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Masses Moving at Varying Velocities

Abstract

This study concerns the dynamic characteristics of a prestressed
isotropic, rectangular plate continuously supported by an elastic
foundation and carrying accelerating mass M. Closed form solu-
tions of the governing fourth order partial differential equations
with variable and singular coefficients are presented. For the two-
dimensional plate problem, the solution techniques is based on the
double Fourier Finite Sine integral transformation, the expansion
of the Dirac Delta function in series form, a modification of Stru-
ble’s asymptotic method and the use of Fresnel sine and Fresnel
cosine integrals. Numerical analyses in plotted curves are present-
ed. The analyses reveal interesting results on the effect of struc-
tural parameters such as foundation moduli, rotatory inertia co-
rrection factor and prestressing forces on the dynamic behaviour of
isotropic rectangular plate under the actions of concentrated
masses moving at variable velocity. In particular it is found that
the critical velocity of the travelling load which brings about the
occurrence of a resonance state increases as the values of these

structural parameters increase.
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The study of plate flexure under moving loads forms a very important structural element in En-
gineering design and construction. It has also become the objective of various investigations in
the field of applied Mathematics and Physics. In general, problems of this type are mathematical-

ly complex when the inertial effect of the moving load is taken into consideration [Fryba, L.,
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(1972), Milormir et al (1969), Sadiku et al, (1981), Gbadeyan and Oni (1995) Kargarmovin and
Younesian (2004), Shahin and Mbakisya (2010), Awodola and Oni (2013), Awodola and Oni
(2011), Omolofe (2013)].

In recent years, the speed and weight of commercial vehicles have been increased significantly.
However, due to economical requirements, the bridge structures carrying these vehicles are fa
bricated much lighter. These structures are therefore subjected to severe vibrations and dynamic
stresses which are more than the corresponding static stresses. This has necessitated the quest
for accurate evaluation of the vehicle-track interaction during the passage of the heavy subsys-
tems. Nevertheless, it appears that most of the studies [Ismail (2011), Gbadeyan and Dada
(2006), Wu et al (1987), Hsu (2009), Akin and Mofid (1989), Ali et al (2013), Shahed and Mo-
hammad (2012), Sang-Jin (2013)] in this field focus on numerical simulations. Emphatically
speaking, few studies concentrate on analytical developments. When these are available, the iner-
tia effects of the heavy mass are neglected. It is well known that in a dynamical system as this,
analytical method is desirable as solutions so obtained often shed light on vital information about
the vibrating system [Fryba, L., (1972), Omolofe (2013),Stanisic et al (1974), Stanisic (1968),
Hossein et al (2013), Atteshamuddin (2013), Gbadeyan and Oni (1992)].

Similarly, while much work are available in open literature on beam-type structure under mov-
ing masses, the vibration of plates under the actions of moving masses has so far received but
scant attention. The first major breakthrough in this field of research was the work of Stanisic et
al [Stanisic (1968] who solved the problem of a simply supported non-Mindlin plate under a mul-
ti-masses moving system by making use of an approximation of the Dirac delta function. Only
the inertia terms that measures the effect of local acceleration in the direction of the deflection
was considered. The method of solution was based on the Fourier Sine transform technique. The
solutions so obtained were shown to converge very rapidly. The work of Stanisic et al was taken
up much later by Gbadeyan and Oni [Gbadeyan and Oni (1992)] who investigated the dynamic
analysis of an elastic plate continuously supported by an elastic Pasternak foundation and trav-
ersed by an arbitrary number of concentrated masses. All the components of the inertial terms
were considered and the rectangular plate was taken to be simply supported. The deflection of
the plates was calculated for several values of the foundation moduli and shown graphically as a
function of time. More recently, study on an exact series solution for the transverse vibrations of
rectangular plates with elastic boundary supports was carried out by [Li et al (2009)]. In this
study, an analytical method was developed for the vibration analysis of rectangular plates with
elastically restrained edges. Several numerical examples were presented to illustrate the excellent
accuracy of their solution. Worthy of note, also, is the work of [Shadnam et al (2001)] who inves-
tigated the dynamics of plates under the influence of relatively large masses, moving along an
arbitrary trajectory on the plate surface. As an example, the dynamic response of a rectangular
plate, simply supported on all its edges, under a mass moving parallel to one of its sides and also
travelling along circular trajectory is presented by means of operational calculus. Analysis
showed that the response of structures due to moving mass, which has often been neglected in the
past, must be properly taken into account because it often differs significantly from the moving
force model.
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It is remarked at this juncture that in all the aforementioned papers, the speeds at which these
masses travel have been idealized to be uniform whereas, for practical purposes, these are not so.
Such practical problems as acceleration and braking of automobile on roadways and highways
bridges, taking off and landing of aircrafts on runway and breaking and acceleration forces in the
calculation of rails and railway bridges in which the motion is not uniform, but a function of time
have intensified the need for the study of the behaviour of structures under the action of loads
moving at varying velocities. This class of problems was first tackled by [Lowan (1935)] who
solved the problem of the transverse oscillations of beams under the actions of moving variable
loads. Much later, are the studies by [Kokhmanyuk and Filippov (1967)|, [Huang and Thambi-
ratnam (2001)], [Oni (2004)] and [Oni and Omolofe (2011)].

In our recent paper [Oni and Omolofe (2011)], effort was made to investigate the dynamic re-
sponse of prestressed Rayleigh beam resting on Elastic foundation and subjected to masses travel-
ling at varying velocities. The objective of this paper is to extend this work to the dynamic be-
haviour of plate-type structures and as in the previous paper obtain analytical solutions. This
paper therefore, investigates the transverse motions of rectangular plate resting on elastic founda-
tion and under the actions of concentrated masses moving at varying velocities.
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Figure 1: Schematic diagram of a rectangular plate on moving load.

2 FORMULATION OF THE GOVERNING EQUATION

The problem of the flexural motion of isotropic, structurally prestressed rectangular plate resting
on an elastic foundation and carrying a mass M is investigated. A rectangular plate of thickness
h and lateral dimensions L, and Ly (respectively in the x and y direction in the rectangular

axis) under the actions of load P(X,Y,t)of mass M traveling from point Y = Yy,on the plate

along a straight line parallel to the x-axis with a non-uniform velocity as shown in figl* is consid-
ered. Neglecting damping and the effects of shear deformation, according to the classical two-
dimensional theory of flexural motions of isotropic elastic rectangular plate, the transverse dis-
placementU(X, y,t), of the mid-surface of the rectangular plate exhibiting anisotropic prestress
when the inertia effect of the accelerating mass on the transverse response of the rectangular plate
is taken into consideration is governed by the fourth order partial differential equation given by
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2 2 )
(DVZ — IR, a—zjsz (x, y,t)—(Nx o U(X;y’t)+ N, & U(X;y")j
ot OX oy

(1)
U (x, y,t A*
+ #—(gtz Y1) KU (x,y.6)= Mgslx - xOBy - v ){1—?U(x, y,t)}
3
where D = fh ) is the bending rigidity of the plate, E is the young modulus, Vv is the pois-
12(1-v

son’s ratio (v <1), x is the mass of the plate per unit length, x is the position coordinate in x-
direction , y is the position coordinate in y-direction, t is the time and R, is the measure of rota-

tory inertia, Nx and Ny are respectively the prestressing forces in x and y directions respectively

and where the A is the convective acceleration operator defined as

A*_iz(m] +a_2(wj L0, 0 WO, & A

CoxE\ dt oy?\ dt ot> “oxoy dt  dt  oxat dt o)
5 0% dy(t) +£dzx(t) +£d2y(t)
oyt dt  ox dt* oy dt’
Using equations (2) in equation (1), one obtains
D{a“u (Xiy’t) +264U (zx, )g,t) . 64U(x;y,t)}+/u GZU(XZ, yit) N, U (x;y,t) N, 82U(x;y,t)
ox ox*oy oy ot Ox oy
C o fatuk b | 2y ~ ~ ~ 1[0y (dx®))
ﬂR{ o }Ku (9.0 = P (x0T~ xRy y(t)[l g{axz (29) .,
. 82U (x, y,t) (dx(t)j2 . 22U (X, y,1) 42 d2U (x, y,t) dx(t) dy(t) 42 U (x, y,t) dx(t) +262U (X, y,1) dy(t)
oy? dt at? oxoy dt dt oxot dt oyét dt
L ou (X, y,1) d2x(t) L ou (x,y,1) d?y(t)
ox dt? oy dt?

The rectangular plate under consideration is simply supported and such, the deflection and the
moments at the edges X=0, X=L,,y=0 and y= Ly vanish. Thus, the boundary conditions

are

U(,y,t) =0; U(L,y,t)=0. U(x,0,t) =0; U(x,L,t)=0
U0y _, ULyt o dUX0Y 62U(X,Ly,t)_o (4)
B X . oy* ’ &

)
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and the initial conditions without any loss of generality are taken to be

U (x,y,t)
U(x,y,t =0=—"27
(X )t =0 ot t=0 (5)
where 5() is the dirac delta function and
1,
X(t) = x, +ct +Eat , yY®) =y, (6)

where X, and Y, are the initial positions in the x and y directions respectively, c is the initial

velocity and a is the acceleration of the traveling load. Equation (9) expresses a uniformly accel-
erated (a >0) or uniformly decelerated (a < 0) motion. Time t is assumed to be limited to that
interval of time within which the mass M is on the plate, that is

0<x()<L (7)

Thus, in view of equations (6) and (7), equation (3) can be written as

4 4 4 2, 2, 2
DF Uyt ,0 Uyt U(X y,t)}rﬂ@ Uy ) Uyt dUXyY

o’ ox*oy* oy’ ot S G
4 4
R,| LUyt GUGYL) | ey y 1)
ox?ot oy“ot
1 U (x,y,t) 22U (X, V,t) )
2 1 Y PAl
+ Mé{x—(xo +ct+2at2ﬂ5[y—yO]{(C+at) ox2 + ot?
QU (X y.h) . dU(x Y1) ( 1 j
+2(c+at) +a =Mgd| x—| x, +ct+=at® ||o]y -
(e+at) oxat ox ’ ’ 2 Y=ol

Equation (8) is the fourth order partial differential equation governing the flexural motion of the
prestressed rectangular plate on Winkler foundation and under the actions of load moving at non-
uniform velocity.

3 ANALYTICAL SOLUTION PROCEDURES

The double Fourier finite sine integral transformation with respect to the spatial coordinates x
and y discussed in [Gbadeyan and Oni (1995)] would be employed to transform the governing
partial differential equation to a second order differential equation. Subsequently, as in the pre-
vious paper [Oni and Omolofe (2011)], the asymptotic method of Struble’s will be used to simplify
this equation. The double Fourier finite sine integral transformation is defined by the following
relations between the original functions U (X, y,t) and its transform J(j,k,t), that is,
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i . jny
j,kt j j x y, t smL—Xsm—ydxdy (9)
with the inverse
U(x,y,t)= ii i u(j, ktst—smk—ﬂy
LL & & L L (10)

Using (9) and (10), and taking into account the boundary conditions (4) the governing equation
(8) is transformed to take the form

0?
Uu (k. t) + ”U(Jkt)+—m2(o,|,t)——z U(p.k,
M p=1 y

o o

Un(p,k,t)HE(p,JHzU(j.k,tHD{ c+at {Z U (p.k,)H (P, J)

=1

“R,Y Uy (p,
p=1

+2ii U (p,q,t)sin k7Lzyo sin q:yo H (pj)+2 ii (p, k,t)cos?_—”(x0 +ct+%at2jH:(p, j,n)
p=1 g=1

y y p=l n=1 X

p=1

-
Ms
Ms
Ms

-

(p,q,t)cosrl]_—”(x0+ct+%at jsm Do sin qu" H;(p,j,n)}

p=lg=1 n=1 X L y

+2(c+at){i U, (p,k,t)H. (p, j)+2i i (pqt)sm L % sin q:y" H.(p, J)

p=1 p= y

N

[N
<

S
Ms
Ms

<

(P, K, t)cosrll_—(x0 +ct+;at JH;(p, in)

p=1 n=1 X

1
Ms
Ms
s

<

.(p.q, t) cos 2% (xo+ct+;at jsm 7Lzy0 sin q:y‘) Hi(p. ], n)}

y y

3 . (11)
£ Tk OH (P ) +2Y°Y Ty (p.g,bsin ’L’y 2o (. )

p=1 p=1q=1 y y

o= nz T ) e
+22°) Uu(p,k,t)cos—(x0 +Ct+=at de(p,J,n)

p=1 n=1 Lx 2
+4 i i U, (p, qt)cos (x0+ct+;at jsm 7Lzy0 smqu" H;(p, j,n)

y y
U(pkOH:(p. ) +223 3 U(pa.0sin osin Do p,

p=1 p=l q=1 y y

aZ;Z; U(p.k t)cosL—(xo+ct+;at2]H (p, j,n)
P X

+4azz > U(p,q,t)cosrl]_—ﬂ(x0 +ct +%at2j5in kLnyo sin qlilyo Hi(p,j.n)
p=lg=1 n=l X y y
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where
H (D, i) — p°r? (L sin P sin j;zxOI
a(pi.l)__ i IO | _LX | L—X X
jax
H =— sm—dx
C)) j S
. 2p%7% oL nzx_. pax_.  jax
H.(p,j)=- B _[0 cos B sin O sin X dx
) . 7 (12)
. L, nax . pax . jax
Hy(p, J)=— cos sin sin dx
2(p. 1) ijo L sin-sin< -

« o 2p7 L pax . jax
He(p’J)_TZX-[O cosTXsmL—dx

. N 2P (L nzx X . jax
Hf(p,J)=fsz 0= P sin 3

Equation (11) is now the fundamental equation of our problem when the non-Mindlin’s rectangu-
lar plate has simple supports at all its edges. In what follows, two special cases of the equation
(11) above are considered namely the moving force and the moving mass problems.

a. The Moving Force Model

To obtain the moving force model of our dynamical system when the isotropic rectangular plate

has simple support at all its edges, l—‘; is set to zero in equation (11) and this leads to

_ QL i N, k272 —
U, (j.k,t)+ ’*kU(j,k,t)+%z(o,|_x,|_ ) N 7 U(jkt)+—k7; U(j.kt)
H H X H y ( )
2 2 2 . 13
RAZLG, (ko +R, K T0L kt)+—U(j k)= Wsin kﬂyosinm(xo+ct+latzJ
2 2 w oL oL 2

This is an approximate model which assumes the inertia effect of the moving mass as negligible.
It is straightforward to show that equation (13) after some simplifications and rearrangements

yields
U, (Jkt)+7/JKFU(Jkt)—PJKsm:_ (x +ct+;atj (14)
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where
Q% (N, j*’z% N, k’z*) K . kay,
- L2 TR — Mg sin——
_ /’l ll’l X ﬂ y # and P* _ y
7 e 2.2 2.2 K 2_2 2_2 (15)
1+R| L2 87 1+R, iz +k i
6 L L2 L2

Equation (14) when solved in conjunction with the initial conditions, one obtains an expression

for L_Jtt(j,k,t) which on inversion yields

4 & & P b, + 2a,t b, + 2a,t b
Uxyt)= LXLYJZ:; kzz; 27%\/@[ Siny .t {Cos[élao J ( T, j C[ T ]Sln[4a0 COJ
b1 b, + 2a,t b, + 2a,t b’ b,

+ Cos 4— COJS[ 2 ] [ J [4&\0 Co{4ao COJS[\/EJ
b, _ by b e b
e ol ) [H &
) (16)
— COSy et {Cos{ b _ COJC{b + 2, ]+ S[bl i 2a0t] & Cos[b -c JC(M]
4a, 278, 4a, 27a,
| b 2agt | i_ b, b, (b
S[\/E Jsm(4a0 J Cos CO]C ™ J [ﬁ]gln(4a0 coj
by b, b, b; kay . jax
+C05[4a0 COJC[\/EJJrS[m]Sm(MU C JD [sm N sin L J

which represents the transverse displacement response to concentrated forces moving at variable

velocities of a simply-supported isotropic rectangular plate incorporating rotatory inertia correc-
tion factor.
The functions S(X) and C(X) are the Fresnel Sine and Cosine functions respectively. For

real values of argument X , the values of the Fresnel integrals S(X) and C(X) are real.

b. The moving Mass Model

If the mass of the moving load is commensurable with that of the structure, the inertia effect of

the moving mass is not negligible. Thus, I g # 0 and one is required to solve the entire equation

(11) when no term of the coupled differential equation is neglected. This is termed the moving
mass problem. Unlike in the case of the moving force, an exact analytical solution to this equa-
tion is not possible. Thus, one resorts to an approximate analytical technique due to Struble dis-
cussed in [29, 30]. By this technique, one seeks the modified frequency corresponding to the fre-
quency of the free system due to the presence of the effect of the mass of the load. To this end,
equation (11) is rearranged to take the form
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o 2 N
Qt(j,k,t)*‘wa(j,k,t)-%(yJKF +*FOGS_(J'k’t))U(j,k,t)
1+T,G,(j,k,t) 1+T,G,(j.k,t)
T, - 1 . prw 1 ,)~
+——2 | (c+at) sm— X, +Ct +=at? |sin—| x, + ct + =at® U (p,k,t
141G, (j.k ) pz LX(O 2 j LX(O 2 j (p.k.t)
p#j

45: i p27z25inj—” x0+ct+1at2 sin 27 x0+ct+£at sin—2 ﬂy" q”y“U(p,k,t)

S5 2L 2 L, 2 L, L,

p=j q=k

+2(c+at i .4jp 7 LTl(p,k,t)+Zi i .4jp )sm Ko i qﬂy"U(p,k,t)

= Lli*- bl gl '-x(J2 p L, L,
p=j P=j d=k
R 4jp(j* - p* -n*) nﬂ( 1 zj
+2 P T 1C0S—| X, + ct + —at” U.(p,k,t
pZ:; n;:l Lxl(j+p)2—nzl(j—p)2—nzj Lx 0 2 l(p )
p#]
SR 4jp(j? - p* - n?) nx ( 1 ] Ky, .. Q7 —
+4 r 1€0S—| X, + Ct + —at” |sin—=sin U,(p,k,t)
EZ% gzl;‘ Zl NEDEL (D 2 L, L (17)
+2§: sinJLﬂ(onrcH;atzjsinT(xo+ct+;at2jun(p,k,t)
b :
+4i i sinf_ﬂ(xo+ct+;at jsmpL(x +ct+;at jsm Zy"sm CIﬂy"Un(p,k,t)
p=1l g=1 X X y y
p#j gzk
N 4jp IRy i ﬂyo qﬂyo
+a U (p,k,t)+2a U (p,k,t
S g P02 3 i s T k)
p#j p#j gq=k
e 4jp(j? - p* -n?) nz ( 1 2)
+2a r cos—| X, +ct +—at” U (p,k,t
R TRy [y L G A
O 4jp(j? - p* -n?) ( 1 j kay, qﬂyo
+4 cos X, + Ct +=at” |sin sin U,(p.k,t)
%%; Lxl_(J+p)_ l( )_nJ 2 L, L,
k ] 1
=T,LL, S’O JLT(xo+ct+2at2]
where

G (j.k,t) =1+ 25in2% +{1—0052Lﬂ](x0 +ct +;at2ﬂ + 2{1—0032:](&) +ct +;at2ﬂsin2 k:_%

Yy X X y

j? 2 Ky,

. < 8j? nz 1 ,) & 16j . 1
G,(j,k,t)=2(c+at - C0S—| X, +Ct +—at” |+ - sin? cos— X, + ct + = at?
(k0 =2 ){Z;‘ L(4j —n?) LX[ ° 2 Z;‘ L@jr-n?)" L, LT 2

Latin American Journal of Solids and Structures 12 (2015) 1296-1318



B. Omolofe. S. T. Oni / Transverse Motions of Plates Resting on Elastic Foundation and Under Masses Moving at Varying Velocities 1305

and

) =2 _2 =2 _2 ) kﬂy j2 272]
G.(jkt)=(cratfd—I T 37 p2 XD _ 2 x, ot = at
5 (] ) ( ){ Li Li Ly L

i'm o Kay, (18)

2 & )} e G
-2 sm 1-cos—=| X, +Ct +— at + cos— X, +ct +—at
L L, { L " Z;' L(4j*-n ’ 2

0 i2
+Y lij . sin? Ko o5 N7 Xo +Ct+= at
& LBiE-n?) L L

At this juncture, the homogeneous part of equation (17) is first considered and a modified fre-
quency corresponding to the frequency of the free system due to the presence of the moving mass
is sought. An equivalent free system operator defined by the modified frequency replaces equa-

tion (17). To this effect, one considers a parameter 77; <1 for any arbitrary mass ratio I 0* de-

fined as
N 0 »
T 1_'_1_,; (19)
from which it is evident that
* * *2
To =m + 0('71 ) (20)
Noting that
1 wn L x x2.5 3.3
—=1+I,G =1-T,G, +[, G-I, G’ +............. ,
1+FOGl ( 0 1) 01 0“1 0“1 (21)
whenever,
\rgel\ <1, (22)

When 77; =0, a case corresponding to the case when the inertia effect of the mass of the system

is neglected is obtained, then the solution of (17) can be written in the form
U(j,k,t)=C2 COS(7JKFt_¢jk) (23)

where C, and @; are constants.

Since 77; <1, Struble’s technique requires that the solution of the homogeneous part of equa-

tion (17) be written in an asymptotic form, namely

0 (J,k,t) = Ak, cosly et — i,k )]+ 70, k) + O (24)
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To obtain the modified frequency of our dynamical system, equation (24) and its first and second
derivatives are substituted into the homogeneous part of equation (17). While taking into ac-

count (20) and (21) and retaining terms to 0(771*) only.

Thus after some simplifications and rearrangements, one obtains

_ZyJKFA(j’k’t)Sin[yJKF _¢(J k t)]+ZyJKFA(j'k’t)é(j'k’t)cos[}/JKFt_¢(j'k’t)]

> i nrz 1
-2 t k,t 7—) t + —at?
7 e (C+at )y A(], {; 4] cos L (x0+c +2a j

0 =2
+ nz:;‘ X(jjil_ nz)sinz kazyo Ccos rl‘_”(xo +ct +;at2]]5in[7/JKFt —¢(j, k,t)]

Yy X

. . . . . .,k
_771732KFA(J!k1t)COS[7JKFt_¢(J!k1t)]_27717J2KFA(Jnk1t)sm2 Lﬂyo cos[7JKF ¢(J k t)]

y

. . . . . 27
_’717J2|<FA(L k’t)cosb’JKFt - ¢(J!k’t)]+ ’717/J2|<FA(L k,t)COS Lﬂ]

COS[VJKFt —¢(j,k,'[)]

(xo +ct+ ;atzjcos[yJKFt —#(j k1))

X

2 Kay,
L,

2 Ko o n”(xo +ct +;at2jcos[7/JKFt —#(j.k,t)]

y X

- 2771*7.]2KFA(J.’ k’t)Sin

+277;7/§KFA(j'k't)Sin

jZﬂ_Z

_771* B (c+at) (J k t)cos[7JKF ¢(J k t)]

'2
o

~sin’ ’L’y°(c+at)2A(j,k,t)cos[nKFt—¢(j,k,t)]
X y

=2 2

_771* JL72T (C+at) (J k t)cos[7JKF ¢(J k t)]

. j27z_2
R/ e

4o —(c+at) (j,k,t)coszljzj(xo+ct+;atzjcos[yJKFt—qﬁ(j,k,t)]
j’n? 20 -, kay, i
-2, 12 (C+at) A(j,k,t)SIn L COS[7JKFt_¢(J’kIt)]

y

L2 JLf A(j.k,t)sin? ’L’y°cos L’”(xo+ct+;atZJCOS[%KFt—ﬂj,k,t)]

y X

e - 8aj’ n 1 :
+771A(j,k,t)z; ﬂﬁ)cosLﬂ[xo+0t+zatzjcos[yJKFt—qﬁ(J,k,t)]

g ud 16aj? .,k 1 .
+771A(J,k,t)z1 | j'ju_nz)sm2 7Lzy0 cos nL”[xo+ct+2at2jcos[7JKFt—¢(J,k,t)]=0
n=! X y X

to 0(77; ) only.
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To obtain the variational equations, one equates the coefficients of COS[}/JKF'[ —¢(j,k,t)] and
Sin[}/JKFt — ¢(j,k,t)] on both sides of equation (25). To do this, the following trigonometric iden-

tities are taken into account

cosr:_”[onrctJr;atzjsin[;/JKFt—ﬂj,k,t)] Hsm{yw — ik t)+ D T x0+ct+ L

X X

)
—Sin{)/JKFt—¢(jkt) N [xo+ct+ at? }}
)

(26)
cosr:_”[xo+ct+;atzjcos[;/JKFt—¢(j,k,t)]:;{cos{nwt—qﬁ(] K,t)+ " i (x0+ct+ at }
1
+cos{yJKF —o(j.k, t) (x0+ct+ at H}
L, 2
Neglecting terms that do not contribute to variational equations, equation (25) reduces to
= 275 AT K D) siny et = ¢, K U]+ 275 ALK (S K t)oosly et — 91 k)]
« . . . . .,k .
- 27717J2KFA(J’ k't)COSD/JKFt _¢(Ja k’t)]_47717/32KF A(],k,t)SInz Zyo Cos[yJKFt —¢(],k,t)] (27)
y
N 7 S . c : -,k :
-2, f_zﬂ A(j k. t)eos[y et — (J k. t)] -4 JL” Aj K t)sin? Zy‘) cos[y et = #(j. k)] =
X X y
The variational equations, respectively, are
27, A(j,k,t)=0 (28)
and
: e * 2 : * 2 : -2 kay,
27JKFA(J: k’t)¢(J: k’t)_ 27717JKFA(J’ k’t)_ 47717JKFA(J’ k,t)SIn L_ (29)
y
which when rearranged and solved yields
Ai k1) = C3 (30)
and
. N 2S,(J, J)+4S.(j,k
¢(J’k't)=77_l{(27/JKF +47JKFSa(k’k))+( oLl ) . ))}t+¢JK (31)
2 Yk
where
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2:2 2 22,2
S,k k) =sin? K0 s (i, iy = S and s (jk) = S ginz Ko (31)
L, . L, L,

Therefore, when the mass effect of the particle is considered, the first approximation to the ho-
mogeneous system is given by

U(j:k’t) =Cyx COS[VJKMt — P ]7 (32)

where

(33)

Yikm = 7JKF{1_%I|:(2+4Sa(k,k))+ (ZSa(j, j)t"rsc(j,k))}}

JK

represents the modified natural frequency representing the frequency of the free system due to the
presence of the mass of the particle.
Next, one replaces (17) by the equivalent free system operator defined by the modified fre-

quency Y, 1€

U (5 k) + 75U (3K, t) = 7L L, gsin kzy° ’L (x +ct+;atj (34)

y

Clearly, equation (34) is analogous to equation (14). Thus following arguments similar to the
previous ones, the solution of the equation (34) is thus obtained as

U y.t) = Lijg 2 %{ Siny et {Cos(f; cols[bi/;iﬂ:)t}c(bz ;;a;t]sm[go_coj
AR SR CRL G A
NN SN
o8 A ol
[b +2aotJ J COS(EO—COJC[\/%J—S[\/%JSIH[g—CJ

-
oot e e
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which represents the transverse displacement response to concentrated masses moving at variable
velocities of a simply-supported isotropic rectangular plate with rotatory inertia correction factor
resting on Winkler type elastic foundation.

6 COMMENTS ON CLOSED FORM SOLUTIONS

In an undamped vibrating system such as this, the response amplitude of the structure may grow
without bound. When this happens it is called resonance. This is a crucial phenomenon in any
engineering design particularly in bridge engineering.

Equation (16) clearly shows that the Simply Supported elastic beam resting on elastic founda-
tion and traversed by moving force reaches a state of resonance whenever

jmc j 7C,
Y KE :L—C, Y ke ZJL—+2aotc (36)

X X

while equation (35) indicates that the same beam under the action of moving mass will experience
resonance effect whenever
I jzc
Vikm = L » Vokm = LC+2a0tc (37)

X X

where C_and {are respectively the critical velocity and critical time at which resonance occurs.

From equation (33), it is known that

Ym = Ve {1_%{(2 +43,(k, k))"‘ (ZSb(j’ J;{:‘SC(J,k))}} (38)
which implies
jmc,
Ve = L
1] (24 45, )+ B0 D +45:(5.K) 39)
2 Y g

It is therefore evident, that for the same natural frequency, the critical velocity for the system
consisting of a Simply Supported isotropic rectangular plate resting on an elastic foundation and
traversed by concentrated forces moving with non-uniform velocities is greater than that of the
moving mass problem. Thus, for the same natural frequency of an isotropic rectangular plate,
resonance is reached earlier in the moving mass system than in the moving force system.
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7 RESULTS AND DISCUSSION

To illustrate the foregoing theories and analysis the example in [27] is adopted and an isotropic
plate of modulus of elasticity E = 3.1x10"°N/m? with dimensions Lx = 100m, Ly=10m, thick-
ness h=0.3m and the poisson ratio v =0.35is considered. Furthermore, the values of foundation
moduli are varied between 0 N/m?® and 4000000 N /m?, the values of axial force Ny are varied

between 0 N and 2-0x10%N .

Figures 1 and 2 depict the transverse displacement response of a simply supported isotropic
rectangular plate under the action of concentrated forces moving at variable velocity for various
values of axial force Ny and Ny respectively. These figures show that, for fixed values of subgrade
moduli K=40000 and Rotatory inertia correction factor Ro=>50, as the values of Ny or Ny increas-
es, the dynamic deflection of the isotropic rectangular plate decreases. Similar results are ob-
tained when the simply supported plate is subjected to concentrated masses travelling at variable
velocity as shown in figures 5 and 6. For various travelling time t, the deflection profile of the
plate under the action of moving forces for various values of subgrade moduli K and for fixed
values of axial forces Ny=2000000, Ny=20000 and Rotatory inertia correction factor Ro=50 are
shown in figure 3. It is observed that higher values of subgrade moduli K reduce the deflection
profile of the vibrating plate structure. The same behaviour characterizes the deflection profile of
the simply supported plate under the action of concentrated masses moving at variable velocity
for various values of subgrade moduli K as shown in figure 7. Also, figures 4 and 8 display the
displacement responses of the simply supported isotropic rectangular plate respectively to concen-
trated forces and concentrated masses travelling with variable velocity for various values of rota-
tory inertia Ro and for fixed values of axial forces N=20000 00, Ny=20000 and subgrade moduli
K=40000. These figures clearly show

x 10
10

Nx=0
Nx=2000000
Nx=20000000
Nx=200000000

Plate displacement (m)

8 r c c ¢ r ¢ c
0 0.5 1 15 2 25 3 3.5 4
Travelling time t(s)

Figure 1: Transverse displacement response of a simply supported isotropic rectangular plate under the actions
of concentrated forces travelling at variable velocities for various values of axial force along x direction N, and
for fixed values of foundation constant K=40000, axial force along y Ny=20000 and rotatory inertia Ro=50.
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8 T T T T T T T
6 4
Ny=0
Ny=2000000
4l Ny=20000000 i
Ny=200000000
e -
5 N\
:
2 —————_ \
S — 4
o 0 —
s X
o o
2k 4
4k 4
Iy r ¢ c ¢ r ¢ c
0 0.5 1 15 2 25 3 3.5 4

Travelling time t(s)

Figure 2: Transverse displacement response of a simply supported isotropic rectangular plate under the actions
of concentrated forces travelling at variable velocities for various values of axial force along y direction Ny and
for fixed values of foundation constant K=40000, axial force along x N,=2000000 and rotatory inertia Ro=50.

K=0
K=40000
K=400000
—— K=4000000

Plate displacement (m)

¢ r ¢ c
0 0.5 1 15 2 25 3 3.5 4
Travelling time t(s)

1 r i r

Figure 3: Deflection profile of a simply supported isotropic rectangular plate under the actions of
concentrated forces travelling at variable velocities for various values of foundation constant K
and for fixed values of axial force Ny=2000000, Ny=20000 and rotatory inertia Ro=50.
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Figure 4: Displacement response of a simply supported isotropic rectangular plate under the actions
of concentrated forces travelling at variable velocities for various values of rotatory inertia Ro and
for fixed values of foundation constant K —=40000, axial force Ny=2000000 and N=20000.
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Figure 5: Transverse displacement response of a simply supported isotropic rectangular plate under
the actions of concentrated masses travelling at variable velocities for various values of axial force Ny
and for fixed values of foundation constant K =40000, Ny=20000 and rotatory inertia Ro=50
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Ny=0

3r Ny=200000
—— Ny=2000000
Ny=20000000

Plate displacement (m)

4 r r c r r r c
0 0.5 1 15 2 25 3 3.5 4
Travelling time t(s)

Figure 6: Transverse displacement response of a simply supported isotropic rectangular plate under the actions
of concentrated masses travelling at variable velocities for various values of axial force Ny and for fixed
values of foundation constant K =40000, N,=2000000 and rotatory inertia Ro=>50.

K=0
K=40000
K=400000
—— K=4000000

Plate displacement (m)

6 r i r i
0 0.5 1 15 2 25 3 3.5 4

Travelling time t(s)

Figure 7: Deflection profile of a simply supported isotropic rectangular plate under the actions
of concentrated masses travelling at variable velocities for various values of foundation constant K
and for fixed values of axial force N =2000000, Ny=20000 and rotatory inertia Ro=>50.
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Ro=550
Ro=1500
Ro=2500
—— Ro=15000

Plate displacement (m)
[

2
Travelling time t(s)

Figure 8: Displacement response of a simply supported isotropic rectangular plate under the actions
of concentrated masses travelling at variable velocities for various values of rotatory inertia Ro
and for fixed values of foundation constant K —=40000, axial force N,=2000000 and N=20000.
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Travelling time t(s)

Figure 9: Response amplitudes of a simply supported isotropic rectangular plate under

the actions of concentrated masses travelling at variable velocities for various values of the
mass ratio 7]y and for fixed values of of N,=2000000, N,=20000, K=40000 and Ro=50.
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Figure 10: Comparison of the displacement response of moving force and moving
mass cases of a simply supported isotropic rectangular plate for fixed values
of N,=2000000, N{=20000, K=40000 and Ro=50.

that as the values of rotatory inertia correction factor increases, the displacement response of the
simply supported plate under the action of both concentrated forces and concentrated masses
travelling at variable velocity decreases. Also, for various travelling time t, the response ampli-
tude of the isotropic plate under the action of accelerating traveling masses for fixed values of
subgrade moduli K=40000, axial forces N,=2000000, Ny=20000 and Rotatory inertia correction
factor Ro=50 are shown in figure 9. It is observed that larger values of the mass ratio, 77,, in-

creases the response amplitude of the isotropic plated subjected to accelerating masses.

Finally, figure 10. depicts the comparison of the transverse displacement response of moving
force and moving mass cases of a simply supported rectangular plate traversed by a moving load
travelling at variable velocity for fixed values of Ny=2000000, Ny=20000, K=40000 and Ro=50.
Evidently, the response amplitude of the moving mass is higher than that of the moving force.
This important result shows that, the moving force solution is not always an upper bound to the
solution of the moving mass problem. Hence the inertia of the moving load must always be taken
into consideration for accurate and reliable assessment of the response to moving load of elastic

structures.

8 CONCLUSION

The problem of the flexural motions of a prestressed isotropic rectangular plate resting on elastic
foundation and traversed by concentrated masses traveling with variable velocity has been inves-
tigated. Closed form solution of the governing fourth order partial differential equations with
variable and singular coefficients of the plate-mass problems is presented. For this two-
dimensional dynamical problem, the solution techniques is based on the double Fourier finite sine
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integral transformation with respect to the spatial variables x and y, the expansion of the Dirac
Delta function in series form, a modification of Struble’s asymptotic method and the use of Fres-
nel sine and Fresnel cosine integrals. The solutions so obtained are analyzed and resonance con-
ditions for the various problems solved are established. Numerical calculations show that

I. in the dynamical problem considered, resonance is reached earlier in a system traversed by
moving mass than in that under the action of a moving force.

II. as the axial force increases, the response amplitudes of isotropic rectangular plate carrying
concentrated loads moving at non-uniform velocities decrease.

III. when the values of axial force and rotatory inertia are fixed, the displacements of isotropic
rectangular plate resting on elastic foundation and traversed by masses traveling with variable
velocities decrease as the value of foundation moduli K increases for all variants of the boundary
conditions.

IV. for fixed values axial force and foundation modulus K, the response amplitude for the moving
mass problem is greater than that of the moving force problem for all illustrative end conditions
considered.

V. the moving force solution is not always an upper bound for the accurate solution of the mov-
ing mass problems in the dynamical system under consideration. Hence, inertia of the moving
load must always be considered when assessing the response to moving load of elastic structures
as it affects the vibrating system significantly and finally,

VI. for the same natural frequency, the critical velocity for moving mass problem is smaller than
that of the moving force problem. Hence, resonance is reached earlier in moving mass problem.

VII. increased values of all the aformentioned structural parameters increases the dynamic stabil-
ity of the vibrating system thereby reducing the risk of resonance.
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