
1807 
 

Abstract 

The components of flexible rotors are subjected to un-
certainties. The main sources of uncertainties include 
the variation of mechanical properties. This contribu-
tion aims at analyzing the dynamics of flexible rotors 
under uncertain parameters modeled as fuzzy and fuzzy 
random variables. The uncertainty analysis encom-
passes the modeling of uncertain parameters and the 
numerical simulation of the corresponding flexible rotor 
model by using an approach based on fuzzy dynamic 
analysis. The numerical simulation is accomplished by 
mapping the fuzzy parameters of the deterministic flex-
ible rotor model.  Thereby, the flexible rotor is modeled 
by using both the Fuzzy Finite Element Method and 
the Fuzzy Stochastic Finite Element Method. Numeri-
cal simulations illustrate the methodology conveyed in 
terms of orbits and frequency response functions sub-
ject to uncertain parameters. 
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1 INTRODUCTION 

Nowadays, the industrial applications require mechanical systems working with optimal performance 
subject to specific operational conditions, which demands: high reliability, robustness against envi-
ronmental conditions and low operating requirements. Consequently, it is necessary to develop reliable 
numerical models that take into account uncertain parameters, and allow the prediction of the dy-
namic behavior of the system under realistic conditions. 
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 The components of flexible rotors are realistically subjected to uncertainties. The main sources of 
uncertainties include the variation of mechanical properties, such as damping, stiffness, and geomet-
rical imperfections (Lalanne and Ferraris, 1998). The dynamic behavior of rotors is then affected by 
the uncertain parameters of the system. Consequently, the quantification of parametric uncertainties 
is necessary to predict how the dynamic response varies, by means of numerical models of industrial 
applications and research testbeds (Chowdhury and Adhikari, 2012). Ritto et al. (2011) considered 
parametric uncertainties to develop a methodology to optimize the performance of the flexible rotor 
and, so, they demonstrated that parametric uncertainties in the dynamic model represent a complex 
problem of engineering design. As mentioned above, the components of flexible rotors that are typi-
cally subjected to uncertainty are the stiffness of the shaft (Young's Modulus), bearings (stiffness and 
damping coefficients) together with the dimensional tolerances of shafts and disks. Therefore, uncer-
tain parameters should be taken into account in the numerical model in order to obtain reliable 
predictions in the computational simulations. 
 Uncertainty analysis of flexible rotors has been studied by applying stochastic approaches based 
on the Stochastic Finite Elements Method (Ghanem and Spanos, 1991). Didier et al. (2012) quantified 
the uncertainty effects in the response of flexible rotors based on the Polynomial Chaos Theory. 
Koroishi et al. (2012) represented the uncertainties in the rotor parameters by using Gaussian homo-
geneous stochastic fields discretized by Karhunen-Loève expansion; the dynamic response of the sys-
tem with uncertainties was characterized through Latin Hypercube Sampling and Monte Carlo Sim-
ulation. 
 The fuzzy theory permits to model the uncertainty as an alternative to the stochastic methods. 
By means of fuzzy theory it is possible to describe incomplete and inaccurate information. The fuzzy 
sets theory was initially formulated by Zadeh (1965) to characterize the vague aspect of the infor-
mation. Thereafter, Zadeh developed the theory of possibility based on fuzzy sets that can be com-
pared to the theory of possibilities to deal with the uncertainty of information (Zadeh, 1978). The 
theory of fuzzy sets and the theory of possibilities are connected, so that it is possible to get along 
with the uncertainty and imprecision of the information sets by applying the fuzzy sets theory. Then, 
the uncertainties are modeled by means of fuzzy sets theory for the cases in which the stochastic 
process that describes the random variables is unknown. In this context, Moens and Hanss (2011) 
presented a literature review of the non-probabilistic approaches for the analysis of parametric uncer-
tainty; they applied these methods to analyze structures modeled by the finite element method with 
uncertain parameters. The two principal approaches presented in this contribution to model the un-
certainties are the interval analysis and the fuzzy approach. These two procedures require solving 
interval problems to compute the uncertain structural response. Several research works in this area 
attempt to implement alternative methods to simulate mechanical systems with fuzzy uncertain pa-
rameters (Lara-Molina et al., 2014b; Waltz and Hanss, 2013; Farkas et al., 2008; Klimke, 2006). 
Specifically, Lara-Molina et al. (2014a) represented the uncertainties in the rotor parameters by using 
fuzzy variables and performing a fuzzy dynamic analysis. 
 In agreement with the fuzzy approach, the present work proposes the application of a straightfor-
ward method to simulate the dynamic response of flexible rotors with uncertain parameters by per-
forming a fuzzy dynamic analysis. For this purpose, the fuzzy uncertain parameters are mapped onto 
the model with the aid of α-level optimization Möller and Beer (2004).  
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 The remainder of this paper has five sections. In section 2, the flexible rotor model based on the 
finite element method is shown. Section 3 presents the methodology to analyze the response of struc-
tures with fuzzy parameters and fuzzy random parameters by using the Fuzzy Finite Element Method 
and Fuzzy Stochastic Finite Element Method, respectively. Section 4 presents the numerical simula-
tions of flexible rotor model in which the time and frequency responses were characterized by fuzzy 
and fuzzy random functions. Finally, the conclusions and the proposals of future work are outlined. 
 
2 MODELING OF FLEXIBLE ROTORS 

2.1 Theoretical background on the deterministic finite element modeling of a rotor system 

The dynamic response of the considered mechanical system can be represented by using principles of 
variational mechanics, namely the Hamilton`s principle. For this aim, the strain energy of the shaft 
and the kinetic energies of the shaft and discs are calculated. An extension of Hamilton`s principle 
makes possible to include the effect of energy dissipation. The parameters of the bearings are included 
in the model by using the principle of the virtual work. For computational purposes, the finite element 
method is used to discretize the structure so that the energies calculated are concentrated at the nodal 
points. Shape functions are used to connect the nodal points (Morais et al., 2010). In this model, 4 
degrees of freedom per node are taken into account, namely two displacements (u  and w ) and the 
cross-section rotations about axes x  and z  (denoted by w y     and u y    , respectively). 
Fig. 1 shows the finite element used to model the rotor. 

 

 
Figure 1: Illustration of the shaft finite element (Simões et al., 2007). 

 
According to Lalanne and Ferraris (1998) the model depicted in Fig. 1 can be represented mathemat-
ically by the following set of differential equations: 
 
 ( ) ( ) ( ) ( ) ( )St t t t    Mq C G q Kq F    (1) 
 
where ( ) N N

S D R   M M M  and ( ) N N
S B R   K K K  are, respectively, the mass and stiff-

ness matrices, ( ) N N
B P R   C C C  is the damping matrix formed by the contributions of the 

viscous damping matrix, BC , and the inherent proportional damping matrix, P M K  C M K  and 
( ) N N

S D R   G G G  designates the gyroscopic matrix formed by the gyroscopic contributions of 
the rigid discs and the shaft. ( ) Nt Rq  and ( ) Nt RF  are, respectively, the vectors of the amplitudes 
of the harmonic generalized displacements and external loads, S  is the angular speed of the shaft, 
and M  and K  represent, respectively, the proportional coefficients of mass and stiffness. 

Latin American Journal of Solids and Structures 12 (2015) 1807-1823 
 



1810            F.A. Lara-Molina et al. / Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters 

 Lima et al. (2010) used the receptance or Frequency Response Function (FRF) matrix to analyze 
the deterministic system, whose components are complex functions of the excitation frequency that 
establish linear relations between the amplitudes of the harmonic responses and the amplitudes of the 
excitation forces and moments, as expressed by Eq. (2): 
 

 
11 2ˆ( , ) ( , ) ( ) ( ) ( )S S si     

            Q H F M C G K F   (2) 
 
where ( , ) N

S R  Q  and ( ) NR F  are, respectively, the vectors of the amplitudes of the harmonic 
generalized displacements and external loads. 
 
2.2 Parameterization of the deterministic FE model 

At this point it is important to consider that, in order to study the system behavior when uncertainties 
are to be taken into account, the uncertain responses have to be computed with respect to a set of 
uncertain geometrical and/or physical parameters associated with the flexible rotor. In general, such 
uncertain variables intervene in a rather complicated manner in the finite element matrices. Hence, 
for evaluating the variability of the responses associated with these uncertainties, it becomes inter-
esting to perform a parameterization of the FE model, which is understood as a means of making the 
design parameters factored-out of the elementary matrices. At the expense of lengthy algebraic ma-
nipulations, this procedure makes it possible to introduce not only the uncertainties into the flexible 
rotor model, but also to perform a sensitivity analysis in a straightforward way, leading to significant 
cost savings in iterative robust optimization and/or model updating processes. After manipulations, 
those parameters of interest can be factored-out of the elementary matrices as indicated below: 
 

 Shaft    = 

( ) ( )

( ) ( )

( ) ( )

e e
S S S SS

e e
S S S S

e e
S S S S

A

E I

I





   

M M

K K

G G

 (3) 

 Bearing   = 
( ) ( ) ( )

( ) ( ) ( )

e e e
B xx B zz B

e e e
B xx B zz B

k k

d d

    

K K K

C C C
 (4) 

 
where S , SA , SI  and SE  represent, respectively, the mass density, the cross-section area, the inertia 
and the Young’s modulus of the shaft. xxd , zzd  and xxk , zzk  designate, respectively, the damping and 
stiffness coefficients of the bearings. It is worth mentioning that the matrices appearing in the right 
hand side of Eqs. (3) and (4) are those from which the design parameters of interest have been 
factored-out. 
 
3 FUZZY AND FUZZY STOCHASTIC ANALYSIS 

In several cases, some parameters of the systems cannot be accurately estimated due to small varia-
tions around its nominal value. In these cases, these parameters can be modeled by means of fuzzy 
variables. As mentioned above, the fuzzy set theory was initially formulated by Zadeh (1965) to 
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represent vague or ambiguous information. Thereby, it is possible to represent inaccurate or uncertain 
parameters by using fuzzy variables, especially when the stochastic process which models the uncer-
tain parameter cannot be determined by a simple observation. 
 In this section a brief introduction to two different numerical methods is presented, with the 
purpose of quantifying the uncertain structural response. First, the fuzzy analysis computes the un-
certain structural response when the uncertain parameters are modeled as fuzzy variables that repre-
sent the uncertain parameters. The methodology to analyze the fuzzy uncertainties is based on  
level optimization, previously presented by Möller et al. (2000); thus, an optimization problem is 
solved to obtain the fuzzy output of the system by means of   level optimization. 
 In the other hand, the fuzzy stochastic analysis computes the uncertain structural response of the 
system when the parameters are modeled such as fuzzy-random variables (Möller et al., 2009). These 
types of variables quantify uncertainties produced by variable and random sources. The fuzzy sto-
chastic analysis algorithm encompasses a fuzzy analysis and a stochastic analysis to cope with the 
fuzziness and randomness characteristics of the uncertainties. It is worth mentioning that both afore-
mentioned analyses are relying on the deterministic model of the system. 
 
3.1 Fuzzy Variables 

Let X  be an universal set of objects whose generic elements are denoted by x . The subset A  (where, 
A  X ) is defined by the classical membership function  : 0,1A X  (see Fig. 2(a)). Furthermore, 
a fuzzy set A  is defined by means of the membership function : 0,1A    X , where 0,1    is a 
continuous interval. The membership function indicates the degree of compatibility of the element x  
to A . The closer the value of ( )A x  to “1”, the more x  belongs to A . 
 

       
 (a) Fuzzy set (b)   levels 

Figure 2: Fuzzy set and   level representation. 
 
For numerical purposes, Möller and Beer (2004) represented the fuzzy variables as intervals weighted 
by a membership function using the   level representation. Thus, the fuzzy set is completely defined 
by: 
 
   , ( ) ,where 0 1A AA x x x    X  (5) 
 
For computational purposes, the fuzzy set A  can be represented by means of subsets that are de-
nominated   levels. These subsets, which correspond to real and continuous intervals, are defined 
by 

K
A  (see Fig. 2(b)), thus: 
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  , ( )
K A KA x x    X  (6) 

 
 The   level subsets of A  have the property: 
 
 , (0,1] whit

K ki i K iA A          (7) 

 
 If the fuzzy set is convex (in the unidimensional case), each   level subset 

K
A  corresponds to 

the interval ,kl krx x 
    where: 

 

 
min , ( )

max , ( )
K

K

l A K

r A K

x x x

x x x





 

 

    
    

X

X
 (8) 

 
3.2 Fuzzy Random Variables 

The fuzzy random variables were defined previously by (Kwakernaak, 1978; Puri and Ralescu, 1986). 
According to the probability theory, the space of random elementary events   is presented. A fuzzy 
realization of the form  x x   X   is assigned to each elementary event    . Accordingly, a 
fuzzy random variable X  is the fuzzy result of the uncertain mapping 
 
 : ( )X   F X

  (9) 
 
where ( )F X  is the set of all fuzzy numbers on n . Each real random variable X  on X  is contained 
in X . 
 Based on this definition, a fuzzy random variable X  can be described by a fuzzy cumulative 
distribution function  F x . Considering an original value jx , the fuzzy probability distribution 
function  F jx  can be represented as the set of probability distribution functions with membership 
value   jF x   (see Fig. 3).  F jx  is associated to the fuzzy bunch parameter s  in order to 
parameterize the fuzziness of  F x  (Möller and Beer 2005), thus: 
 
    ,F x F s x

   (10) 

 
 Thereby, for numerical computation, the  discretization is properly used. 
 
       min, max,, ( ), ( ( )) ( ) ( ); ( ) ; ( ) (0,1]F s x F x F x F x F x F x F x                (11) 

with 

min,

max,

( ) min ( , )

( ) max ( , )

F x F s x s S

F x F s x s S





   
   
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Figure 3:   discretization of  ,F s x , adapted from (Möller and Beer, 2004). 

 
For example, the fuzzy bunch parameters 1s  and 2s  can be used to represent the fuzzy mean and 
fuzzy standard deviation of a fuzzy normal probability distribution as in eq. (12) 
 

    1

2

1
, 1

2 2

x s
F s x erf

s

           







                                         (12) 

 
3.3 Dynamic Models with Fuzzy Parameters 

In the context of this work, the model describes the dynamic behavior of the rotor by means of a set 
of differential equations. The relationship between the inputs x  and outputs z  of an specific dynamic 
model M  is characterized by f , which represents the set of differential equations of the model in the 
Eq. (13). 
  

: ( ) ( )M z f x   (13) 
 

 Therefore, the function f  maps the inputs x  onto the outputs ( )z  , thus ( )x z  , where   is 
the independent variable of the dynamic response that may represent time, frequency or spacial 
coordinates. 
 When considering the inputs of the model as fuzzy variables x  or fuzzy functions  x  , the 
dynamic response of the system corresponds to the resulting fuzzy functions  z  . These fuzzy func-
tions result of the mapping, thus  x z   . 
 
3.4 Fuzzy Dynamic Analysis 

The fuzzy dynamic analysis is an appropriate method to map a fuzzy input vector x  onto the fuzzy 
output  z   of a numerical model using the deterministic model given by Eq. (13). In structural 
analysis, the combination of uncertainties modeled as fuzzy variables with the deterministic model 
based on Finite Element Method is denominated Fuzzy Finite Element Method. The fuzzy dynamic 
analysis is composed of two stages shown in Fig. 4. 
 In the first stage, for computational purposes, the input vector that corresponds to the fuzzy 
parameter is discretized by means of   level representation, presented in Eq. (6) and Fig. 2(b). 
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Thus each element of the fuzzy parameters vector   1,..., nx x x    is considered as an interval 
,

k kk
i i l i rX x x  

     , where (0,1]k  . Consequently, the sub-space kX  is defined so that 
k

X 

 1 , ,
k knX X  , where 

k

nX   . 
 The second stage is related to solving an optimization problem. This optimization problem consists 
in finding the maximum and minimum value of the output, at each evaluated value  , for the 
mapping model : ( )M z f x , thus: 
  
 max ( ) min ( )

K K
K K

r lx X x X
z f x z f x   

    (14) 

 

kr
z  and 

kl
z  correspond to the upper and lower bounds of the interval ,

k k kr lz z z  
      in the    

level k . The set of discretized intervals ,
k kr lz z 

 
    for (0,1]k   composes the whole fuzzy resulting 

variable z . 
 

 
Figure 4:   Level optimization. 

 
The fuzzy analysis of a transient time-domain system demands the solution of a large number of 
optimization problems regarding all   level of interest for each considered time step. Each upper 
and lower bounds of the system analysis at a given time instant is obtained by using the Differential 
Evolution optimization algorithm (Price et al., 2005). The output value of the transient analysis at 
the evaluated time-step constitutes the objective function. The inputs to this function are the uncer-
tain parameters described previously as fuzzy or fuzzy random variables. 
 
3.5 Fuzzy Stochastic Analysis 

In structural analysis, the combination of uncertainties modeled by using fuzzy randomness with the 
deterministic model based on Finite Element Method is denominated Fuzzy Stochastic Finite Element 
Method. 
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 Fuzzy stochastic analysis is a straightforward computational method for processing uncertain data 
modeled by fuzzy random functions or variables. The aim of fuzzy stochastic analysis is to map fuzzy 
random parameters X  onto the structural fuzzy random response  Z  , thereby, the following prob-
lem is to be solved for a crisp mapping model 
 
  X Z    (15) 

 
 The diagram of Fig. 5 shows the fuzzy stochastic analysis algorithm. The basic concepts and 
definitions of the fuzzy stochastic analysis are presented with more details by Möller and Beer (2004).  

 

 
Figure 5: Fuzzy stochastic analysis, adapted from (Möller and Beer 2004). 

 
The uncertainty model determines the type of the uncertain parameters. In this method an uncertain 
parameter can be modeled as a real random variable, fuzzy variable  or fuzzy random variable and/or 
functions; e.g. a normally distributed fuzzy random variable with fuzzy mean and fuzzy standard 
deviation. Fuzzy variables and/or real random variables are special cases of fuzzy random variables. 
Moreover, the Karhunen Loève expansion can be used to represent a real random field.  
 The fuzzy random parameters are modeled as fuzzy random variables, which represent a general-
ized model i.e., high order uncertainty representation. The fuzziness of the fuzzy random variables X  
is described by means of fuzzy bunch parameters. Thereby, the fuzzy bunch parameters s  of Eq. (10) 
are discretized by using the   level representation; thus, the   level sets of Eq. (6) are obtained 
for the corresponding intervals of each determined   level. 
 The fuzzy stochastic analysis algorithm encompasses a fuzzy analysis and a stochastic analysis to 
deal effectively with the fuzziness and randomness characteristics of the uncertainties (see Fig. 5). 
Both analyses are based on the deterministic model. 
 The purpose of fuzzy analysis is to map fuzzy input variables and fuzzy bunch parameters of the 
fuzzy random variables onto fuzzy random response; thus, the resulting fuzzy bunch parameters of 
the fuzzy random response are obtained. The   level optimization as stated by Möller et al. (2000) 
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is applied in the fuzzy analysis. An extended formulation of the fuzzy analysis based on the 𝛼𝛼-opti-
mization was previously presented in Sec. 3.4. 
 In the stochastic analysis each element of fuzzy set s  determines an original real random variable 
of every fuzzy random variable and an original deterministic value of every fuzzy variable. These 
original variables are mapped onto the original function ( )Z   of fuzzy random result values  Z   
by a stochastic analysis. The mapping model is to be established by a stochastic analysis and it is 
based on the Finite Element approach, thus leading to the Stochastic Finite Element Method. Ac-
cordingly, the Monte Carlo Simulation is an appropriated method to perform the stochastic analysis. 
The result of a Monte Carlo sampling is an original function ( )Z   of the fuzzy random response 

 Z   at the membership   level    kZ   . The optimization problem of the 𝛼𝛼-level optimi-
zation is solved so that the assigned elements ,

k k kr lz z z  
      at the specific membership level k  

(e.g. fuzzy mean or fuzzy variance) of the fuzzy random results are found. 

 
4 NUMERICAL SIMULATIONS 

The proposed methodology was numerically applied to analyze the dynamic behavior of a rotor system 
composed of a horizontal flexible steel shaft, modeled by 20 Euler-Bernoulli's beam elements, two 
rigid steel discs ( 1D  and 2D ) and three asymmetric bearings (see Fig. 6). 

 

 

Figure 6: Flexible rotor (Cavalini Jr et al., 2011). 

 
The physic and geometric properties of the shaft, discs and bearings are given in Table 1. The matrix 
equation of motion of the studied rotor was solved by using a MATLAB/SIMULINK® code. In all 
analyses performed in this contribution, the model considered only the first six vibration modes of 
the rotor, measured along the x  and z  directions at the positions of the bearings. 
 The parameters used in the Differential Evolution Algorithm to solve the optimization problem in 
the fuzzy analysis are described as follows: population size is 10 per uncertain variable, 100 genera-
tions, crossover probability rate is 0.8, perturbation rate is 0.8 and the strategy for the mutation 
mechanism is DE/rand/1/bin. These parameters were derived from previous contributions (Price et 
al., 2005). The two objective functions for the optimization problem are the following: the norm 
ˆ( , )S H  and the generalized displacements ( )tq  to compute both the FRF and the orbits; the 

corresponding expressions are given by Eq. (2) and (1). The uncertain parameters were considered by 
means of fuzzy triangular numbers, which is the simplest representation to describe a fuzzy variable. 
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Elements Properties Values 

Shaft 

Length [m] 0.588 
Diameter [m] 0.010 

Young's Modulus [Pa] 2.0x1011 
Density [kg/m3] 7800 

1D  
Thickness [m] 0.005 
Diameter [m] 0.100 

Density [kg/m3] 7800 

2D  
Thickness [m] 0.010 
Diameter [m] 0.150 

Density [kg/m3] 7800 

1B , 2B , 3B  

xxk  [N/m] 49x103 

zzk  [N/m] 60x103 

xxd  [Ns/m] 5.0 

zzd  [Ns/m] 7.0 

Proportional damping 

P M K  C M K  
M  1.0x10-1 

K
  1.0x10-5 

Table 1: Physic and geometric properties of the rotor elements. 
 
Two case studies are considered to analyze the uncertain dynamic behavior of the flexible rotor. In 
the first case, the uncertain parameters are modeled as fuzzy variables to perform the fuzzy modeling. 
In the second case, the uncertain parameters are modeled as fuzzy random variables, thus the fuzzy 
stochastic modeling is performed. 

 
4.1 Fuzzy Analysis 

In this contribution, the uncertainties are considered in the Young's Modulus SE  of the shaft and in 
the parameters (stiffness and damping) of the bearings ( 1B , 2B  and 3B ). The uncertain parameters 
are modeled by using fuzzy triangular numbers, thus:  1 / 100 / 1 / 1 / 100a a p p    where 
a  represents the nominal value of the parameter and p  stands for the maximum percentage of 
amplitude in 0  . To investigate the influence of uncertainties on the flexible rotor, three uncer-
tainty scenarios were considered. Table 2 presents the percentages of variation of the triangular fuzzy 
variables corresponding to the uncertainty scenarios that are taken into consideration in the numerical 
simulations. 
 

Scenarios 
 

Shaft Bearings  

SE   xxk  zzk  xxd  zzk  

(a) 15% ─ ─ ─ ─ 
(b) ─ 5% 5% 5% 5% 
(c) 15% 5% 5% 5% 5% 

Table 2: Uncertainty scenarios for fuzzy modeling. 
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The first scenario was dedicated to investigate the influence of uncertainties only in the shaft (Young's 
Modulus SE ). The second one took into account only uncertainties in the bearings. Finally, the third 
scenario has considered uncertainties both in the shaft and the bearings. In these three uncertain 
scenarios, the Frequency Response Functions (FRFs) along both the directions x  and z  and the 
orbits of rotor were analyzed. Fig. 7 shows the Frequency Response Function (FRF). The fuzzy 
structural response of the rotor was computed for three different values where 1.0  , 0.5  , 

0.0  . 
 The variation of the Young's Modulus SE  of the shaft produced a variation in the third natural 
frequency and also small changes in the amplitude of the first two natural frequencies. 
 For observing the system's behavior in the time domain, the orbit of the disc 1 is shown in Fig. 8. 
For the three uncertain scenarios, the rotor is operated at 600 rpm. The choice of this rotation speed 
is justified by considering that this rotation is well above the first two natural frequencies, so that it 
is guaranteed that the rotor will not operate in the proximity of a critical speed for any fuzzy model. 
Figure 8 shows that the uncertainties influence the amplitude of displacement; this influence can be 
observed in the small variation of the lower and upper envelopes of the orbits. 
 

  
Figure 7: FRFs, case (a). Figure 8: Envelope of the orbits, case (a). 

 
For the scenario (b), the uncertainties are introduced only in the parameters of the bearing, namely 
the stiffness and damping. The FRFs and orbits are shown, respectively, in Figs. 9 and 10. The FRFs 
(see Fig. 9) shows that the uncertainties of the bearings result in a small variation of the amplitude 
at the two natural frequencies. The main difference between the FRFs of scenario (a) and the FRFs 
of scenario (b) occurs in the natural frequency near 165 Hz. For the scenario (b) there is a very small 
variation of the third natural frequency. 
 Analyzing the orbit shown in Fig. 10, for the second scenario, and comparing with the orbit shown 
in Fig. 8, it is possible to see that the uncertainty applied in the first scenario results in a smaller 
change in the orbits (see again the orbits shown in Fig. 8). However, the uncertainties in the stiffness 
and damping coefficients of the bearing result in important variations on the displacement of the 
rotor. 
Latin American Journal of Solids and Structures 12 (2015) 1807-1823 
 



                F.A. Lara-Molina et al. / Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters          1819 

  
Figure 9: FRFs, case (b). Figure 10: Envelope of the orbits, case (b). 

 
Finally, the scenario (c) considers the uncertainties in the shaft (Young's Modulus) and bearings 
(stiffness and damping coefficients), simultaneously. Figs. 11 and 12 show, respectively, the FRFs and 
the orbits. The results presented by the scenario (c) permit to observe the combined influence of the 
uncertainty parameters on the dynamic behavior of the system. The result of this combination of 
uncertainty parameters leads to an important variation between the lower and upper curves of the 
envelope. 

 

  
Figure 11: FRFs, case (c). Figure 12: Envelope of the orbits, case (c). 

 
In terms of FRFs, the influence of the uncertain SE  is characterized by a variation at the third 
natural frequency shown in Fig. 11, while the uncertainties in the bearings influence the amplitudes 
at the first two natural frequencies. Analogously, in terms of the orbits, a similar influence is observed. 

Latin American Journal of Solids and Structures 12 (2015) 1807-1823 
 



1820            F.A. Lara-Molina et al. / Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters 

In this scenario, the uncertainties in the stiffness of the shaft and damping coefficients of the bearings 
produce a combined effect in the envelop of the orbit, as illustrated in Fig. 12. 
 
4.2 Fuzzy Stochastic Analysis 

The fuzzy stochastic analysis of sec. 3.5 allows evaluating uncertain parameters modeled as fuzzy 
variables, real random variables and fuzzy random variables. Nevertheless, in order to demonstrate 
the performance of this method the parameters of the bearings are modeled as fuzzy-random vari-
ables with a fuzzy mean. This analysis aims at determining the orbits of the flexible rotor when the 
stiffness and viscous damping of the bearings are modeled as fuzzy random variables. Thereby, the 
fuzzy stochastic analysis method of sec. 3.5 is applied. The fuzzy random variables are defined to be 
normally distributed with a fuzzy mean  1 / 100 / 1 / 1 / 100m m p p    where p  is the 
maximum percentage of the amplitude for the case in which 0   and m  holds for the nominal 
value of each parameter. Additionally, the uncertainty of the Young's Modulus of the shaft SE  is 
taken into account. Therefore, the stochastic model of the flexible rotor and specifically the stiffness 
of the shaft was modeled as a Gaussian random field by means of the Karhunen-Loève decomposition 
such as implemented by Koroishi et al. (2012). Therefore, two uncertain scenarios are analyzed as 
described in Table 3: in the first scenario, the influence of the bearings is analyzed; in the second 
uncertain scenario, the uncertainty introduced in the bearings and shaft is taken into account simul-
taneously. 
 

Scenarios Shaft Bearings 

 SE   xxk  zzk  xxd  zzd  

(a) ─ 5% 5% 5% 5% 
(b) 5% 5% 5% 5% 5% 

Table 3: Uncertainty scenarios for fuzzy stochastic modeling. 

 
The results presented by the scenario (a) in Fig. 13 shows how fuzzy random damping and stiffness 
of the bearings affect the orbit of the shaft. The results show the fuzzy mean evaluated for 0.0   
and 1.0  . Additionally, the envelope of the uncertain orbit is bounded by the outer and the inner 
curves. The results show the influence in the amplitude of the displacements taking into account 
uncertainties that consider fuzziness and randomness characteristics. Consequently, the fuzzy random 
uncertainties introduced in the coefficients of the bearings produce a large variation in the envelopes 
of the orbit with respect to fuzzy modeling in which the uncertainties were considered only as fuzzy 
variables. 
 The results of the scenario (b) (see Fig. 14) show the combined influence of the uncertain fuzzy 
random coefficients of the bearings and the uncertain stiffness of the shaft. The fuzzy mean has not 
significant changed as compared with the previous uncertainty scenario.  Nevertheless, the uncertain 
stiffness of the shaft produces a large variation in the inner curve of the envelope with respect to the 
previous uncertain scenario. As seen, this method allows evaluating simultaneously uncertain param-
eters of the rotor modeled as fuzzy random variables and Gaussian random fields. 
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Figure 13: Envelope of the orbits, case (a). Figure 14: Envelope of the orbits, case (b). 

 
5 CONCLUSIONS 

In this contribution the uncertainty analysis of a flexible rotor by using Fuzzy Finite Element Method 
and Fuzzy Stochastic Finite Element Method was proposed and implemented. The uncertainties in 
the parameters that characterize the rotor system are introduced directly through a parametric ap-
proach and modeled as fuzzy variables and fuzzy random variables. The orbits and frequency response 
functions of the flexible rotor with uncertain parameters are simulated by using fuzzy stochastic 
dynamic analysis method. The numerical results indicate the degree of influence of the fuzzy uncertain 
variables on the dynamic behavior of the rotor. The strategy used in this work demonstrated to be 
straightforward for design and analysis of rotating systems. The selection of the uncertain fuzzy 
variables (stiffness, modulus of elasticity) was based on a previous knowledge regarding their sensi-
tivities with respect to the frequency response functions. It is worth mentioning that these parameters 
are directly associated with the dynamic behavior of the rotor as represented by the orbits for the 
various uncertain scenarios considered. Additionally, the results show that the performance of the 
rotor, in terms of orbits and frequency response functions, are similar to the stochastic approach 
accomplished by Koroishi et al. (2012) in previous studies. 
 The uncertain parameters were properly described as fuzzy variables and fuzzy random variables. 
Fuzzy variables are a simple representation of uncertainties in which it is not necessary to know the 
probability distribution function of the stochastic variables. Fuzzy random variables permit to model 
high order uncertainties, which characterize fuzziness and randomness aspects of the uncertainty. 
However, the main disadvantage of the fuzzy analysis and fuzzy stochastic analysis is the necessity of 
solving the α-level optimization problem, which often demands high computational effort. 
 Further work will include an experimental verification aiming at evaluating the effect of variable 
parameters modeled as fuzzy variables on the dynamic behavior of rotating machines. 
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