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Abstract 

This study concerns the dynamic characteristics of a prestressed 

isotropic, rectangular plate continuously supported by an elastic 

foundation and carrying accelerating mass M.  Closed form solu-

tions of the governing fourth order partial differential equations 

with variable and singular coefficients are presented.  For the two-

dimensional plate problem, the solution techniques is based on the 

double Fourier Finite Sine  integral transformation, the expansion 

of the Dirac Delta function in series form, a modification of Stru-

ble’s asymptotic method and the use of Fresnel sine and Fresnel 

cosine integrals. Numerical analyses in plotted curves are present-

ed.   The analyses reveal interesting results on the effect of struc-

tural parameters such as foundation moduli, rotatory inertia co-

rrection factor and prestressing forces on the dynamic behaviour of 

isotropic rectangular plate under the actions of concentrated 

masses moving at variable velocity. In particular it is found that 

the critical velocity of the travelling load which brings about the 

occurrence of a resonance state increases as the values of these 

structural parameters increase. 

 

Keywords 

Pretress, Isotropic, rectangular plate, concentrated masses, reso-

nance, critical velocity. 
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1 INTRODUCTION 

The study of plate flexure under moving loads forms a very important structural element in En-

gineering design and construction.  It has also become the objective of various investigations in 

the field of applied Mathematics and Physics. In general, problems of this type are mathematical-

ly complex when the inertial effect of the moving load is taken into consideration [Fryba, L., 
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(1972), Milormir et al (1969), Sadiku et al, (1981), Gbadeyan and  Oni (1995) Kargarmovin and 

Younesian (2004), Shahin and Mbakisya (2010), Awodola and Oni (2013), Awodola and Oni 

(2011), Omolofe (2013)].   

In recent years, the speed and weight of commercial vehicles have been increased significantly. 

However, due to economical requirements, the bridge structures carrying these vehicles are fa 

bricated much lighter.  These structures are therefore subjected to severe vibrations and dynamic 

stresses which are more than the corresponding static stresses.  This has necessitated the quest 

for accurate evaluation of the vehicle-track interaction during the passage of the heavy subsys-

tems.  Nevertheless, it appears that most of the studies [Ismail (2011), Gbadeyan and Dada  

(2006), Wu et al (1987), Hsu (2009), Akin and Mofid (1989), Ali et al (2013), Shahed and Mo-

hammad (2012), Sang-Jin (2013)] in this field focus on numerical simulations.  Emphatically 

speaking, few studies concentrate on analytical developments.  When these are available, the iner-

tia effects of the heavy mass are neglected.  It is well known that in a dynamical system as this, 

analytical method is desirable as solutions so obtained often shed light on vital information about 

the vibrating system [Fryba, L., (1972), Omolofe (2013),Stanisic et al (1974), Stanisic (1968), 

Hossein et al (2013), Atteshamuddin (2013), Gbadeyan and Oni (1992)].  

Similarly, while much work are available in open literature on beam-type structure under mov-

ing masses, the vibration of plates under the actions of moving masses has so far received but 

scant attention.  The first major breakthrough in this field of research was the work of Stanisic et 

al [Stanisic (1968] who solved the problem of a simply supported non-Mindlin plate under a mul-

ti-masses moving system by making use of an approximation of the Dirac delta function.  Only 

the inertia terms that measures the effect of local acceleration in the direction of the deflection 

was considered.  The method of solution was based on the Fourier Sine transform technique.  The 

solutions so obtained were shown to converge very rapidly.  The work of Stanisic et al was taken 

up much later by Gbadeyan and Oni [Gbadeyan and Oni (1992)] who investigated the dynamic 

analysis of an elastic plate continuously supported by an elastic Pasternak foundation and trav-

ersed by an arbitrary number of concentrated masses.  All the components of the inertial terms 

were considered and the rectangular plate was taken to be simply supported.  The deflection of 

the plates was calculated for several values of  the foundation moduli and shown graphically as a 

function of time.  More recently, study on an exact series solution for the transverse vibrations of 

rectangular plates with elastic boundary supports was carried out by [Li et al (2009)].  In this 

study, an analytical method was developed for the vibration analysis of rectangular plates with 

elastically restrained edges.  Several numerical examples were presented to illustrate the excellent 

accuracy of their solution.  Worthy of note, also, is the work of [Shadnam et al (2001)] who inves-

tigated the dynamics of plates under the influence of relatively large masses, moving along an 

arbitrary trajectory on the plate surface.  As an example, the dynamic response of a rectangular 

plate, simply supported on all its edges, under a mass moving parallel to one of its sides and also 

travelling along circular trajectory is presented by means of operational calculus.  Analysis 

showed that the response of structures due to moving mass, which has often been neglected in the 

past, must be properly taken into account because it often differs significantly from the moving 

force model.  
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It is remarked at this juncture that in all the aforementioned papers, the speeds at which these 

masses travel have been idealized to be uniform whereas, for practical purposes, these are not so.  

Such practical problems as acceleration and braking of automobile on roadways and highways 

bridges, taking off and landing of aircrafts on runway and breaking and acceleration forces in the 

calculation of rails and railway bridges in which the motion is not uniform, but a function of time 

have intensified the need for the study of the behaviour of structures under the action of loads 

moving at varying velocities.  This class of problems was first tackled by [Lowan (1935)] who 

solved the problem of the transverse oscillations of beams under the actions of moving variable 

loads.  Much later, are the studies by [Kokhmanyuk and Filippov (1967)], [Huang and Thambi-

ratnam (2001)], [Oni (2004)] and [Oni and Omolofe (2011)].   

In our recent paper [Oni and Omolofe (2011)], effort was made to investigate the dynamic re-

sponse of prestressed Rayleigh beam resting on Elastic foundation and subjected to masses travel-

ling at varying velocities.  The objective of this paper is to extend this work to the dynamic be-

haviour of plate-type structures and as in the previous paper obtain analytical solutions. This 

paper therefore, investigates the transverse motions of rectangular plate resting on elastic founda-

tion and under the actions of concentrated masses moving at varying velocities. 
 

 

 

Figure 1: Schematic diagram of a rectangular plate on moving load. 

 
2   FORMULATION OF THE GOVERNING EQUATION 

The problem of the flexural motion of isotropic, structurally prestressed rectangular plate resting 

on an elastic foundation and carrying a mass M is investigated.  A rectangular plate of thickness 

h  and lateral dimensions xL  and yL (respectively in the x and y direction in the rectangular 

axis) under the actions of load ),,( tyxP of mass M traveling from point 0yy  on the plate 

along a straight line parallel to the x-axis with a non-uniform velocity as shown in fig1* is consid-

ered.  Neglecting damping and the effects of shear deformation, according to the classical two-

dimensional theory of flexural motions of isotropic elastic rectangular plate, the transverse dis-

placement  tyxU ,, , of the mid-surface of the rectangular plate exhibiting anisotropic prestress 

when the inertia effect of the accelerating mass on the transverse response of the rectangular plate 

is taken into consideration is governed by the fourth order partial differential equation given by 
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 


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3Eh
D  is the bending rigidity of the plate, E  is the young modulus,   is the pois-

son’s ratio  1 ,   is the mass of the plate per unit length, x is the position coordinate in x-

direction , y is the position coordinate in y-direction, t is the time and oR is the measure of rota-

tory inertia, Nx and Ny are respectively the prestressing forces in x and y directions respectively 

and where the 
*  is the convective acceleration operator defined as 
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Using equations (2) in equation (1), one obtains 
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(3) 

 

The rectangular plate under consideration is simply supported and such, the deflection and the 

moments at the edges 0x , xLx  , 0y  and yLy  vanish.  Thus, the boundary conditions 

are 
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and the initial conditions without any loss of generality are taken to be 
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where    is the dirac delta function and  
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where 0x  and 0y  are the initial positions in the x and y directions respectively, c is the initial 

velocity and a is the acceleration of the traveling load.  Equation (9) expresses a uniformly accel-

erated (a >0) or uniformly decelerated (a < 0) motion.  Time t is assumed to be limited to that 

interval of time within which the mass M is on the plate, that is  
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Equation (8) is the fourth order partial differential equation governing the flexural motion of the 

prestressed rectangular plate on Winkler foundation and under the actions of load moving at non-

uniform velocity. 

  
3   ANALYTICAL SOLUTION PROCEDURES 

The double Fourier finite sine integral transformation with respect to the spatial coordinates x 

and y discussed in [Gbadeyan and Oni (1995)] would be employed to transform the governing 

partial differential equation to a second order differential equation.  Subsequently, as in the pre-

vious paper [Oni and Omolofe (2011)], the asymptotic method of Struble’s will be used to simplify 

this equation.  The double Fourier finite sine integral transformation is defined by the following 

relations between the original functions  tyxU ,,  and its transform  tkjU ,, , that is,  
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Using (9) and (10), and taking into account the boundary conditions (4) the governing equation 

(8) is transformed to take the form 
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Equation (11) is now the fundamental equation of our problem when the non-Mindlin’s rectangu-

lar plate has simple supports at all its edges.  In what follows, two special cases of the equation 

(11) above are considered namely the moving force and the moving mass problems. 

 
a. The Moving Force Model 

To obtain the moving force model of our dynamical system when the isotropic rectangular plate 

has simple support at all its edges, *
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(13) 

This is an approximate model which assumes the inertia effect of the moving mass as negligible. 

It is straightforward to show that equation (13) after some simplifications and rearrangements 

yields 

 







 2

0

*2

2

1
sin),,(),,( atctx

L

j
PtkjUtkjU

x

JKJKFtt


  (14) 

 

 



B. Omolofe. S. T. Oni / Transverse Motions of Plates Resting on Elastic Foundation and Under Masses Moving at Varying Velocities    1303 

Latin American Journal of Solids and Structures 12 (2015) 1296-1318 

 

where 
 




































2

22

2

22

0

2

22

2

222

2

1
yx

y

y

x

xJK

JKF

L

k

L

j
R

K

L

kN

L

jN












   and   


















2

22

2

22

0

*

1

sin

yx

o

y

JK

L

k

L

j
R

L

yk
Mg

P




  
(15) 

        

Equation (14) when solved in conjunction with the initial conditions, one obtains an expression 

for  tkjU tt ,,  which on inversion yields 
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(16) 

which represents the transverse displacement response to concentrated forces moving at variable 

velocities of a simply-supported isotropic rectangular plate incorporating rotatory inertia correc-

tion factor.  

The functions  xS  and   xC  are the Fresnel Sine and Cosine functions respectively.  For 

real values of argument x , the values of the Fresnel integrals  xS  and  xC are real. 

 
b. The moving Mass Model 

If the mass of the moving load is commensurable with that of the structure, the inertia effect of 

the moving mass is not negligible.  Thus, 0*

0  and one is required to solve the entire equation 

(11) when no term of the coupled differential equation is neglected.  This is termed the moving 

mass problem.  Unlike in the case of the moving force, an exact analytical solution to this equa-

tion is not possible. Thus, one resorts to an approximate analytical technique due to Struble dis-

cussed in [29, 30]. By this technique, one seeks the modified frequency corresponding to the fre-

quency of the free system due to the presence of the effect of the mass of the load. To this end, 

equation (11) is rearranged to take the form 



1304    B. Omolofe. S. T. Oni / Transverse Motions of Plates Resting on Elastic Foundation and Under Masses Moving at Varying Velocities  

Latin American Journal of Solids and Structures 12 (2015) 1296-1318 

 

 

 

 

 
   

 
    

 
    

   

 
    

 
    




















































































































































































































































































































































2

0
0*

0

002

02222

222

111

2

02222

222

11

00

22
11

22
1

002

0

2

0

11

2

0

2

0

1

002

02222

222

111

2

02222

222

11

00

22
11

22
1

002

0

2

02

22

11

2

0

2

02

22

1

2

1

*

0

*

0

1

*

0

3

*

0

2

1

*

0

2

*

0

2

1
sinsin

),,(sinsin
2

1
cos

4
4

),,(
2

1
cos

4
2

),,(sinsin
4

2),,(
4

),,(sinsin
2

1
sin

2

1
sin4

),,(
2

1
sin

2

1
sin2

),,(sinsin
2

1
cos

4
4

),,(
2

1
cos

4
2

),,(sinsin
4

2),,(
4

2

),,(sinsin
2

1
sin

2

1
sin4

),,(
2

1
sin

2

1
sin2

),,(1

),,(
),,(1

),,(
),,(

),,(1

),,(
),,(

atctx
L

j

L

yk
gLL

tkpU
L

yq

L

yk
atctx

L

n

npjnpjL

npjjp

tkpUatctx
L

n

npjnpjL

npjjp
a

tkpU
L

yq

L

yk

pjL

jp
atkpU

pjL

jp
a

tkpU
L

yq

L

yk
atctx

L

p
atctx

L

j

tkpUatctx
L

p
atctx

L

j

tkpU
L

yq

L

yk
atctx

L

n

npjnpjL

npjjp

tkpUatctx
L

n

npjnpjL

npjjp

tkpU
L

yq

L

yk

pjL

jp
tkpU

pjL

jp
atc

tkpU
L

yq

L

yk
atctx

L

p
atctx

L

j

L

p

tkpUatctx
L

p
atctx

L

j

L

p
atc

tkjG

tkjU
tkjG

tkjG
tkjU

tkjG

tkjG
tkjU

xy

yx

t

yyxxn
kq

q
jp

p

xxn
jp

p

yyx
kq

q
jp

px
jp

p

tt

yyxx
kq

q
jp

p

tt

xx
jp

p

t

yyxxn
kq

q
jp

p

t

xxnn
jp

p

t

yyx
kq

q
jp

p

t

x
jp

p

yyxxx
kq

q
jp

p

xxx
jp

p

JKF
ttt

























 

(17) 

 

where  
 

yxxy L

yk
atctx

L

j
atctx

L

j

L

yk
tkjG 022

0

2

0
02

1 sin
2

12
cos12

2

12
cos1sin21),,(



































  

 

 
    


































 









2

0
02

22

2

1

2

022

2

1

2
2

1
cossin

4

16

2

1
cos

4

8
2),,( atctx

L

n

L

yk

njL

j
atctx

L

n

njL

j
atctkjG

xyxnxxn



 
 



B. Omolofe. S. T. Oni / Transverse Motions of Plates Resting on Elastic Foundation and Under Masses Moving at Varying Velocities    1305 

Latin American Journal of Solids and Structures 12 (2015) 1296-1318 

 

and 

 

 

 

  



















































































2

0
02

22

2

1

2

022

2

1

2

0
02

2

22

2

02

22

02

2

22

2

22
2

3

2

1
cossin

4

16

2

1
cos

4

8

2

12
cos1sin2

2

12
cos1sin),,(

atctx
L

n

L

yk

njL

j

atctx
L

n

njL

j
atctx

L

j

L

yk

L

j

atctx
L

j

L

j

L

yk

L

j

L

j
atctkjG

xyxn

xxnxyx

xxyxx







 (18) 

 

At this juncture, the homogeneous part of equation (17) is first considered and a modified fre-

quency corresponding to the frequency of the free system due to the presence of the moving mass 

is sought.  An equivalent free system operator defined by the modified frequency replaces equa-

tion (17).  To this effect, one considers a parameter 1*

1   for any arbitrary mass ratio *

0  de-

fined as 

 
*

0

*

0*

1
1 


  (19) 

 

from which it is evident that 
 

  2*

1

*

1

*

0  O  (20) 

Noting that 
 

   .............11
1

1 3

1

3*

0

2

1

2*

01

*

0

1

1

*

0

1

*

0





GGGG

G
, (21) 

 

whenever, 
 

 11

*

0  G ., (22) 

 

When 0*

1  , a case corresponding to the case when the inertia effect of the mass of the system 

is neglected is obtained, then the solution of (17) can be written in the form 
 

    
jkJKFtCtkjU   cos,, 2  (23) 

 

where 2C  and jk are constants. 

Since 1*

1  ,  Struble’s technique requires that the solution of the homogeneous part of equa-

tion (17) be written in an asymptotic form, namely 
 

     2*

11

*

1 ),,(,,cos),,(),,(  OtkjUtkjttkjAtkjU JKF   (24) 
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To obtain the modified frequency of our dynamical system, equation (24) and its first and second 

derivatives are substituted into the homogeneous part of equation (17).  While taking into ac-

count (20) and (21) and retaining terms to  *

1O  only. 

Thus after some simplifications and rearrangements, one obtains 
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(25) 

 
 

to  *

1O  only. 
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To obtain the variational equations, one equates the coefficients of   tkjtJKF ,,cos    and 

  tkjtJKF ,,sin    on both sides of equation (25).  To do this, the following trigonometric iden-

tities are taken into account 
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Neglecting terms that do not contribute to variational equations, equation (25) reduces to 
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(27) 

The variational equations, respectively, are 
 

   0,,2  tkjAJKF
  (28) 

 

and 
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which when  rearranged and solved yields 
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and 
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where 
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Therefore, when the mass effect of the particle is considered, the first approximation to the ho-

mogeneous system is given by 
 

    JKJKMJK tCtkjU   cos,, 0
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 (32) 

 

where 
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represents the modified natural frequency representing the frequency of the free system due to the 

presence of the mass of the particle.   

Next, one replaces (17) by the equivalent free system operator defined by the modified fre-

quency JKM , i.e 
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Clearly, equation (34) is analogous to equation (14).  Thus following arguments similar to the 

previous ones, the solution of the equation (34) is thus obtained as 
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which represents the transverse displacement response to concentrated masses moving at variable 

velocities of a simply-supported isotropic rectangular plate with rotatory inertia correction factor 

resting on Winkler type elastic foundation. 

 
6  COMMENTS ON CLOSED FORM SOLUTIONS 

In an undamped vibrating system such as this, the response amplitude of the structure may grow 

without bound. When this happens it is called resonance.  This is a crucial phenomenon in any 

engineering design particularly in bridge engineering. 

Equation (16) clearly shows that the Simply Supported elastic beam resting on elastic founda-

tion and traversed by moving force reaches a state of resonance whenever  
 

x

c
JKF

L

cj
  , c

x

c
JKF ta

L

cj
02




,
 (36) 

 

while equation (35) indicates that the same beam under the action of moving mass will experience 

resonance effect whenever 
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where cc and ct are respectively the critical velocity and critical time at which resonance occurs. 

From equation (33), it is known that 
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which implies 
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It is therefore evident, that for the same natural frequency, the critical velocity for the system 

consisting of a Simply Supported isotropic rectangular plate resting on an elastic foundation and 

traversed by concentrated forces moving with non-uniform velocities is greater than that of the 

moving mass problem.  Thus, for the same natural frequency of an isotropic rectangular plate, 

resonance is reached earlier in the moving mass system than in the moving force system. 
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7  RESULTS AND DISCUSSION 

To illustrate the foregoing theories and analysis the example in [27] is adopted and an isotropic 

plate of modulus of elasticity E = 
10101.3  N/m2, with dimensions Lx = 100m, Ly=10m, thick-

ness h=0.3m and the poisson ratio 35.0 is considered. Furthermore, the values of foundation 

moduli are varied between 0
3/ mN  and 4000000

3/ mN , the values of axial force Nx are varied 

between 0 N and N81002  . 

Figures 1 and 2 depict the transverse displacement response of a simply supported isotropic 

rectangular plate under the action of concentrated forces moving at variable velocity for various 

values of axial force Nx and Ny respectively.  These figures show that, for fixed values of subgrade 

moduli K=40000 and Rotatory inertia correction factor Ro=50, as the values of Nx or Ny increas-

es, the dynamic deflection of the isotropic rectangular plate decreases.  Similar results are ob-

tained when the simply supported plate is subjected to concentrated masses travelling at variable 

velocity as shown in figures 5 and 6.  For various travelling time t, the deflection profile of the 

plate under the action of moving forces for various values of subgrade moduli K and for fixed 

values of axial forces Nx=2000000, Ny=20000 and Rotatory inertia correction factor Ro=50 are 

shown in figure 3.  It is observed that higher values of subgrade moduli K reduce the deflection 

profile of the vibrating plate structure.  The same behaviour characterizes the deflection profile of 

the simply supported plate under the action of concentrated masses moving at variable velocity 

for various values of subgrade moduli K as shown in figure 7.  Also, figures 4 and 8 display the 

displacement responses of the simply supported isotropic rectangular plate respectively to concen-

trated forces and concentrated masses travelling with variable velocity for various values of rota-

tory inertia Ro and for fixed values of axial forces Nx=20000 00, Ny=20000 and subgrade moduli 

K=40000.  These figures clearly show 

  

 
Figure 1: Transverse displacement response of a simply supported isotropic rectangular plate under the actions 

of concentrated forces travelling at variable velocities for various values of axial force along x direction Nx and 

for fixed values of foundation constant K=40000, axial force along y Ny=20000 and rotatory inertia Ro=50. 
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Figure 2: Transverse displacement response of a simply supported isotropic rectangular plate under the actions 

of concentrated forces travelling at variable velocities for various values of axial force along y direction Ny and 

for fixed values of foundation constant K=40000, axial force along x Nx=2000000 and rotatory inertia Ro=50. 

 

 

 
Figure 3: Deflection profile of a simply supported isotropic rectangular plate under the actions of 

concentrated forces travelling at variable velocities for various values of foundation constant K 

and for fixed values of axial force Nx=2000000, Ny=20000 and rotatory inertia Ro=50. 
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Figure 4: Displacement response of a simply supported isotropic rectangular plate under the actions 

of concentrated forces travelling at variable velocities for various values of rotatory inertia Ro and 

for fixed values of foundation constant K =40000, axial force Nx=2000000 and Ny=20000. 

 

 

 

 
Figure 5: Transverse displacement response of a simply supported isotropic rectangular plate under 

the actions of concentrated masses travelling at variable velocities for various values of axial force Nx 

and for fixed values of foundation constant K =40000, Ny=20000 and rotatory inertia Ro=50 
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Figure 6: Transverse displacement response of a simply supported isotropic rectangular plate under the actions 

of concentrated masses travelling at variable velocities for various values of axial force Ny and for fixed 

values of foundation constant K =40000, Nx=2000000 and rotatory inertia Ro=50. 

 

 

 
Figure 7: Deflection profile of a simply supported isotropic rectangular plate under the actions 

of concentrated masses travelling at variable velocities for various values of foundation constant K 

and for fixed values of axial force Nx=2000000, Ny=20000 and rotatory inertia Ro=50. 
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Figure 8: Displacement response of a simply supported isotropic rectangular plate under the actions 

of concentrated masses travelling at variable velocities for various values of rotatory inertia Ro 

and for fixed values of foundation constant K =40000, axial force Nx=2000000 and Ny=20000. 

 

 

 

 
Figure 9: Response amplitudes of a simply supported isotropic rectangular plate under 

the actions of concentrated masses travelling at variable velocities for various values of the 

mass ratio 0 and for fixed values of of Nx=2000000, Ny=20000, K=40000 and Ro=50. 
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Figure 10: Comparison of the displacement response of moving force and moving 

mass cases of a simply supported isotropic rectangular plate for fixed values 

of Nx=2000000, Ny=20000, K=40000 and Ro=50. 

 
that as the values of rotatory inertia correction factor increases, the displacement response of the 

simply supported plate under the action of both concentrated forces and concentrated masses 

travelling at variable velocity decreases.  Also, for various travelling time t, the response ampli-

tude of the isotropic plate under the action of accelerating traveling masses for fixed values of 

subgrade moduli K=40000, axial forces Nx=2000000, Ny=20000 and Rotatory inertia correction 

factor Ro=50 are shown in figure 9.  It is observed that larger values of the mass ratio, 0 , in-

creases the response amplitude of the isotropic plated subjected to accelerating masses. 

  Finally, figure 10. depicts the comparison of the transverse displacement response of moving 

force and moving mass cases of a simply supported rectangular plate traversed by  a moving load 

travelling at variable velocity for fixed values of Nx=2000000, Ny=20000, K=40000 and Ro=50.  

Evidently, the response amplitude of the moving mass is higher than that of the moving force.  

This important result shows that, the moving force solution is not always an upper bound to the 

solution of the moving mass problem.  Hence the inertia of the moving load must always be taken 

into consideration for accurate and reliable assessment of the response to moving load of elastic 

structures. 

 
8   CONCLUSION 

The problem of the flexural motions of a prestressed isotropic rectangular plate resting on elastic 

foundation and traversed by concentrated masses traveling with variable velocity has been inves-

tigated.  Closed form solution of the governing fourth order partial differential equations with 

variable and singular coefficients of the plate-mass problems is presented.  For this two-

dimensional dynamical problem, the solution techniques is based on the double Fourier finite sine 
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integral transformation with respect to the spatial variables x and y, the expansion of the Dirac 

Delta function in series form, a modification of Struble’s asymptotic method and the use of Fres-

nel sine and Fresnel cosine integrals.  The solutions so obtained are analyzed and resonance con-

ditions for the various problems solved are established. Numerical calculations show that 

 

I. in the dynamical problem considered, resonance is reached earlier in a system traversed by 

moving mass than in that under the action of a moving force. 
 

II. as the axial force increases, the response amplitudes of  isotropic rectangular plate carrying 

concentrated loads moving at non-uniform velocities decrease. 
 

III. when the values of axial force and rotatory inertia are fixed, the displacements of isotropic 

rectangular plate resting on elastic foundation and traversed by masses traveling with variable 

velocities decrease as the value of foundation moduli K increases for all variants of the boundary 

conditions. 
 

IV. for fixed values axial force and foundation modulus K, the response amplitude for the moving 

mass problem is greater than that of the moving force problem for all illustrative end conditions 

considered. 
 

V. the moving force solution is not always an upper bound for the accurate solution of the mov-

ing mass problems in the dynamical system under consideration.  Hence, inertia of the moving 

load must always be considered when assessing the response to moving load of elastic structures 

as it affects the vibrating system significantly and finally, 
 

VI. for the same natural frequency, the critical velocity for moving mass problem is smaller than 

that of the moving force problem.  Hence, resonance is reached earlier in moving mass problem. 
 

VII. increased values of all the aformentioned structural parameters increases the dynamic stabil-

ity of the vibrating system thereby reducing the risk of resonance. 
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