m . The determi-

nant's roots are the eigenvalues im  consisting of eight pairs of conjugated roots where a pair of the 
roots is zero. Substituting the calculated eigenvalues in Eq. (34), the corresponding eigenvectors 
 iV  are obtained. Therefore, the general solution has been obtained. 
 

    
14

1

im x
ig i

i

y C V e


    (36) 

 
Given that  F  in Eq. (27) consists of constant parameters, the non-homogenous part of the so-

lution for axisymmetric cylinder with constant thickness under uniform pressure is not the function 
of x . Therefore, the particular solution can be expressed as follows. 
 

        1

p p
C y F y C F

           (37) 

 
Considering Eq. (26), clamped-clamped boundary conditions at two ends of the cylinder are as 

follows: 
 

 
00 1 2 3 0 1 2 3

00 1 2 3 0 1 2 3

0 u u u u w w w w

u u u u w w w w

x

x L

        

        

  
  (38) 

 
Applying eight boundary conditions at each end of the cylinder, sixteen constants comprised of 

1 14, ,C C  in the general solution and 0 15,C C  in the particular solution would be calculated. Final-
ly, the unknown vector  y  which consists of displacement field components would be obtained in 
terms of x  variable based on Eq. (33) by determining unknown constants. Using Eq. (3) would 
result radial and axial displacements. Stress distribution would be obtained by using Eqs. (4) and 
(7). 
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4 RESULTS AND DISCUSSIONS 

As a case study, we consider a thick cylinder whose elasticity modulus varies in radial direction and 
has the following characteristics: ir 40 mm, h  20 mm and L  0.8 m. The elasticity modulus at 
the internal radius and Poisson’s ratio have values of iE  200 GPa and  0.3, respectively. The 
applied internal and external pressures are 0iP P  80 MPa. The analytical solution is carried out 
by writing the program in MAPLE 17. 

In order to show the abilities of the presented analytical solution for analyzing a FG cylinder, a 
numerical solution has been investigated. The ANSYS 14.5 package was used in the static analysis 
of thick hollow cylinder with constant thickness. The PLANE82 element in axisymmetric mode, 
which is an element with eight nodes and two translational degrees of freedom in the axial and ra-
dial directions per each node, was used for modeling. In order to consider the radial continuous 
varying of elastic modulus along the thickness of cylindrical shell with an exponential function, the 
thickness of cylinder has been divided to some homogeneous layers. Each layer's properties have 
been defined as an exponential function of the distance of layer's middle from internal layer. Finally 
the cylindrical shell consists of some coherent homogeneous layers whose properties at the contact 
location of the layers are the average of left and right limit of two layers' boundaries. Dividing the 
thickness of the cylinder into 40 layers causes the results of numerical modeling to converge to the 
results of analytical solution. Internal and external pressures are applied to the nodes of inner and 
outer layers, respectively. Clamped boundary conditions have been exerted by preventing the nodes 
around two ends of the cylinder from movement.  

In the next sections, the effect of internal and external pressure on FG cylinder has been investi-
gated for clamped-clamped boundary conditions. Considering the fact that behavior of the cylinder 
subjected to the effect of internal and external pressure are similar, most of the graphs are depicted 
along the radial direction at the middle of the cylinder in the section of internal pressure effect 
while the displacements and stresses have been investigated along the longitudinal direction of the 
cylinder in the section of external one. 
  
4.1 Internal pressure effect 

Figure 2 shows the distribution of the dimensionless radial displacement resulted from the numeri-
cal and analytical solution at middle of a cylinder under internal pressure. It is seen that for nega-
tive values of n , the displacements of FGM cylinders are higher than of a homogeneous cylinder. 
For positive values of n , the situation is reverse, i.e. the displacement is lower. The variation in the 
displacement of heterogeneous material is similar to that of homogenous material. Furthermore, the 
maximum values of radial displacements are observed in internal surface. 

Figures 3 and 4 show the distribution of the dimensionless circumferential and effective stress re-
sulting from the numerical and analytical solution at 2x L  of cylinder under internal pressure, 
respectively. It is obviously observed that both stresses along the thickness of the cylinder show the 
same behavior while the effective stresses have higher values. The both stresses for negative values 
of n  are higher than the homogenous materials at layers close to the internal surface while at the 
outer surface, it is less than the homogenous materials. For positive values of n , the reverse holds 
true, suggesting that the heterogonous materials have less values of stress than the homogenous 
ones at inner surfaces and the higher values of stress at outer surfaces. Considering more uniform 
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stress distribution of the layers and less maximum values of stress for 0n   under combined load-
ing, it is interesting to use FG materials with positive values of n  for cylinder under internal pres-
sure.  
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Figure 2: Dimensionless radial displacement at 2x L  

under internal pressure. 
Figure 3: Dimensionless circumferential stress at 

2x L  under internal pressure. 
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Figure 4: Dimensionless effective stress at 2x L  under internal pressure. 

 
Dimensionless effective stress distribution under combined load at 0z   along the longitudinal 
direction of the cylinder for different materials are illustrated in Figure 5. It could be observed that 
effective stress along the longitudinal direction is uniform except the layers around the clamped 
boundaries. Therefore, PET results are valid through the length of the cylinder far away from 
clamped boundaries. The higher values of effective stress for positive inhomogeneity at middle sur-
face of the cylinder (Figure 5) show the fact that the point around which the effective stress graphs 
meet each other in Figure 4 is close to the internal half of the cylinder under internal pressure. Fig-
ure 5 shows that effective stresses at middle layer of the cylinder under internal pressure for positive 
inhomogeneity constants are higher that the negative one at all points of the longitudinal direction, 
even at peak around clamped ends. Considering this fact reveal that the trend of effective stress of 
any layer along the thickness retain constant along longitudinal direction, i.e. the effective stress of 
FGM cylinder at internal layer (critical layer) for 0n   is higher than 0n   and this trend ap-
pear at all points of the internal layer along longitudinal direction. Therefore, the results at middle 
of the cylinder  2x L  are valid for conclusion about the suitable FGM inhomogeneity constant. 
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Figure 5: Dimensionless effective stress at 0z   under internal pressure. 

  
4.2 External pressure effect 

Figures 6 and 7 show the distribution of the dimensionless radial and axial displacement along the 
longitudinal direction in the middle surface of the cylinder under external pressure for different in-
homogeneity constants. The external pressure, as the internal one, causes less values of displace-
ments for positive inhomogeneity constants in FGM cylinder. Therefore, usage of cylinder made up 
of positive inhomogeneity constants is more suitable from the view point of lower displacement. The 
responses of an FG cylinder under mechanical loads can be considered in order to evaluate the ef-
fect of inhomogeneity of used materials. Furthermore, the effect of end condition of the cylinder can 
be considered on the longitudinal distribution of the responses. This consideration can determine 
the longitudinal range of effect of the supports on the responses.  
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Figure 6: Dimensionless radial displacement at 0z   

under external pressure. 
Figure 7: Dimensionless longitudinal displacement at 

0z   under external pressure. 
 
Figures 8 and 9 show the circumferential stress along the longitude and thickness of the cylinder 
under external pressure, respectively. Comparison of Figures 3, 8 and 9 show that the circumferen-
tial stress of the cylinder under internal or external pressure are similar, means that the higher val-
ues of stresses are observed in materials with negative inhomogeneity constants. However, external 
pressure causes higher and negative circumferential stresses in comparison with the internal pres-
sure of the same value. As the terms resulting from pressure have been revealed in the non-
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homogeneity part of the set of governing differential equations, the superposition principle could be 
utilized for the effect of combined loading on the basis of linear elasticity. In fact, the non-
homogeneity vector  F  appears as a force vector in the governing equations. Therefore, under the 
effect of combined loading including internal and external pressure with the same value, the effect 
of external pressure is dominant means that the circumferential stress would be negative. Further-
more, the higher values of circumferential stress for positive inhomogeneity at middle surface of the 
cylinder under external pressure (Figure 8) show the same results for the position of the point 
around which the effective stress graphs meet each other (Figure 9).  
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Figure 8: Dimensionless circumferential stress at 0z   

under external pressure. 
Figure 9: Dimensionless circumferential stress at 

2x L  under external pressure. 

 
Distribution of dimensionless longitudinal and effective stress in middle layer of cylinder are shown 
in Figures 10 and 11. At points away from the boundaries, axial stress does not show considerable 
differences in cylinder made up of different FG materials unlike the circumferential and effective 
stress, while at points near the boundaries, the reverse holds true. Comparison of Figures 5 and 11 
show higher values of effective stresses resulted from external pressure to the internal one. Figure 10 
show that the axial stress distribution (unlike circumferential and effective one) have not constant 
trend along the longitudinal direction, i.e. the axial stress of FG cylinder with negative inhomogene-
ity constant is higher than the positive one far away from boundaries while at peak points near two 
ends, reverse hold true means that positive constants cause higher axial stress. Therefore, the re-
sults of axial stress (unlike circumferential and effective one) at middle of the cylinder are not valid 
for selecting appropriate FG material. 
 
4.3 Higher-order approximation effect  

Tables 1, 2 and 3 present the radial displacement, circumferential and effective stresses of different 
layers resulting from SDT and FEM in the middle of heterogeneous cylinder ( 2x L ) under in-
ternal pressure, respectively. The FSDT solution procedure has been explained in the references 
(Ghannad and Zamani Nejad, 2010). It is observed that FSDT has acceptable results in middle 
layer while the results of the other layers (especially stress results) show a significant difference once 
compared with the results calculated from TSDT and FEM solution. 
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Figure 10: Dimensionless longitudinal stress at 0z   

under external pressure. 
Figure 11: Dimensionless effective stress at 0z   under 

external pressure. 
 

(mm)rU  
0.5n     0n    0.5n    

TSDT FSDT FEM  TSDT FSDT FEM  TSDT FSDT FEM 

internal layer 0.04927 0.04732 0.04912  0.04420 0.04250 0.04425  0.03950 0.03800 0.03955 
middle layer 0.04297 0.04256 0.04286  0.03840 0.03830 0.03845  0.03421 0.03421 0.03424 
external layer 0.03931 0.03780 0.03921  0.03510 0.03400 0.03516  0.03130 0.03041 0.03129 

Table 1: The results of radial displacement at the middle of the cylinder under internal pressure. 
 

(MPa)  
0.5n     0n    0.5n    

TSDT FSDT FEM  TSDT FSDT FEM  TSDT FSDT FEM 

internal layer 236.697 262.224 232.280  209.190 235.785 207.740  183.621 210.928 184.460 
middle layer 153.333 152.576 154.020  156.114 155.618 156.190  158.120 157.909 158.000 
external layer 111.703 88.266 111.760  127.246 102.174 128.120  144.212 117.666 146.140 

Table 2: The results of circumferential stress at the middle of the cylinder under internal pressure. 
 

(MPa)eff  
0.5n     0n    0.5n    

TSDT FSDT FEM  TSDT FSDT FEM  TSDT FSDT FEM 

internal layer 274.316 228.089 272.440  249.672 204.728 250.900  226.676 182.822 230.170 
middle layer 157.824 158.394 158.000  161.984 161.098 162.040  165.504 163.011 165.010 
external layer 100.802 115.261 99.786  115.001 132.828 114.310  130.597 152.293 130.470 

Table 3: The results of effective stress at the middle of the cylinder under internal pressure. 
 
It is generally observed that higher order approximation of displacement field components in com-
parison with FSDT yields error reduction. The reason is that FSDT assumes linear distribution for 
the radial displacement while according to the lame's theory (PET), the variation of radial dis-
placement along the thickness of the cylinder has hyperbolic distribution (Ghannad and Zamani 
Nejad, 2012). 
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2
1( )r

C
U r C r

r
   

(39) 

 
Therefore, the linear distribution is not appropriate approximation except the middle layer 

where the parameter z  is equal to zero. Because of indirect stress calculations, the incoherence of 
results intensifies for stresses in compared with displacements.  

Effective stresses resulted from TSDT, PET and FEM at middle layer of cylinder and 2x L  
under internal and/or external pressure are shown in Table 4. The PET solution is carried out for 
cylinder under plane strain condition.  

 

(MPa)eff  
0.5n     0n    0.5n    

TSDT PET FEM  TSDT PET FEM  TSDT PET FEM 

80MPaiP   157.82 158.01 158.00  161.98 161.67 162.04  165.50 164.62 165.01 

0 80MPaP   165.91 165.55 166.68  170.69 169.70 171.04  174.66 172.98 174.04 

0 80MPaiP P   32.79 32.06 32.06  32.82 32.00 32.02  32.74 31.90 31.92 

Table 4: The results of effective stress at the middle of the cylinder for different loading. 

 
5 CONCLUSIONS 

In this paper, an analytical solution based on TSDT and FEM is conducted for axisymmetric thick 
FG pressurized cylinders under clamped ends condition, and has been compared with results of 
homogenous cylinders. The variation of FGM properties is supposed to be an exponential function 
along the thickness of cylinders. The analytical solutions and the solutions carried out through the 
FEM show good agreement. Furthermore, the effect of higher order approximation and inter-
nal/external pressure has been conducted. It is observed that usage of cylinder made up of positive 
inhomogeneity constants is more suitable from the view point of lower displacement. The results 
show that from the view point of uniform stress distribution of the layers and less maximum values 
of stress for 0n   under combined loading, it is interesting to use FG materials with positive val-
ues of n  for pressurized cylinder. At points away from the boundaries, axial stress does not show 
considerable differences in cylinder made up of different FG materials unlike the circumferential and 
effective stress, while at points near the boundaries, the reverse holds true. The results show higher 
values of stresses resulted from external pressure to the internal one. As the terms resulting from 
pressure have been revealed in the non-homogeneity part of the set of governing differential equa-
tions, the superposition principle could be utilized for the effect of combined loading on the basis of 
linear elasticity. Therefore, under the effect of combined loading including internal and external 
pressure with the same value, the effect of external pressure is dominant which yield to negative 
circumferential stress. Comparison between the FSDT and TSDT indicates that the maximum dif-
ference between these theories is about 4% at radial displacement and 24% at effective stress which 
are appeared at the internal layer. This difference implies that the assumption of linear distribution 
for displacement fields in FSDT is not accurate especially in stress calculus and the higher-order 
approximation is needed. Although TSDT method has acceptable results for displacements and 
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circumferential and axial stresses, the radial and consequently von Mises stresses resulted from 
TSDT show slight difference by the results calculated from PET solution. The maximum difference 
between the effective stress resulted from PET and TSDT at middle layer of cylinder under internal 
and/or external pressure is less than 1%. This difference increase at layers close to the boundaries 
and the greatest difference occurs in the internal surface  2z h  . Therefore, effective stresses 
calculated by FEM have more coincidence by PET results than SDT.  
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APPENDICES  
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where the parameters    and k  are as follows 
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