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Abstract 

The available shear correction factors have mainly been proposed 

for single-layer rectangular plates with zero shear tractions and 

isotropic homogenous materials. The present analytical shear 

factors are especially suitable for the first-order zigzag or layerwise 

theories of circular sandwich plates with functionally graded 

cores/face sheets and simultaneous normal and shear tractions. 

Although the present layerwise correction factors are general, they 

are evaluated for the modal analyses where effects of the shear 

correction are more remarkable than those of the stress analyses. 

It is the first time that the concept of the local shear correction 

factor is introduced. To present more accurate results, the Mori-

Tanaka micromechanical-based material properties model is used 

instead of the traditional rule of mixtures. The governing equa-

tions are solved using the analytical Taylor transform method. 

Comparisons made among results associated with the known shear 

correction factors, present results, and results of the three-

dimensional theory of elasticity reveal that significant enhance-

ments may occur through using the proposed analytical shear 

correction factors. 
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1 INTRODUCTION 

Three-layer sandwich plates with protective or load carrying face sheets and spacer, damper, or 

stiffener cores have extensively been employed in various engineering applications and hi-tech struc-

tures. Various requirements may be covered through using different combinations of the stiff or soft 

materials for the face sheets and cores. Employing functionally graded face sheets or cores may re-

duce or eliminate the discontinuities in the distribution of the transverse stresses at the interfaces 

between the layers.  

 Although the three-dimensional theory of elasticity is an accurate approach this theory cannot 

be directly applied with ease for multilayer plates with arbitrary variations of the material proper-

ties, non-uniform tractions, and general geometries and boundary conditions, especially when thick-

ness of the layers is small. Majority of the researchers have used equivalent single layer theories 

(Reddy, 2005; Shariyat, 2009a; Shariyat, 2009b; Ebrahimi et al., 2009; Mantari and Oktem, 2011; 

Sofiyev, 2014) for analysis of the multilayer plates. It is evident that accuracy of these theories may 

encounter problems when number of the layers increases or when the material properties experience 

severe changes in the transverse direction. In such cases, using the layerwise or zigzag theories is 

more appropriate (Pandit et al., 2008; Fares and Elmarghany, 2008; Shariyat, 2010; Shariyat, 

2012a). For the both general categories of the plates, i.e., the equivalent single-layer and zigzag 

first-order theories, the first-order shear-deformation theories (FSDT) are computationally more 

economic and relatively simpler. For these reasons, they have been attractive for performing the 

stress and bending (Alipour, and Shariyat, 2010; Reddy et al., 1999), vibration (Alipour et al., 2010; 

Alipour and Shariyat, 2011a), and buckling (Shariyat and Alipour, 2013a; Alipour and Shariyat, 

2013) analyses of plates under complicated conditions. Nevertheless, based on this type of theories, 

the transverse shear strains become constant in the thickness direction; so that the shear correction 

factors have to be used to correct the strain energy of the transverse shear stresses and consequent-

ly, adjust the transverse shear stiffness of the plate.  

 Various shear correction factors have been proposed so far to improve accuracy of the FSDT 

theories of the plates and beams. Timoshenko (1992) proposed a Poisson-ratio-dependent correction 

factor through matching the vibration frequencies obtained from the 2-D plane stress elasticity with 

those computed using the beam theory. Mindlin (1952) proposed constant and Poisson-ratio-

dependent shear correction factors based on the free vibration data of the homogeneous and iso-

tropic plates. An overview and elaborate discussion on the correction factors for flexural vibrations 

of the Timoshenko beams was presented by Kaneko (1975). Some shear correction factors had been 

derived for beams with various cross sections (Cowper, 1966; Murthy, 1970; Hutchinson, 1981; Re-

bello et al., 1983; Wittrick, 1987; Stephen, 1997; Pai and Schulz, 1999; Gruttmann and Wagner, 

2001). Cowper (1966) used an approach based on the integration of the three-dimensional theory of 

elasticity, satisfying the boundary conditions of the cross-section. Based on the frequency matching 

approach, Hutchinson (1981) presented a shear correction factor through comparing results of Ti-

moshenko beam theory and theory of elasticity. Rebello et al. (1983) analyzed vibration of bimodu-

lar sandwich beams with different behaviors in compression as compared to tension. Wittrick (1987) 

introduced different correction factors through comparing results of Mindlin’s plate theory for the 

buckling under biaxial compression, free lateral vibration of a simply supported orthotropic rectan-

gular plate, and static responses with those of the exact three-dimensional theory of elasticity. Ste-
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phen (1997) found a correction factor through matching results of the flexural modes of the Mindlin 

finite plate theory with the Rayleigh-Lamb waves in the long wavelength limit. Pai and Schulz 

(1999) presented a shear correction factor for the isotropic beams by matching the exact shear 

stress resultants and shear strain energy with those of the first-order shear-deformation theory. 

Gruttman and Wangner (2001) derived a shear correction factors for arbitrary shaped cross section 

Timoshenko beams, based on equivalence of the strain energies calculated from the beam theory 

and the equilibrium equations. Hutchinson (2001) presented a new Timoshenko beam formulation 

and obtained a shear correction factor that depends on the Poisson ratio and the width to depth 

ratio. Efraim and Eisenberger (2007) proposed a new correction factor for the functionally graded 

plates through substituting the average Poisson ratio of the functionally graded mixture into the 

Poisson-ratio-dependent Mindlin’s shear correction factor for the homogenous plate. Extending an 

approach previously used for the composite beams, Nguyen et al. (2008) proposed shear correction 

factors for the power-law FGM plates using the shear strain energy equivalence method. 

Chróścielewski, et al. (2010) suggested using two shear correction factors for the geometrically non-

linear elastic regular and irregular shells. Menaa et al. (2012) used a concept similar to Nguyen et 

al. (2008), but presented an expression for plates made of sigmoid-law functionally graded materials. 

 Usage of the equivalent single-layer theories may lead to significant errors in analyzing the 

sandwich plates. In order to overcome restrictions of the equivalent single-layer theories, various 

layerwise and zigzag theories were presented. The zigzag theory (Shariyat and Alipour, 2013b; Ali-

pour and Shariyat, 2011b, 2014a) with local linear through-thickness variations of the in-plane dis-

placement components is a simple and computationally economic sandwich theory. However, using 

a constitutive-equations-based approach for this zigzag theory leads to constant layerwise transverse 

shear stresses. Therefore, using an appropriate shear-correction factor is a necessity to accurately 

determine the plate responses. The foregoing brief literature survey reveals that although various 

shear correction factors have been presented for the equivalent single-layer first-order shear-

deformation beam/plate theories, no correction factor has been presented yet for the sandwich 

plates whose displacement fields vary locally. In the present paper, analytical local shear correction 

factors are proposed to modify the layerwise responses of each individual layer, especially when the 

layers are fabricated from functionally graded materials. In this regard, results of the employed 

zigzag theory, especially, the transverse shear stress are modified according to the three-dimensional 

theory of elasticity, instead of using the traditional constitutive-equations-based approach. The local 

shear correction factors are obtained using the strain energy equivalence method. Effects of the pro-

posed shear correction factors are evaluated for free vibration analysis of the functionally graded 

sandwich circular plates, for various boundary conditions. The employed analytical method is Tay-

lor transform method that is adequate for solution of the coupled differential equations (Alipour 

and Shariyat, 2010, 2011b, 2012, 2014a; Shariyat and Alipour, 2013b). Verification of the results has 

been accomplished through comparing present results with results of the three-dimensional theory 

of elasticity extracted from ABAQUS finite element code. 
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2 DESCRIPTION OF VARIATIONS OF THE MATERIAL PROPERTIES 

AND THE ZIGZAG DISPLACEMENT FIELD 
 

Geometric parameters of the circular sandwich plate with functionally graded layers are shown in 

Fig.1. It is assumed that each layer of the sandwich plate is generally made of a mixture of ce-

ramic and metallic constituent materials.  Using a power–law for description of variations of the 

volume fraction of the metallic constituent material in the transverse direction, one may write: 
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where the subscripts c and m stand for ceramic and metal, respectively and g is the positive defi-

nite volume fraction index. Therefore, Vc and Vm are the volume fractions of the ceramic and 

metallic constituent materials, respectively. According to Mori-Tanaka material properties model, 

variations of the bulk and shear moduli can be represented by: 
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from which Young’s modulus and Poisson’s ratio may be determined as:
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Figure 1: Geometric parameters of the considered circular sandwich plate with functionally graded layers. 
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Therefore, variations of the material properties within each layer may be determined from: 
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Although the traditional rule of mixtures is generally not appropriate for determination of the 

elastic moduli and Poisson’s ratio, its application may be justified for modeling variations of the 

mass density within each layer (Shariyat and Jafari, 2013):  
 

c c m mV V   

 

(6) 
 

To enable accurately tracing the layerwise variations of the in-plane displacement component, a 

zigzag theory that is a result of a superposition of linear layerwise and linear global fields is 

adopted. So that variations of the resulting displacement field may be expressed as follows within 

each layer:  
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where u and w are the radial and lateral displacement components.  The subscripts g, l, and 0 

denote the global and local components and value of the displacement component at the reference 

plate, respectively. The z coordinate is measured from the reference layer (e.g., the mid-plane of 

the plate) and positive upward. Imposing the interlaminar kinematic continuity conditions, the 

resulting displacement field of the sandwich plate may be expressed as follows: 
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where g  and ( ) ,( 1,2,3)i

l i  are the global rotation of the radial cross section and local rotations 

of the individual layers, respectively. h1, h3, and h2 are thicknesses of the face sheets and core, 

respectively (Fig. 1). Eq. 8 may be rewritten as:  
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where 
( ) ( )i i

g l   

 

(10) 

 
3 DERIVATION OF THE LOCAL SHEAR CORRECTION FACTOR (LSCF) 

In the present section, the local shear correction factors are derived for functionally graded circu-

lar sandwich plates with normal and shear tractions on the top and bottom surfaces. Although 

power-law variations are adopted for the volume fractions in the preceding section, present formu-

lations may similarly be employed for any type of variations of the material properties.  

For small deflections of axisymmetric circulate plates, the strain-displacement relations in the 

polar coordinate may be written as: 
 

 

Since magnitude of the transverse normal strain is usually ignorable in comparison with that of 

the in-plane strains, the stress-strain relation of the ith layer may have the following form: 
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Based on the three-dimensional theory of elasticity, the equilibrium equations of the axisymmetric 

circular plate may be expressed as: 
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where r ,  and z  are the normal stresses and rz  is the transverse shear stress. Although the 

radial and transverse inertia body forces ( u  and w ) appeared in Eqs. (14,15) may affect the 

shear correction factor, their effects may be ignored in comparison to those of the transversely 

applied distributed tractions, especially for the thin plates. This assumption has been employed in 

derivation of all of the available shear correction factors. 
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Based on Eq. 9, local variations of the in-plane displacement component of the ith layer may 

be rewritten as:
   

( ) ( ) ( ) ( ) ( )

0 ;
2 2

i i i i ii i
l

h h
u u       

 
(16) 

 

where 
( )i  are the local z-coordinates of the layers that are measured from the mid-plane of the 

corresponding layer and are positive upward.  

Based on Eqs. (11,12,16), the in-plane stress components will be:
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By substituting Eq. (17) into Eq. (14), the radial equilibrium equation of each layer of the sand-

wich plate may be expressed based on the present zigzag theory as: 
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By integration of the elasticity equilibrium Eq. (18) across the plate thickness, the transverse 

shear stress within each layer may be obtained as:  
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( )iC  is an integration constant. Integrating the transverse shear stress across the thickness of 

each layer, the transverse shear force per unit length of each layer can be obtained:  
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For the general case where the top and bottom surfaces of the plate are subjected to simultaneous 

normal and shear tractions, the boundary and the continuity conditions of the in-plane displace-

ment and transverse shear stress have to be satisfied: 
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where stq and sbq are the shear tractions of the top and bottom surfaces of the sandwich plate. 

Therefore:  
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Using the Eqs. (20,21), the unknown displacement parameters ( )
0
iu  and

 

( ), i
l  may be obtained 

based on the shear force of the relevant layer per unit length. On the other hand, based on Eq. 

(15) and the boundary and continuity conditions (at the interfaces between layers):  
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 (23) 

 

ntq and nbq are the normal tractions of the top and bottom surfaces of the sandwich plate (Fig. 1). 

The transverse distributions of the transverse shear and normal stresses may be determined based 

on computing the integrals appeared in Eqs. (20) and (23) for each loading case. However, for the 

special case of a sandwich plate whose material properties are constant within each layer, the 

through-thickness variations of the transverse shear stress can be determined explicitly as: 
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On the other hand, based on the present first-order zigzag theory, the constitutive-equations-

based transverse shear stress of each layer is: 
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rz l rG w    

 
(25) 

 

By integration of Eq. (25) across the plate thickness, the transverse shear force of each layer per 

unit length may be obtained as: 
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where 
)(i is the local shear correction factor of the ith layer. Based on Eq. (26), Eq. (25) may be 

rewritten in terms of the shear force per length as: 
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The strain energy associated with the elasticity-based transverse shear stress (19) can be deter-

mined from the following equation: 
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On the other hand, the strain energy associated with the constitutive-equations-based transverse 

shear stress maybe corrected as follows to match Eq. (28): 
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Equating the strain energy expressions appeared in Eqs. (28,29) leads to the following set of new 

general local correction factors for the three-layer functionally graded sandwich plate.  
 

 

 

( ) ( )/2

( )2 ( )

( )2

0 /2( )

/2

( )2 ( )

( ) ( )

0 /2

2

1
2

i

i

i

i

i ihb

i i
ri

hi

hb

i i
rzi i

h

G
Q r drd

r drd
G


 



  








 

 

 (30) 

 

In the obtained correction factors, effects of gradation of the material properties, geometric pa-

rameters, and the tractions of the sandwich plate are considered. Moreover, since the correction 

factors are presented in terms of the shear loads per unit length, an elasticity-based correction is 

required for determination of the accurate transverse shear stress, as explained in the next sec-

tion. In the special cases where the top and bottom surfaces of the plate are free of shear tractions 

and each layer is fabricated from a homogeneous isotropic material, the following explicit expres-

sions may be used for the shear correction factors:  
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Therefore, after finding the transverse shear stresses, through-thickness variations of the trans-

verse normal stress can be determined from: 
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and: 

r

Q
QQ i

rii  ,

~
 (33) 

 

Even though investigation of the transverse normal stresses is not the main aim of the present 

paper, since their expressions are indirect outcomes of the present research and have not derived 

by other researchers, they are included to increase the fruitfulness of the paper. 
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4 GOVERNING EQUATIONS OF FREE VIBRATION OF THE FUNCTIONALLY 

GRADED CIRCULAR SANDWICH PLATE 
 

The governing equations of the free vibration of the sandwich plate may be derived by either 

using the minimum total potential energy principle or Hamilton’s principle. Based on the first 

approach, one may write:  
 

0 KU   (34) 
 

where   , U , and K are increments of the total potential energy, strain energy, and kinetic 

energy (energy of the inertial loads), respectively:   
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(35) 

 

 

Employing the minimum total potential energy principle taking into account Eqs. (9,11,12), leads 

to the following five coupled governing equations of motion of the circular sandwich plate in the 

cylindrical coordinate system (r, θ, z):  
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The resulting essential and natural boundary conditions are: 
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(38) 

5 DEVELOPMENT OF TAYLOR’S TRANSFORM ANALYTICAL SOLUTION 

The analytical solution is developed based on Taylor’s transform method. The displacement 

parameters, as analytical functions, may be expressed in terms of Taylor’s series around r=0, 

based on a Kantorovich-type separation of variables. 
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By substituting Eq. (39) into the governing Eq. (36) and performing some manipulations, the 

transformed form of Eq. (36) may be written as:
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(40-d) 
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(40-e) 
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By solving Eq. (40), an algebraic homogeneous system of equations including the unknown 

displacement parameters (1) (2) (3)
2, 2 2 2, ,k k k kU       and 

2LW (k=0,1,2,…) is obtained. The essen-

tial (geometric) boundary conditions must be incorporated to make this system of equations 

a deterministic one. Moreover, the regularity conditions at the center of the axisymmetric 

plate have to be imposed:

  

 

0 0

(1) (1)
0 0

(2) (2)
0 0

(3) (3)
0 0

0 1

0 0

0 0
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0 0
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r r
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Q W
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   

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

   


   
   

 (41) 

 

By substituting Eq. (39) into the boundary conditions Eq. (37) the transformed form of Eq. 

(37) becomes:  
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(42-a) 
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By substituting (1) (2) (3), , ,k k k kU     and kW  (k=2,…, N+2) from Eq. (40) into Eq. (42), one 

obtains the following system of equations:

  

 
( ) ( ) (1) ( ) (2) ( ) (3) ( )

11 1 12 1 13 1 14 1 15 0
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 (43) 

 

Existence of a non-trivial solution for Eq. (43) requires that:  

 

 0  (44) 

 

 

6 RESULTS 

In the present section, the proposed more general analytical shear correction factors and the 

elasticity-based formulations for the transverse shear stress are examined for the free vibra-

tion of sandwich circular plates with functionally graded layers. Although the presented ex-

pressions for the shear correction factor are mathematically proven, examination of the re-

sulting enhancements in the results (in comparison with the available shear correction fac-

tors) cannot be accomplished for all types of analyses in a single paper. However, our previ-

ous experience has shown that effects of the shear correction factor in the free vibration anal-

ysis problems are more remarkable than those of cases where the external tractions act on 

the plate; because in the later cases, order of magnitude of the transverse shear stress is 

much smaller than order of magnitudes of the in-plane stresses. Since the functionally graded 

materials considered in the present section are mixtures of two of the steel, aluminium, and 

alumina materials, it is necessary to mention their materials properties: 

 
3

3

3

Steel: 210 , 0.3, 7850 /

Aluminium: 70 , 0.33, 2700 /

Alumina: 380 , 0.26, 3800 /

E GPa kg m

E GPa kg m

E GPa kg m

 

 

 

  

  

  

 

 

Verification of the results and evaluation of the magnitude of the resulting enhancements are 

accomplished through comparing present results with results of the three-dimensional theory 

of elasticity extracted from ABAQUS finite element analysis code and results of employing 

the available commonly used correction factors.  
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6.1 Evaluation of the Employed Micromechanical Model 

for Variations of the Material Properties 
    

It is known that the traditional linear rule of mixtures is an approximate model (Shariyat and 

Darabi, 2013; Shariyat, 2012b). To evaluate discrepancies of predictions of this model with re-

spect to predictions of the more accurate Mori-Tanaka micromechanical-based model, a plate 

whose overall thickness is equal to 0.3m (h1=h2=h3=0.1m) is considered. Two cases are consid-

ered and the through-thickness distributions of the elasticity modulus predicted by rule of mix-

tures and Mori-Tanaka model are compared in Fig. 2 and 3, respectively: 

 

 
 

Figure 2: A comparison between predictions of the traditional rule of mixture and Mori-Tanaka model for trough-

thickness variations of the elasticity modulus of the core of the sandwich plate, for various volume fraction indices. 

 

 
 

Figure 3: A comparison between predictions of the traditional rule of mixture 

and Mori-Tanaka model for trough-thickness variations of the elasticity modulus 

of the face sheets of the sandwich plate, for various volume fraction indices. 
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a) A plate with respectively alumina and steel top and bottom face sheets and a functionally 

graded core which is a transition medium (whose material properties vary from those of alumina 

to those of steel)  

b)  A plate with an aluminium core and functionally graded alumina/aluminium and alumini-

um/steel top and face sheets, respectively. 

 

Comparing predictions of the two models reveals that the larger discrepancies occur at lower vol-

ume fraction indices. For the considered materials, the discrepancies are more remarkable when 

the face sheets are fabricated from functionally graded materials. Furthermore, for lower volume 

fraction indices, highest gradients occur in the neighborhood of the external surfaces of the face 

sheets and the upper surface of the core whereas the opposite is true for the higher volume frac-

tion indices.          

 
6.2 Verification of the Shear Correction Factor Expressions 

and Evaluation of the Enhancements 
 

Since one of the inevitable sources of errors in the verification process is comparing results of var-

ious references that have used various formulations and different solution procedures. To prevent 

these common sources of errors, results of the present formulation are extracted based on the 

commonly used shear Mindlin correction factor for the circular plate ( 2 /12  ), our secondary 

suggestion for the sandwich plates ( 1  ) with slightly softer cores, and the proposed analytical 

local correction factors. These results are compared with results of the three-dimensional theory of 

elasticity extracted from ABAQUS finite element analysis code. In this regard, results of the first 

three natural frequencies are compared for a relatively thick alumina/aluminium/steel circular 

sandwich plate with (h1/b=h2/b=0.1) in Table 1, for different edge conditions and core thickness 

to radius ratios (h2/b=hc/b=0.1, 0.15, 0.2). Relative deviations (differences) with respect to re-

sults of the 3D elasticity are also given in Table 1. Comparing these deviations shows that while 

our secondary suggestion for the shear correction factor leads to slightly more accurate results for 

the fundamental natural frequency, the generally accurate results belong to the developed analyt-

ical shear factor, especially for the higher (second and higher) natural frequencies. The unity cor-

rection factor can only be employed for cases wherein the core is either a transition medium or 

fabricated from a slightly softer material (as it is the case in the present example). In these cases, 

through-thickness distribution of the transverse shear resembles to some extent a rectangular 

(semi-uniform) or trapezoidal distribution. It may be readily deduced that Mindlin correction 

factor has led to significant errors in estimating contribution of the transverse shear stress. It is 

important to remind that since order of magnitude of the transverse shear stress is much lower 

than that of the bending stresses, the relevant strain energies and subsequently, relevant effects 

on the results are ignorable. Therefore, even ignorable differences in the results may reflect high 

effects of the shear correction factors. Since the ABAQUS results have been extracted based on 

Lagrangian (C0-continuous) elements (3D quadratic eight-node axisymmetric CAX8R elements), 

they may encounter some minor inherent errors (this issue holds for all of the well-known com-

mercial finite element analysis codes). Therefore, accuracy of the present shear correction factor 
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may actually be higher even for the fundamental natural frequency. As explained before, for cal-

culation of the proposed shear factor, determination of the shear forces of the layers per unit layer 

is necessary. For the clamped plate, the mean relative difference with respect to results of the 3D 

elasticity is respectively 1.45, 3.58, and 0.87 for 1  , 2 /12  , and the present analytical cor-

rection factor (based on the relevant vibration mode shape). For the simply supported and free 

edge conditions, these relative differences are (0.84, 2.78, and 0.82) and (0.98, 1.78, and 0.87), 

respectively. Therefore, the shear correction factors that have mainly been proposed for the sin-

gle-layer plates are not adequate for the multilayer plates. The main reason is that the assump-

tion of the equivalent single-layer theories that states that the entire layers of the plate section 

rotate identically is not accurate and in many cases may be erroneous. In many cases, direction of 

rotation of the core may even be opposite to and quite different from that of the face sheets (Ali-

pour and Shariyat, 2014b). 

 

      
Edge 

Condition 

Approach 
hc/b=0.1 hc/b=0.15 hc/b=0.2 

         

Clamped 

  3D (ABAQUS) 768.58 2118.3 3639.4 818.26 2164.4 3615.3 857.3 2202 3536.5 

Present κ=1 770.431 2140.9 3730.8 820.04 2193.8 3704.2 859.43 2240.4 3648.8 

Difference (%) 0.24 1.07 2.51 0.22 1.36 2.46 0.25 1.74 3.17 

Present κ=π2/12 738.09 2026.1 3539.2 779.42 2067.1 3550.4 812.20 2104.2 3550.6 

Difference (%) 3.97 4.35 2.75 4.75 4.5 1.8 5.26 4.44 0.4 

Present, analytical 764.8 2113.4 3675.2 814.56 2168.9 3675.8 853.74 2213.3 3635.9 

Difference (%) 0.49 0.23 0.98 0.45 0.21 1.67 0.42 0.51 2.81 

Simply 

supported 

3D (ABAQUS) 462.85 1904.9 2195 522.48 1983 2128.5 574.04 2042 2073.2 

Present κ=1 461.83 1910.7 2219.5 520.49 1991.8 2163.3 571.07 2056 2120.4 

Difference (%) 0.22 0.31 1.12 0.38 0.44 1.63 0.52 0.69 2.28 

Present κ=π2/12 453.51 1819.9 2203.6 508.04 1884.7 2144.2 554.55 1938.1 2097.7 

Difference (%) 2.02 4.46 0.39 2.76 4.96 0.74 3.4 5.09 1.18 

Present, analytical 460.7 1894.2 2216.8 519.25 1977 2161.9 569.81 2042.4 2118.6 

Difference (%) 0.46 0.56 0.99 0.62 0.3 1.57 0.74 0.02 2.19 

Free 

3D (ABAQUS) 791.79 2132.9 2421.9 880.56 2099.6 2476.2 955.15 2061.4 2519.4 

Present κ=1 791.85 2149.7 2447.2 880.12 2125.5 2514.5 954.42 2098 2576.6 

Difference (%) 0.01 0.79 1.05 0.05 1.23 1.55 0.08 1.78 2.27 

Present κ=π2/12 777.72 2100.7 2374.9 860.09 2084.3 2414.3 928.96 2060.2 2459.0 

Difference (%) 1.78 1.51 1.94 2.32 0.73 2.5 2.74 0.06 2.4 

Present, analytical 789.8 2142.3 2432.8 878.05 2120.5 2498.5 952.33 2094.9 2561.6 

Difference (%) 0.25 0.44 0.45 0.28 1 0.9 0.3 1.63 1.68 

 

Table 1: A comparison among values of the first three natural frequencies (in Hz) of a relatively thick 

alumina/aluminium/steel sandwich plate predicted based on employing various correction factors and the 3D 

elasticity, for various core thickness ratios and different edge conditions (h1/b=h2/b=0.1). 

1 2 3 1 2 3 1 2 3
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6.3 Sandwich Plates with Functionally Graded Face Sheets and Different Edge Conditions 

As a next stage, it is assumed that the face sheets are fabricated from functionally graded materi-

als (g=1) to constitute an alumina-aluminium/aluminium/aluminium-steel sandwich plate. In this 

regard, results of the present formulation (up to the fifth natural frequency) are compared with 

results of 1  and results of the 3D elasticity in Tables 2 and 3, for the clamped, and simply 

supported and free edge conditions, respectively. Results are calculated for various core thickness 

ratios.  

 

Natural 

frequency 

(Hz) 
 

h1/b=h2/b=0.075 h1/b=h2/b=0.1 

3D 

(ABAQUS) 

Present 

κ=1 

Difference 

(%) 

Present, 

analytical 

Difference 

(%) 

3D 

(ABAQUS) 

Present 

κ=1 

Difference 

(%) 

Present, 

analytical 

Difference 

(%) 

1  

0.1 695.12 707.02 1.71 694.62 0.07 775.55 797.33 2.81 776.83 0.16 

0.15 763.16 773.86 1.4 758.06 0.67 828.43 848.32 2.4 824.71 0.45 

0.2 816.65 826.26 1.18 802.91 1.68 870.2 888.48 2.1 865.61 0.53 

2  

0.1 1983.1 2047 3.22 1981.5 0.08 2126.5 2222.9 4.53 2128 0.07 

0.15 2082.6 2138.3 2.67 2067 0.75 2191.7 2277.8 3.93 2186 0.26 

0.2 2157.1 2207.6 2.34 2116.9 1.86 2242.5 2322.7 3.58 2236.4 0.27 

3  

0.1 3462.4 3599.4 3.96 3458.9 0.1 3635.3 3764.4 3.55 3635.8 0.01 

0.15 3554.2 3651.3 2.73 3533 0.6 3595 3701.5 2.96 3645.7 1.41 

0.2 3539.3 3631.3 2.6 3550.5 0.32 3497.3 3643.3 4.17 3614.7 3.36 

 

4  

0.1 3763.1 3842.5 2.11 3823.4 1.6 3730.8 3929.7 5.33 3835.7 2.81 

0.15 3653.1 3787.3 3.67 3741.5 2.42 3695.7 3943.5 6.7 3794.9 2.68 

0.2 3639 3808 4.64 3689.8 1.4 3717.5 3971.4 6.83 3808.9 2.46 

 

 

0.1 4986.7 5287.3 6.03 5033.6 0.94 5139.3 5611.6 9.19 5272.4 2.59 

0.15 5036.8 5355.5 6.33 5103.2 1.32 5100 5620.3 10.2 5329.8 4.51 

0.2 5056.7 5406.1 6.91 5115.9 1.17 5050 5593 10.8 5348.4 5.91 

 

Table 2: Relative differences of predictions made for the first five natural frequencies of a clamped 

sandwich plate with functionally graded face sheets (alumina-aluminium/aluminum/aluminium-steel 

sandwich plate), with respect to the three-dimensional theory of elasticity (g=1). 

 

While results of Table 2 are extracted for h1/b=h3/b=0.075, 0.1, results of Table 3 are computed 

for h1/b=h3/b=0.05. Results of Tables 2 and 3 reveal that while our two suggestions for the shear 

correction factor may lead to relatively accurate results, results of the analytical shear correction 

are generally more accurate, especially for the higher modes. The mean relative differences with 

/ch b

5
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respect to results of the 3D elasticity that are summarized in Table 4 confirm this conclusion. 

Furthermore, for thinner plates and lower vibration modes, usage of the correction factor does not 

seem to be a necessity if the core is fabricated from a slightly softer material. Because in such 

cases, through-thickness distribution of the transverse shear stress resembles a rectangular (uni-

form) distribution rather than a parabolic or a skewed parabolic one. However, if severe differ-

ences exist between elastic moduli of the layers, the unity correction factor cannot be employed.   

  

Natural 

frequency 

(Hz) 

/ch b
 

Simply Supported Free 

3D 

(ABAQUS) 

Present 

κ=1 

Difference 

(%) 

Present, 

analytical 

Difference 

(%) 

3D 

(ABAQUS) 

Present 

κ=1 

Difference 

(%) 

Present, 

analytical 

Difference 

(%) 

1  

0.1 324.22 324.65 0.13 323.76 0.14 571 572.48 0.26 570.65 0.06 

0.15 387.37 387.4 0.01 386.28 0.28 673.16 674.23 0.16 672.05 0.17 

0.2 443.5 443.05 0.1 441.72 0.4 760.83 761.47 0.08 758.86 0.26 

2  

0.1 1556.4 1570.2 0.89 1550.9 0.35 1899.1 1915.9 0.88 1895.8 0.18 

0.15 1737 1746.2 0.53 1725.9 0.64 1974.8 1989.3 0.73 1984 0.47 

0.2 1873.8 1879.4 0.3 1859.1 0.79 1952.5 1972.8 1.04 1970.5 0.92 

3  

0.1 2048.3 2059.1 0.53 2058.1 0.48 2082.3 2095.4 0.63 2090.4 0.39 

0.15 1997.6 2013.3 0.78 2012.3 0.74 2159.8 2175.4 0.72 2155 0.22 

0.2 1958.5 1980 1.1 1978.9 1.05 2291.3 2304.3 0.57 2279.9 0.5 

4  

0.1 3058.3 3111.2 1.73 3047.0 0.37 3467.4 3530.1 1.81 3460.5 0.2 

0.15 3273 3316.8 1.34 3255.5 0.53 3671.9 3727.8 1.52 3661.7 0.28 

0.2 3421.8 3462.9 1.2 3405.1 0.49 3786 3843.5 1.52 3780.7 0.14 

5  

0.1 4607.8 4736.6 2.79 4605.2 0.06 4948.8 5088.6 2.82 4976.6 0.56 

0.15 4804.8 4931.6 2.64 4811.9 0.15 4885.9 5102.5 4.43 5048.8 3.33 

0.2 4697.1 5042.1 7.34 4956.0 5.51 4699.4 5042.2 7.29 5009.7 6.6 

 

Table 3: Relative differences of predictions made for the first five natural frequencies of 

alumina-aluminium/aluminum/aluminium-steel sandwich plates with simply supported or free edges, 

with respect to the three-dimensional theory of elasticity (g=1, h1/b=h2/b=0.05). 

  
Edge condition Present κ=1 Present, analytical 

Clamped (h1/b=h2/b=0.075) 3.43 1 

Clamped (h1/b=h2/b=0.1) 5.27 1.83 

Simply supported 1.43 0.8 

Free 1.63 0.95 
 

Table 4: Relative differences of the results of the zigzag theory for different shear correction factors of a sandwich 

plate having functionally graded face sheets, with respect to the three-dimensional theory of elasticity. 
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Some of the vibration modes are related to the in-plane deformations. Therefore, plotting the 

vibration modes may help in discussion of the nature of the resulting enhancements. Lateral de-

flections of the plate in the first five vibration modes are shown in Fig. 4 for the mid-plane of the 

clamped sandwich plates with (h1/b=h2/b=0.075 and h2/b=0.1). Moreover, 3D plots of the in-

plane displacement of the plate are plotted in Fig. 5 for the same vibration shape modes. Com-

paring Fig. 4 and 5 reveals that the fourth mode is an in-plane vibration mode. The remaining 

four modes are transverse ones. The fourth mode is the first in-plane vibration mode. While the 

natural frequencies of the transverse displacement increase with the thickness of the plate, the 

first natural frequency of the in-plane displacements has decreased by increasing the thickness of 

the sandwich plate.  

 

 
 

Figure 4: Lateral deflections of the clamped sandwich plate with 

functionally graded face sheets, in the first five vibration modes. 

 
Similarly, the vibration modes are studied for sandwich plates with functionally graded face 

sheets and simply supported or free edge conditions. The modal transverse and in-plane displace-

ments of the sandwich plate are plotted in Fig. 6 and 7 for the simply supported edge condition 

(h1/b=h2/b=0.05 and h2/b=0.1) and in Figs. 8 and 9 for the plate with a free edge 

(h1/b=h2/b=0.05 and h2/b=0.2). According to Figs. 6 and 7, the third mode is associated with 

the in-plane displacements and the remaining modes are associated with the lateral deflections. 

As before, the natural frequencies related to resonances associated with the lateral deflections 

increase with thickness of the plate whereas those associated with the in-plane displacements de-

crease by increasing the thickness of the sandwich plate. For the sandwich plate with a free edge, 

according to Figs. 8 and 9, the second and fifth vibration modes are associated with the in-plane 

modal displacements and the remaining modes are associated with the lateral deflections of the 

plate.     
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Figure 5: In-plane displacements of the clamped sandwich plate with functionally 

graded face sheets in the first five vibration modes, respectively. 
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Figure 6: Lateral deflections of the simply supported sandwich plate with functionally 

graded face sheets, in the first five vibration modes. 
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Figure 7: In-plane displacements of the simply supported sandwich plate with functionally 

graded face sheets in the first five vibration modes, respectively. 
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Figure 8: Lateral deflections of the sandwich plate with functionally graded 

face sheets and a free edge, in the first five vibration modes. 
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Figure 9: In-plane displacements of the sandwich plate with functionally graded 

face sheets and a free edge, in the first five vibration modes, respectively. 

 

7 CONCLUSIONS 

Two suggestions are given in the present paper for shear correction factors that are especially suita-

ble for the more general case of a sandwich plate with functionally graded layers, subjected to nor-

mal and shear tractions. The first suggestion that is suitable for lower vibration modes of thin 

plates with a slightly softer core is using a unity correction factor. Since in these cases, the resulting 

transverse distribution of the shear stress may resemble a semi-uniform or trapezoidal one in these 

cases. The more reliable shear correction factor is an analytical and layerwise one that have been 
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derived based on the equivalence of the elasticity-based and the constitutive-equations-based strain 

energies of the transverse shear stresses. The available shear correction factors have mainly been 

proposed for rectangular plates with zero shear tractions and isotropic homogenous materials. In 

derivation of these shear factors, it was assumed that local rotations of the layers are identical; an 

assumption that does not hold for the sandwich plates wherein direction of rotation of the core may 

even be opposite those of the face sheets. Although the proposed analytical shear correction factors 

are very general, they are evaluated for the modal analysis wherein effects of the shear correction 

are more remarkable than those of the stress analyses. It is the first time that concept of the local 

shear correction factor is introduced. To present more accurate results, the Mori-Tanaka microme-

chanical-based material properties model is used instead of the traditional rule of mixtures. The 

governing equations are solved using the analytical Taylor transform technique. Detailed discussion 

of the comparative example presented in the results section reveals that significant enhancements 

may occur through using the proposed analytical shear correction factors.   
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