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Abstract 

The differential quadrature method (DQM) is one of the most 

elegant and efficient methods for the numerical solution of partial 

differential equations arising in engineering and applied sciences. It 

is simple to use and also straightforward to implement. However, 

the DQM is well-known to have some difficulty when applied to 

partial differential equations involving singular functions like the 

Dirac-delta function. This is caused by the fact that the Dirac-delta 

function cannot be directly discretized by the DQM. To overcome 

this difficulty, this paper presents a simple differential quadrature 

procedure in which the Dirac-delta function is replaced by regular-

ized smooth functions. By regularizing the Dirac-delta function, 

such singular function is treated as non-singular functions and can 

be easily and directly discretized using the DQM. To demonstrate 

the applicability and reliability of the proposed method, it is ap-

plied here to solve some moving load problems of beams and rec-

tangular plates, where the location of the moving load is described 

by a time-dependent Dirac-delta function. The results generated by 

the proposed method are compared with analytical and numerical 

results available in the literature. Numerical results reveal that the 

proposed method can be used as an efficient tool for dynamic anal-

ysis of beam- and plate-type structures traversed by moving dy-

namic loads. 
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1 INTRODUCTION 

Most practical problems in engineering are governed by partial differential equations with proper 

boundary conditions. In general, two kinds of methods, i.e., analytical and numerical methods, can 

be used to solve engineering problems. Analytical methods are often preferred since they allow bet-

ter information of the solution over the problem domain. However, analytical methods are often 

limited to simple engineering problems (i.e., problems with simple geometry, simple boundary con-

ditions, etc.). To overcome the limitations of the analytical methods, one may resort to numerical 

methods for finding approximately the required solution. The numerical methods, in general, can be 

very useful since they can be applied to more realistic engineering problems with complex boundary 

conditions and irregular geometries. Among them, the finite difference and finite element methods 

have been extensively used by many researchers to obtain approximate solutions for the engineering 

problems. However, these methods generally converge slowly with respect to mesh refinement and 

are extremely expensive for achieving high precision.      

 The high order methods can be adopted to do spatial discretization to tackle the difficulties of 

the low order finite difference and finite element methods. Among them, the differential quadrature 

method (DQM) has attracted many attentions because of many advantages such as high accuracy, 

simplicity and efficiency. The DQM, which is in the family of collocation and finite difference meth-

ods, was firstly introduced by Bellman and his associates (1971, 1972) in the early 1970s for the 

numerical solution of initial and boundary value problems. Since then, the DQM has been success-

fully applied to a variety of engineering problems (Bert and Malik, 1996a; Shu, 2000, Zong and 

Zhang, 2009). Most of these applications are related to static and dynamic analysis of structural 

components like beams, plates, and shells (Wang et al., 1993; Bert and Malik, 1996b; Shu, 1996; 

Civalek, 2004). Newer applications include the use of the DQM for approximation of time-derivative 

terms (Eftekhari and Jafari, 2012a), and solving fluid-structure interaction problems (Eftekhari and 

Jafari, 2014). The results of many researchers reveal that the DQM is computationally efficient and 

is applicable to a large class of initial and/or boundary value problems.   

 In spite of above-mentioned favorable features, the DQM has some difficulty in handling partial 

differential equations involving singular functions like the Dirac-delta function. This is mainly 

caused by the particular characteristics of the Dirac-delta function. For example, the one dimen-

sional Dirac-delta function has the following properties: 
 

0)( 0 δ    for all 0   
(1) 
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where f(ξ) may be any arbitrary function. It can be seen from Eqs. (1) to (3) that two properties of 

the Dirac-delta function are in the form of integrals. It is well known that the weak-form-based 

methods such as the Ritz and finite element methods can easily handle the problems involving 

the Dirac-delta function, since they directly integrate the governing differential equation of the 
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problem. However, the strong-form-based methods such as the DQM cannot easily handle such type 

of problems since they directly discretize the governing differential equation of the problem. A way 

for overcoming this issue is to combine the DQM with the integral quadrature (IQ) method (Eftek-

hari and Jafari, 2012b) so that the properties of the Dirac-delta function are approximately satis-

fied. However, as discussed earlier by Eftekhari and Jafari (2012c), this approach may encounter 

some difficulties when applied to the problems involving the time-dependent Dirac-delta function. 

 The above mentioned difficulty has also been addressed earlier by many researchers when similar 

methods such as the collocation and finite difference methods are used. In Gheorghiu (2007), a dis-

cussion is given that the difficulty of the collocation method in handling such singular functions is 

caused by the Gibbs phenomenon in which the numerical solutions become oscillatory around singu-

larities. To obviate this difficulty, it has been suggested that the singular function (here, the Dirac-

delta function) should be regularized in order to achieve a smoother representation of the singular 

function and to stabilize the unwanted oscillatory behavior of solutions near the singularities. Vari-

ous regularization techniques have been developed in Waldén (1999), Wei et al. (2002), Engquist et 

al. (2005), Burko and Khanna (2007), Sundararajan et al. (2007), Towers (2007), and Rivera et al. 

(2013). Waldén (1999) solved some elliptic and parabolic problems using the finite difference meth-

od and showed that the right regularization of the singular source terms can improve the conver-

gence rate of solutions. In Wei et al. (2002), various forms of the regularized Dirac-delta function 

have been proposed in the context of the discrete singular convolution method. Engquist et al. 

(2005) proposed a level-set finite difference approach for regularization of the Dirac-delta function. 

Burko and Khanna (2007) proposed a very narrow Gaussian function for regularization of the Di-

rac-delta function. Recently, Sundararajan et al. (2007) proposed various advanced approaches for 

modeling the Dirac-delta function. More recently, Towers (2007) proposed two closely related finite 

difference methods for discretization of the Dirac-delta function. Most recently, Rivera et al. (2013) 

proposed various smooth functions for approximation of the Dirac-delta function.  

 Alternatively, Jung (2009), Jung and Don (2009) also Jung et al. (2009) made use of an alterna-

tive definition of the Dirac-delta function that the derivative of the Heaviside function, H(ξ), is the 

Dirac-delta function, δ(ξ), in the distribution sense, namely, dH(ξ)/dξ = δ(ξ). The method was re-

ferred to as the direct projection method. It was shown that although the direction projection of the 

Heaviside function yields highly oscillatory approximation of the Dirac-delta function, it can yield a 

non-oscillatory approximation of the solution and the error can also decay uniformly for certain 

types of differential equations. Most recently, Wang et al. (2014) investigated at length the proper-

ties of various ways for approximation of the Dirac-delta function. The techniques considered in 

their study were the regularization using the Gaussian smooth function, the points source approach, 

the direct projection technique, and the domain decomposition method. They discretized the differ-

ential equation using the finite difference and pseudo-spectral methods and concluded that the do-

main decomposition method is the best among these methods at highest accuracy for solving sine-

Gordon equation involving the Dirac-delta function. 

 From the above literature survey, it is observed that a significant amount of research has been 

done on discretization of the Dirac-delta function using the collocation and finite difference meth-

ods. Only a limited number of research studies have addressed this subject when using the DQM. 

As pointed out earlier, the present author and his co-worker have recently made some attempts to 
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solve such problems (Eftekhari and Jafari, 2012b; 2012c). In Eftekhari and Jafari (2012c) the capa-

bility of the DQM for handling the time-dependent Dirac-delta function was discussed at length and 

it was concluded that there are some major limitations in the choice of time steps and mesh sizes. 

Most recently, Nikkhoo et al. (2012), Nikkhoo and Kananipour (2014) also Kananipour et al. (2014) 

have proposed a formulation based on the DQM for transient dynamic analysis of curved beams 

traversed by moving concentrated loads. But, no details were given how the time-dependent Dirac-

delta function was approximated or treated numerically in their study. Their numerical solutions 

also were not in a good agreement with the analytical and finite element solutions (Nikkhoo et al., 

2012; Nikkhoo and Kananipour, 2014). The main source of error in their numerical results may be 

due to an incorrect approximate modeling of the Dirac-delta function. 

 In this study, a differential quadrature procedure based on the regularization of the Dirac-delta 

function is presented for the numerical solution of the moving load problem. Since the Dirac-delta 

function is replaced by a regularized smooth function, the DQM can be easily and directly applied 

to discretize the governing equation of the problem. To demonstrate its applicability and reliability, 

the method is applied here to solve some moving load problems of beams and rectangular plates, 

where the location of the moving load is described by a time-dependent Dirac-delta function. To the 

best of our knowledge, this is the first attempt in applying the DQM to moving load problems of 

straight beams and rectangular plates. Numerical results are presented and compared with analyti-

cal and numerical ones available in the literature. The numerical results prove that the proposed 

method is reliable and accurate and can be used as an efficient tool for handling the moving load 

problem.  

 
2 DIFFERENTIAL QUADRATURE METHOD 

Let w(ξ) be an arbitrary function and ξ1, ξ2, …, ξn be a set of grid points in the ξ-direction. Accord-

ing to the DQM, the rth-order derivative of the function w(ξ) at any grid point can be approximat-

ed by the following formulation 
 





n

j

j
r
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where w(ξj) represents the functional value at a grid point ξj, w
(r)(ξi) indicates the rth-order deriva-

tive of w(ξ) at a grid point ξi, and )(r
ijA are the weighting coefficients of the rth-order derivative. The 

first-order weighting coefficients, i.e., )1(
ijA , can be obtained from the following explicit formula 

(Quan and Chang, 1989)  
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The weighting coefficients of the higher-order derivatives (r > 1) can be computed from the follow-

ing recurrence relationship (Shu, 2000) 
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One of the key factors in the accuracy of the DQ solutions is the choice of grid points. The zeros of 

some orthogonal polynomials are commonly adopted as the grid points. In this work, the DQM grid 

points are taken nonuniformly spaced and are given by the following equations (Bert and Malik, 

1996a) 

01 , 2 ,  11n , 1n  
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where Δ is a parameter that determines the closeness between the boundary points (ξ1 and ξn) and 

their immediate adjacent points (ξ2 and ξn-1). In practice, the magnitude of Δ should be as small as 

possible (≤ 10-3). In this study, the magnitude of parameter Δ is assumed to be Δ = 10-3. 

 
2.1 Numerical Accuracy of the DQM 

Let the nth-order derivative of the function w(ξ) be a constant (say C). It can be shown that the 

error estimated for Eq. (4) is (Shu, 2000) 
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(9) 

 
 

where )(  is defined in Eq. (6). It may be seen from Eq. (9) that the accuracy of the DQM may 

be proportional to n or its powers. This implies that very high accuracy can be achieved using the 

DQM even if the number of grid points, n, is rather small.  

 
3 REGULARIZATION OF THE DIRAC-DELTA FUNCTION 

As pointed out earlier in introduction, due to particular characteristics of the Dirac-delta function, 

the direct discretization of this function using the DQ method is not an easy task. A way for over-

coming this issue is to approximate (or regularize) the Dirac-delta function with simple mathemati-

cal functions. In this regard, various forms of the regularized Dirac-delta function have been pro-

posed in the literature (for example, see Wei et al. (2002)). Among them, the following form of the 

regularized Dirac-delta function has been commonly used due to its excellent numerical properties 

such as smoothness and regularity:    
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where α is the regularization parameter that describes the relationship between smoothness and the 

desired accuracy of approximation. To obtain an accurate representation of the Dirac-delta function 

using above regularized function, the parameter α should be as small as possible (α → 0). Figure 1 

shows the effect of α-value on accuracy and smoothness of the approximate function. 

 It can be clearly seen from Figure 1 that the accuracy and smoothness of the approximate func-

tion can be easily and efficiently adjusted by changing the value of the parameter α. In other words, 

by decreasing the magnitude of the parameter α, the shape of approximate function becomes non-

smoother and approaches to that of the real Dirac-delta function. It is noted that although decreas-

ing the value of the parameter α results in a better representation of the Dirac-delta function, it can 

introduce another difficulty when such function is approximated by the point discretization meth-

ods like the DQM. The reason for this is that a higher-order DQM should be used in these cases 

and this may considerably increase the computational cost especially when the α-value is chosen to 

be too small. Therefore, when a point discretization method like the DQM is employed, one should 

find a proper value for the α such that the numerical accuracy and computational efficiency of the 

method are balanced. 

 

   
 

Figure 1: Effect of α-value on accuracy and smoothness of the regularized Dirac-delta function. 
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4 FORMULATION FOR FORCED VIBRATION 

OF BEAMS CARRYING MOVING LOADS  
 

Consider an Euler-Bernoulli beam with length L, mass per unit length ρA, and flexural stiffness EI 

subjected to a concentrated load f moving at a constant velocity v. The governing differential equa-

tion of motion of the beam is given by (Meirovitch, 1967; Fryba, 1999) 
 

)),((
),(),(

4

4

2

2

txxf
x

txw
EI

t

txw
A f











   

vttx f )(  (11) 

 

where w(x, t)  is the lateral deflection of the beam, t is the time, and xf(t) is position coordinate of 

the moving load. In view of Eq. (10), Eq. (11) can be rewritten as 
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Consider n grid points with coordinates x1, x2, …, xn  in the x-direction. Satisfying Eq. (12) at any 

grid point x = xi and substituting the quadrature rule, given in Eq. (4), into results gives 
  

)}({)}(]{[)}(]{[ ttt FWKWM   (13) 
 

where ][M  and ][K are the mass and stiffness matrices of the beam, )}({ tW and )}({ tW are the 

displacement and acceleration vectors, and )}({ tF is the load vector. ][M , ][K , )}({ tW , )}({ tW and

)}({ tF are given by 
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where [I] is an identity matrix of order n × n and [A ](4) is the DQM weighting coefficient matrix of 

the fourth-order derivative. After applying the boundary conditions of the beam, Eq. (13) can be 

solved for the unknown grid-point values using various step-by-step time integration schemes. The 

details of implementation of the beam boundary conditions can be found in Bert and Malik (1996a). 

In this study, the Newmark scheme (Bathe and Wilson, 1976) is employed to solve system (13). 
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5 FORMULATION FOR FORCED VIBRATION OF RECTANGULAR 

PLATES CARRYING MOVING LOADS  
 

Consider an isotropic thin rectangular plate with length a, width b, mass per unit area ρh, and flex-

ural rigidity D subjected to a moving concentrated load f. The governing differential equation of 

motion of the rectangular plate is given by (Rao, 2007) 
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where w(x, y, t)  is the lateral deflection of the plate, xf(t) and yf(t) are position coordinates of the 

moving load in the x- and y-directions, respectively, and vx  and vy are the corresponding moving 

speeds. In view of Eq. (10), Eq. (18) can be rewritten as 
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Consider n grid points with coordinates x1, x2, …, xn  in the x-direction, and m grid points with 

coordinates y1, y2, …, ym  in the y-direction. Satisfying Eq. (19) at any grid point x = xi and substi-

tuting the quadrature rule, given in Eq. (4), into results gives 
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where [I] is an identity matrix of order n × n, [A ](2) and [A ](4) are the DQM weighting coefficient 

matrices of the second- and fourth-order x-derivatives, respectively. Furthermore, 
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Satisfying Eq. (20) at any grid point y = yi and substituting the quadrature rule, given in Eq. (4), 

into results gives 
 

)}(~{)}(~]{~[)}(~]{~[ ttt FWKWM 
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 (23) 
 

where ]~[M  and ]~[K are the mass and stiffness matrices of the plate, )}(~{ tW and )}(~{ tW


are the 

displacement and acceleration vectors, and )}(~{ tF is the load vector. The n × n sub-matrices ]~[ ijM  

and ]~[ ijK , and the n × 1 sub-vector }~{ iF are given by 
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where ijI  are the elements of m × m identity matrix, )2(
ijA  and )4(

ijA  are the DQM weighting coeffi-

cients of the second- and fourth-order y-derivatives, respectively. Furthermore, 
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After applying the plate boundary conditions, one can solve the resulting system of ordinary differ-

ential equations for unknowns using various time marching schemes. The details of implementation 

of the plate boundary conditions can be found in Malik and Bert (1996) also in Shu and Du (1997a, 

1997b). 

 
6 NUMERICAL RESULTS AND DISCUSSION 

To validate the proposed formulation and its implementation, a number of numerical examples are 

now presented. The first and second examples demonstrate the applications of the proposed method 

to static analysis of simply supported beams and rectangular plates subjected to concentrated point 

loads. These numerical examples are presented herein to better understand the main source of er-

rors in the method and to better verify the accuracy and convergence of the method. The third 

example is of moving load problem of beams while the last one is that of rectangular plates. Two 

boundary conditions, namely, fully simply supported and fully clamped end conditions are consid-

ered in the third and last examples. For beams and plates with simply supported end conditions, 

analytical solutions can be found in the literature (Timoshenko and Woinowsky-Krieger, 1959; 

Fryba, 1999). Therefore, the accuracy of the proposed method can be verified by comparing the 

calculated results with those of analytical ones. 

 
6.1 Deflection of a Simply Supported Beam Due to a Concentrated Point Load 

Consider the bending problem of a simply supported beam with length L and flexural stiffness EI 

subjected to a concentrated transverse load f acting at a point x = xf, as shown in Figure 2.  
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Figure 2: Simply-supported beam with a concentrated point load. 

The governing differential equation for the bending of the beam can be written from Eqs. (11) and 

(12) as 
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The procedure for discretizing Eq. (30) using the DQM is very similar to that described in Section 

4. By applying the DQM to Eq. (30) we obtain 
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where the stiffness matrix ][K  is defined already in Eq. (14), and 
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It may be seen from Eqs. (33) and (34) that the elements of the load vector }{F depend directly on 

the coordinates of the grid points. This implies that the coordinates of the grid points can directly 

affect the values of the load vector. We will show in this section that the accuracy of the solutions 

may also be influenced by the grid points distribution. To demonstrate this, we computed the ele-

ments of the vector }{δ using Eqs. (34) and (8) for different values of xf (location of the applied 

load), n (number of grid points) and α (regularization parameter), and compared the results with 

those obtained using Eq. (10). Figures 3 and 4 illustrate the results. These results are obtained us-

ing two different values of α, namely, α = 0.25 and α = 0.05. 

    When α = 0.25, Figure 3 compares the results of discrete model with those of the continuous 

model. It can be seen that, except for n = 9, the discrete model shows a good representation to the 

continuous model. Note that the peak point of the discrete model with n = 9 differs slightly from 

that of the continuous model for xf / L = 0.17 and xf / L = 0.34. This is because the location of the 

applied load does not coincide with the DQM grid points in these cases.   

    Figure 4 presents the results for α = 0.05. It can be seen from Figure 4 that when the number of 

grid points is small, the discretized regularized Dirac-delta function does not provide a good repre-

x 

f xf 
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sentation to the original continuous function. Most importantly, the nonzero zone of the original 

continuous function is not accurately represented in the discretized model when the grid number is 

small. However, by increasing the grid number, the nonzero zone is better represented in the discre-

tized model. On the other hand, by comparing the results of Figure 4 with those of Figure 3, one 

may conclude that as the parameter α increases, the discretized model provide better representation 

to the original continuous model.   

 

 
Figure 3: Comparison of the discretized regularized Dirac-delta function (see Eq. (34)) with the continuous regular-

ized Dirac-delta function (see Eq. (10)) for different number of grid points and locations of applied load (α = 0.25). 
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Figure 4: Comparison of the discretized regularized Dirac-delta function (see Eq. (34)) with the continuous regular-

ized Dirac-delta function (see Eq. (10)) for different number of grid points and locations of applied load (α = 0.05). 

 

 

As we discussed earlier in Section 3, the inappropriate choice of parameter α may be a source of 

error in the numerical results. This error, however, can be easily controlled by changing the value of 

the regularization parameter α. On the other hand, the numerical results presented in Figures 3 and 

4 show that there is another source of error (say the main source of error) which may significantly 

influence the accuracy of the solutions. This error is mainly due to inappropriate representation of 

the regularized Dirac-delta function in the discretized form. 

    First, from Eq. (9) we note that the error of the DQM for approximation of w(ξ) and its deriva-

tives should decrease exponentially to zero due to the presence of nth factorial in the denominator. 

Therefore, we expect that very high accuracy to be achieved when using a significantly small num-

ber of grid points. However, when the DQM is applied to the present problem, we see from Figures 

3 and 4 that the regularized Dirac-delta function is not appropriately represented in the discretized 

model for small number of grid points and this may introduce another source of error in the numer-

ical results. As it can be seen from Figures 3 and 4, this error is mainly caused by the coordinates of 

the grid points and is more significant for smaller values of α. A way for overcoming this difficulty 

is to change the coordinates of grid points such that more grid points are clustered in the nonzero 
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zone, for instance by stretching the grid points toward the location of the applied load. However, 

our numerical experiments showed that this may results in ill-conditioning of the DQM resultant 

matrices (to save the space, these results are not presented herein). 

    To demonstrate the convergence and accuracy of the proposed approach, the bending problem of 

a simply supported beam under a concentrated point load is solved using the proposed approach for 

different locations of the applied load (xf) and for two different values of the regularization parame-

ter (α). Figures 5 and 6 present the variations of the percent error in numerical solutions (defined as

100 ExactExactDQM www ) with n for different values of xf.  

    The numerical results for α = 0.25 are shown in Figure 5. As it can be seen, the obtained solu-

tions converge to their final values uniformly. However, the numerical accuracy of the solutions is 

not very satisfactory as the maximum error in the numerical results is about 17 %. This is because 

the case α = 0.25 does not provide a good approximation to the original Dirac-delta function (see 

Figure 1 for more details). It can also be seen from Figure 5 that, in most cases, the error in numer-

ical results increases as the value of xf increases. But, the error in different points of the beam (i.e., 

x/L = 1/5, 1/2, 2/3, and 3/4) is almost the same order. 

 
Figure 5: Convergence and accuracy of the dimensionless deflection (w/β, β = fL

3
/EI) of a simply supported beam 

subjected to a concentrated point load for different locations of the applied load (α = 0.25) 
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Figure 6: Convergence and accuracy of the dimensionless deflection (w/β, β = fL
3
/EI) of a simply supported beam 

subjected to a concentrated point load for different locations of the applied load (α = 0.05) 

 
Figure 6 illustrates the results for α = 0.05. It can be seen from Figure 6 that when the number of 

grid points is too small, the error in quadrature solutions is very high and its behavior is oscillatory. 

Particularly, erroneous results are obtained when n = 9, 11, 13, and 15. As we discussed earlier, the 

reason for such trend of solutions is the inappropriate representation of the regularized Dirac-delta 

function in the discretized model for small number of grid points (see Figure 4 for details). Howev-

er, the error in quadrature solutions approaches to zero rapidly by increasing the number of grid 

points. On the other hand, from the numerical results presented in Figure 6, one sees that the error 

in quadrature solutions is also influenced by the location of the applied load, as to be expected. 

From Figure 6, one also sees that the quadrature solutions at different points of the beam (i.e., x/L 

= 1/5, 1/2, 2/3, and 3/4) are of the same order of accuracy. On the other hand, by comparing the 

results of Figure 6 with those of Figure 5, one sees that when larger values of α are used in the 

method, then better converging trend of solutions is achieved particularly at small number of grid 

points. However, when smaller values of α are used in the method, then better accuracy of the solu-

tions is achieved at rather large number of grid points. 
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    In Figure 7, the percent error in numerical results is plotted against the number of grid points 

for different values of α and xf. It can be seen that the error in numerical results converges to a con-

stant nonzero value by increasing the number of grid points. This nonzero constant value is, in fact, 

the error of the regularization function (see Eq. (10)). It is clear from Figure 7 that the value of this 

error can be decreased significantly by decreasing the value of α. 

    To better see the effects of regularization parameter on accuracy and convergence of solutions, 

the relative error in numerical results (defined as ExactDQM ww  ) is plotted against α in Figure 8 for 

different values of xf. These results are obtained using a sufficiently large number of grid points (n 

= 45) and are given at different points of the beam. Note that the values of α in the plot are in the 

range 0.05 to 0.5. As it can be seen, depending on location of the applied load, the overall order of 

convergence of the method with α is in the range 1 to 2. This implies that the employed regularized 

Dirac-delta function is at most second-order accurate. On the other hand, the results of Figure 8 

show that the order of convergence of the method (with respect to α) depends on the location of the 

applied load, and increases as xf → 0.5. 

 

 

Figure 7: Convergence and accuracy of the dimensionless deflection (w/β, β = fL
3
/EI) 

of a simply supported beam subjected to a concentrated point load for different values of α. 
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Figure 8: Variations of relative error in numerical results with α for different locations of the applied load (n = 45) 

 

6.2 Deflection of a Simply Supported Rectangular Plate Due to a Concentrated Point Load 

Consider the bending problem of a simply supported rectangular plate with length a, width b, 

thickness h, and bending stiffness D subjected to a concentrated transverse load f acting at a point 

(x, y) = (xf, yf). The governing differential equation for the bending of the plate can be written from 

Eqs. (18) and (19) as 
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The procedure for discretizing Eq. (35) using the DQM is very similar to that described in Section 5 

and is not repeated here again.  

    Our numerical results for the present problem showed that the error in numerical results may 

have similar trend as that shown in Figures 5 and 6 for the beam problem. Most importantly, the 

convergence problem of the method for the case of small values of α and n has been found to be 

more critical than that of the beam problem due to the existence of the double Dirac-delta function 

in the governing differential equation of the plate. This can be clearly observed from the numerical 
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results presented in Figure 9. The effects of regularization parameter value on accuracy and conver-

gence of the solutions are studied in Figure 10. Again, one sees that the regularization function (10) 

is at most second-order accurate. 
 

 

 
 

Figure 9: Convergence and accuracy of the dimensionless deflection (w/γ, γ = fa
2
/D) 

of a simply supported square plate subjected to a concentrated point load for different values of α. 

 

 

 

Figure 10: Variations of relative error in numerical results with 

respect to α for different locations of the applied load (n = m = 45) 

 

6.3 Vibration of a Beam Due to a Moving Point Load 

Consider a simply supported beam with a span L of 10.16 cm, width b = 0.635 cm, thickness h = 

0.635 cm, modulus of elasticity E = 2.068 × 1011 Pa, mass density ρ = 10686.9 kg/m3, subjected to 

a f = 4.45 N moving force (Rieker et al., 1996). The dynamic responses at the beam center, wcd, are 

evaluated for different values of v (velocity of moving load) and normalized by the static deflection 

wcs = fL3/(48EI) of a simply supported beam under a point load f at mid-span. The Newmark 

method with 1000 time intervals is used to solve the resulting dynamic equations. 
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 Our numerical experiments for the present problem showed that the value of α at which the 

convergence is attained depends considerably on the value of the beam length. Particularly, for very 

short beams, the numerical convergence has been achieved using only too small values of α. This 

phenomenon can be easily justified from the results presented in Figure 1, wherein the variations of 

the regularized Dirac-delta function versus x are shown. From Figure 1, we see that the regularized 

Dirac-delta function has nonzero values at x < 0.2 for every value of α ≥ 0.0625. This implies that 

for the case of beams with L < 0.2, one should use very small values of α in the method to insure 

the convergence and accuracy of the solutions (α << 0.0625).  

 A way for overcoming the above-mentioned drawback is to express the governing differential 

equation of the beam in dimensionless form such that the domain of the problem is changed from 0 

≤ x ≤ L  to 0 ≤ X ≤ 1. Then a similar procedure as that explained in Section 4 can be applied to 

discretize the resulting non-dimensional differential equation. By doing so, larger values of α can be 

used in the method, as we will show in the following (This can also be seen from the numerical re-

sults of the static analysis (see Figures 5-8)). By introducing the dimensionless variable X = x/L, 

the governing differential equation of motion of the beam can be written from Eq. (11) as 
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Now, introducing the regularized Dirac-delta function (10) to Eq. (36) gives 
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where 
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Figures 11 and 12 show the effect of regularization parameter, α, on accuracy and convergence of 

the results for two different values of moving speed. The analytical solution values are also shown 

for comparison. Note that the numerical results are shown for two different cases: (i) the case where 

the dimensional differential equation of the beam is considered (see Eq. (12)); and (ii) the case 

where the dimensionless differential equation of the beam is considered (see Eq. (37)). As it can be 

seen from Figures 11 and 12, the results of case (i) are not very satisfactory in terms of both accu-

racy and convergence. The results of case (ii) are found to be more superior to those of case (i), 

particularly in terms of numerical convergence. Note that when case (ii) is considered, better accu-

racy is achieved using significantly larger vales of α, as compared with the case (i).  
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Figure 11: Convergence and accuracy of the numerical results with decreasing α-value for the case where the di-

mensional differential equation of motion of the beam is discretized using the DQM (n = 51). 

 

Figure 12: Convergence and accuracy of the numerical results with decreasing α-value for the case where 

the dimensionless differential equation of motion of the beam is discretized using the DQM (n = 51). 

 

 

On the other hand, from numerical results presented in Figure 12, one sees the rate of convergence 

of the method with α increases as the load speed increases. Therefore, larger values of α can be used 

in the method for the case of high speed of travelling load. Figure 13 shows the convergence of solu-

tions with respect to the number of grid points (n). It can be seen from Figure 13 that the results of 

proposed method converge uniformly and agree well with the analytical solutions. It can also be 

clearly seen from this figure that the rate of convergence of the method with n increases as the load 

speed increases. This implies that smaller number of grid points can be used in the method for the 

case of high speed of travelling load. 
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Figure 13: Convergence and accuracy of numerical results for normalized central deflection 

of a simply supported beam subjected to a moving load for different load speeds. 

 

   

The numerical experiments are also carried out to obtain the dynamic magnification factors 

(DMFs) (maximum value of normalized deflection at the beam center) for various values of moving 

speed. The numerical results are given in Table 1. These results are obtained using α = 0.018 and 

different values of n (number of grid points). The analytical solution values are also tabulated in 

this table for comparison purposes. It can be seen from Table 1 that the results generated by the 

proposed method converge rapidly and agree very closely with the analytical solutions. 

 

v (m/s) n = 35 n = 39 n = 43 n = 47 n = 51 Exact 

31.2  1.1168 1.1209 1.1225 1.1216 1.1220 1.1216 

62.4 
 

1.2691 1.2581 1.2590 1.2566 1.2550 1.2585 

78.0 
 

1.4503 1.4452 1.4431 1.4420 1.4414 1.4434 

93.6 
 

1.5718 1.5702 1.5715 1.5709 1.5733 1.5742 

109.2 1.6582 1.6584 1.6593 1.6577 1.6591 1.6590 

140.4 1.7255 1.7280 1.7251 1.7246 1.7247 1.7263 

156.0 1.7350 1.7365 1.7303 1.7299 1.7299 1.7315 

 

Table 1: Convergence and accuracy of DMFs of a simply supported beam subjected 

to a moving concentrated load for different load speeds (α = 0.018). 

 

Now, consider a moving point load on a beam with clamped-clamped boundary conditions. Alt-

hough analytical solutions do not exist for this condition, accurate numerical solutions are available 

in the literature (Rieker et al., 1996). Therefore, the accuracy of the method can also be checked for 

this case. The dynamic responses at the beam center are evaluated for different travel speeds (v) 

and normalized by the static deflection wcs = fL3/(192EI) of a fully clamped beam under a point 

load f at mid-span. The numerical results are tabulated in Tables 2 and 3 together with the finite 
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element solutions obtained by Rieker et al. (1996). Note that these results are obtained using two 

different values of α. Excellent agreements are observed between the results of present analysis and 

those of Rieker et al. (1996). Besides, the convergence behavior of solutions is more uniform in the 

case α = 0.025 as compared with the case α = 0.02. However, the accuracy of the solutions in the 

case α = 0.02 is better than that in the case α = 0.025. From the numerical results presented in this 

section, it can be concluded that the proposed approach is very well suitable for handling the mov-

ing load problem on beam-like structures. 

 

v (m/s) n = 31 n = 33 n = 35 n = 37 n = 39 Rieker et al. (1996) 

141.3070 1.303 1.304 1.302 1.301 1.301 1.311 

282.6140
 

1.629 1.633 1.632 1.632 1.633 1.637 

423.9210 1.546 1.553 1.551 1.548 1.547 1.552 

 

Table 2: Convergence and accuracy of DMFs of a clamped beam subjected 

to a moving concentrated load for different load speeds (α = 0.025). 

 

 

v (m/s) n = 31 n = 33 n = 35 n = 37 n = 39 Rieker et al. (1996) 

141.3070 1.308 1.313 1.307 1.303 1.303 1.311 

282.6140
 

1.630 1.636 1.636 1.634 1.636 1.637 

423.9210 1.548 1.559 1.556 1.551 1.549 1.552 

 

Table 3: Convergence and accuracy of DMFs of a clamped beam subjected 

to a moving concentrated load for different load speeds (α = 0.02). 

 

6.4 Vibration of a Rectangular Plate Due to a Moving Point Load 

To demonstrate the applicability of the proposed method for the forced vibration analysis of rectan-

gular plates carrying moving dynamic loads, application is made to a numerical example given by 

Eftekhari and Jafari (2012d). The parameters used in this numerical example are as follows: 
 

ρh/D = 1,   f/D = 1,  a = b = 1, xf(t) = vt, yf(t) = constant = ½ 
 

where v is the velocity of the moving load in the x-direction and t is the time. Other parameters are 

defined already in Section 5. As pointed out earlier, an analytical solution for the present problem is 

given in Fryba (1999) for plates with simply supported end conditions which will be used here to 

validate the proposed method. Figure 14 demonstrates the influence of the regularization parameter, 

α, on the accuracy of solutions and Figure 15 shows the convergence behavior of solutions with re-

spect to the number of grid points. 
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Figure 14: Effect of α-value on the accuracy of numerical results for central deflection of a simply 

supported square plate subjected to a moving load for different load speeds (n = m = 45). 

 

 

Figure 15: Convergence and accuracy of numerical results for central deflection of a simply 

supported square plate subjected to a moving load for different load speeds (α = 0.03). 

 

 

It can be seen from Figure 14 that the accuracy of solutions is improved significantly by decreasing 

the magnitude of α. On the other hand, by comparing these results with those of static analysis (see 

Figures 9 and 10), one sees that a smaller value of α should be used in the dynamic analysis of 

plates. For instance, as it can be seen from Figure 9, an acceptable accurate solutions for the static 

analysis of plates are achieved using α = 0.05. This value for the dynamic analysis of plates is α = 

0.03 which is slightly smaller than that of the static analysis. The reason for this may be due to 

accumulation of the error in the time integration scheme, noting that the location of the applied 

load may affect the error of numerical results at each time step (see Figures 9 and 10 for more de-

tails).  

 Now, consider a moving point load on a plate with fully clamped boundary conditions. The nu-

merical results for this case are presented in Figure 16. The Ritz-DQM solutions of Eftekhari and 
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Jafari (2012d) are also shown for comparison. It can be seen that the results of proposed method 

converge smoothly and agree well with those of the Ritz-DQM. 

 

 
 

 

Figure 16: Convergence and accuracy of numerical results for central deflection of a clamped 

square plate subjected to a moving load for different load speeds (α = 0.03). 

 

 

7 CONCLUSIONS 

There are many problems in applied mechanics whose governing partial differential equations in-

volve the Dirac-delta function. For instance, the behavior of structures under impulsive loading, the 

static and dynamic behavior of structures under impact loading, the thermoelastic dynamic behav-

ior of structures under heat or pressure point sources can be mathematically described by means of 

the Dirac-delta function. In each of these problems, the accurate prediction of the structure re-

sponse is very important and is a key factor in the design and analysis of such structures. In gen-

eral, such type of problems can be solved by the help of analytical and/or numerical methods. 

Among the numerical methods, the point discretization techniques such as the collocation, finite 

difference, discrete singular convolution, and the differential quadrature methods have been success-

fully applied by many researchers to various problems encountered in applied mechanics.  

 The direct discretization of the Dirac-delta function using point discretization techniques like the 

DQM is not an easy task and special treatment is required. A way for overcoming this difficulty is 

to approximate the Dirac-delta function with simpler mathematical functions. Based on this idea, in 

this paper, a simple DQ procedure is presented for the numerical solution of moving load problem, 

where the location of the applied load is described by a time-dependent Dirac-delta function. To 

demonstrate its applicability, the proposed procedure is applied here to moving load problems of 

beams and rectangular plates. Numerical results prove that the proposed procedure is reliable and 

accurate.  
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 The main advantage of the proposed method is its simplicity. Most importantly, the proposed 

method can be used as an efficient tool for the dynamic analysis of plates under loads moving along 

an arbitrary trajectory on the plate surface. 
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