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Abstract 

The convergence characteristic of the conventional two-noded 

Euler-Bernoulli piezoelectric beam finite element depends on the 

configuration of the beam cross-section. The element shows slower 

convergence for the asymmetric material distribution in the beam 

cross-section due to ‘material-locking’ caused by extension-bending 

coupling. Hence, the use of conventional Euler-Bernoulli beam 

finite element to analyze piezoelectric beams which are generally 

made of the host layer with asymmetrically surface bonded piezoe-

lectric layers/patches, leads to increased computational effort to 

yield converged results. Here, an efficient coupled polynomial 

interpolation scheme is proposed to improve the convergence of 

the Euler-Bernoulli piezoelectric beam finite elements, by eliminat-

ing ill-effects of material-locking. The equilibrium equations, de-

rived using a variational formulation, are used to establish rela-

tionships between field variables. These relations are used to find 

a coupled quadratic polynomial for axial displacement, having 

contributions from an assumed cubic polynomial for transverse 

displacement and assumed linear polynomials for layerwise electric 

potentials. A set of coupled shape functions derived using these 

polynomials efficiently handles extension-bending and electrome-

chanical couplings at the field interpolation level itself in a varia-

tionally consistent manner, without increasing the number of 

nodal degrees of freedom.  The comparison of results obtained 

from numerical simulation of test problems shows that the conver-

gence characteristic of the proposed element is insensitive to the 

material configuration of the beam cross-section.     
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1 INTRODUCTION 

The piezoelectric smart structures have dominated the current state of the art shape and vibra-

tion control technology due to their high reliability (Crawley and de Luis, 1987). Electromechani-

cal coupling present in the piezoelectric materials adds the ability to respond to the subjected 

forced environment. Piezoelectric beams render a wide class of smart structures (Benjeddou et al., 

1997). Their numerical analysis plays an important role in the design of piezoelectric beam based 

control systems. The analysis of piezoelectric beam requires efficient and accurate modeling of 

both mechanical and electric responses (Sulbhewar and Raveendranath, 2014 a; Zhou et al., 

2005).  

As most of the smart beams are thin (Marinkovic and Marinkovic, 2012), Euler-Bernoulli 

beam theory has been favored by many researchers for their formulations. Analytical models 

based on the Euler-Bernoulli theory were presented by Crawley and de Luis (1987), Crawley and 

Anderson (1990) and Abramovich and Pletner (1997) for static and dynamic analyses of piezoe-

lectric beams. Crawley and de Luis (1987) carried out the parametric studies to show the effec-

tiveness of piezoelectric actuators in transmitting the strain to the substrate. Crawley and Ander-

son (1990) extended this analysis to establish the range over which the simpler analytical solu-

tions are valid. Abramovich and Pletner (1997) proposed closed form solutions for induced curva-

ture and axial strain of an adaptive sandwich structure.  

Also, the classical laminate theory based piezoelectric plate finite elements (Hwang and Park, 

1993; Lam et al., 1997; Wang et al., 1997) and beam elements (Balamurugan and Narayanan, 

2002; Bendary et al., 2010; Bruent et al., 2001; Carpenter, 1997; Gaudenzi et al., 2000; Hanagud 

et al., 1992; Kumar and Narayanan, 2008; Manjunath and Bandyopadhyay, 2004; Robbins and 

Reddy, 1991; Sadilek and Zemcik, 2010; Stavroulakis et al., 2005; Zemcik and Sadilek, 2007) are 

available in the literature for the analysis of extension mode piezoelectric beams.  

A four-noded classical plate bending element with an elemental electric potential degree of 

freedom was used by Hwang and Park (1993) for the vibration control analysis of composite 

plates with piezoelectric sensors and actuators, while with nodal electric potential degrees of free-

dom for static shape control study by Wang et al. (1997). Lam et al. (1997) developed a four-

noded classical plate finite element with negative velocity feedback control to study the active 

dynamic response of integrated structures. 

A very early finite element based on a classical beam theory proposed by Robbins and Reddy 

(1991), is without electrical nodal degrees of freedom and considered the strain induced by piezoe-

lectric material as an applied force. The active vibration control of beams using piezoelectric ma-

terial was studied using Euler-Bernoulli piezoelectric beam finite elements by Balamurugan and 

Narayanan (2002), Bruent et al. (2001), Gaudenzi et al. (2000), Hanagud et al. (1992), Kumar 

and Narayanan (2008), Manjunath and Bandyopadhyay (2004) and Stavroulakis et al. (2005). 

Carpenter (1997) used energy methods to derive Euler-Bernoulli beam finite element for analyzing 

elastic beams with piezoelectric materials. Euler-Bernoulli beam element with assumed bilinear 

electric potential was used by Zemcik and Sadilek (2007) and Sadilek and Zemcik (2010) for 

modal and frequency response analysis of piezoelectric smart beams, respectively. Bendary et al.  
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(2010) carried out the static and dynamic analyses of composite beams with piezoelectric materi-

als using a classical laminate theory based beam element with layerwise linear through-thickness 

distribution of nodal electric potential.  

Generally, the Euler-Bernoulli theory based beam elements give good convergence of finite el-

ement results (Reddy, 1997). However, when the beam cross-section consists of asymmetrical ma-

terial distribution, these elements suffer from material-locking due to presence of extension-

bending coupling (Raveendranath et al., 2000). As most of the piezoelectric beam structures con-

tain a piezoelectric material layer asymmetrically bonded to the host structure, it activates the 

extension-bending coupling and hence deteriorates the finite element convergence. One of the 

ways to get rid of material-locking is the use of a higher-order polynomial interpolation for the 

axial displacement along the length of the beam (Raveendranath et al., 2000; Sulbhewar and 

Raveendranath, 2014b). A more efficient way to remove ill-effects of material-locking is the use of 

coupled polynomial field interpolations which incorporate the extension-bending coupling in an 

appropriate manner, without increasing nodal degrees of freedom (Raveendranath et al., 2000; 

Sulbhewar and Raveendranath, 2014 c; 2014 d). For Euler-Bernoulli piezoelectric beam finite 

element, electromechanical coupling also has to be accommodated properly along with the exten-

sion-bending coupling in a coupled polynomial field based formulation.  

Here in this study, a novel interpolation scheme, based on coupled polynomials derived from 

governing equilibrium equations, is proposed to eliminate material-locking in the Euler-Bernoulli 

piezoelectric beam finite element. The variational formulation is used to derive governing equilib-

rium equations which are used to establish the relationship between field variables. The polyno-

mial derived here for the axial displacement field for the beam contains an additional coupled 

term along with conventional linear terms, having contributions from an assumed cubic polyno-

mial for transverse displacement and assumed linear polynomials for layerwise electric potential. 

This coupled term facilitates the use of higher order polynomial for axial displacement without 

introducing any additional generalized degrees of freedom in the formulation. A set of coupled 

shape functions is obtained from these coupled field polynomials which accommodates extension-

bending and piezoelectric couplings in a variationally consistent manner. The accuracy of the 

present formulation is shown by comparing results with those from ANSYS 2D simulation and 

conventional formulations. Convergence studies are carried out to prove the efficiency of the pre-

sent Euler-Bernoulli piezoelectric beam formulation with coupled shape functions over the con-

ventional formulations with assumed independent shape functions. 

 
2 THEORETICAL FORMULATION 

The formulation is based on the equivalent single layer (ESL) Euler-Bernoulli theory for mecha-

nical field and a layerwise linear model for electric potential ( ). The multilayered piezoelectric 

smart beam is considered, as shown in Figure 1. The layer(s) can be host layers of conventio-

nal/composite material or bonded/embedded layer(s) of piezoelectric material. The beam layers 

are assumed to be made up of isotropic or specially orthotropic materials, with perfect bonding  
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among them. The top and bottom faces of the piezoelectric layers are fully covered with electro-

des. Mechanical and electrical quantities are assumed to be small enough to apply linear theories 

of elasticity and piezoelectricity.  

 

 
 

Figure 1: Geometry of a general multilayered piezoelectric smart beam. 

 
2.1 Mechanical Displacements and Strain 

The Euler-Bernoulli theory is used for which the field expressions are given as (Bendary et al., 

2010): 
'

0 0( , ) ( ) ( )u x z u x zw x   (1) 
 

0( , ) ( )w x z w x  (2) 
 

where ( , )u x z and ( , )w x z are the displacements in the longitudinal and transverse directions of the 

beam, respectively. 0( )u x and 0 ( )w x are the centroidal axial and transverse displacements, respec-

tively. ( ) ' denotes derivative with respect to x . Dimensions , ,L b h denote the length, width and the 

total thickness of the beam, respectively.  

 Axial strain field is derived using usual strain-displacement relation as: 
 

' ''
0 0

( , )
( , ) ( ) ( )x

u x z
x z u x zw x

x



  


 (3) 

 
2.2 Electric Potential and Electric Field 

The through-thickness profile of the electric potential ( , )x z in a piezoelectric layer is taken as 

linear (Bendary et al., 2010). As shown in Figure 1, the two dimensional electric potential takes 

the values of 1( )i x  and ( )i x at the top and bottom faces of the thi piezoelectric layer, respective-

ly. The electric field in the transverse direction ( zE ) can be derived from electric potential as 

(Bendary et al., 2010): 
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( , ) ( )
( , )i i i

z
i

x z x
E x z

z h

 
   


 (4) 

 

where 1i i i    , is the difference of potentials at the top and bottom faces of the thi piezoelec-

tric layer with thickness ih . 

 
3 REDUCED CONSTITUTIVE RELATIONS  

The smart beam consisting layers of conventional/composite/piezoelectric material with isotropic 

or specially orthotropic properties is considered here.  It has axes of material symmetry parallel to 

beam axes, in which electric field is applied in the transverse direction. For extension mode beam, 

the transversely poled piezoelectric material is subjected to the transverse electric field. The elas-

tic, piezoelectric and dielectric constants are denoted by , ( , 1.....6)ij kjC e i j  and ( 1,2,3)k k  , respec-

tively. The constitutive relations for such a system are given as (Sulbhewar and Raveendranath, 

2014 c): 
 

3111

31 3

ik k
xx

ii ii
zz

eQ

EeD

        
     

        

 (5) 

 

where ( i =1….number of piezoelectric layers), ( k =1…..total number of layers in beam). The con-

stants ,Q e and denote elastic ( 2N m ), piezoelectric ( 2C m ) and dielectric ( F m ) properties 

reduced for the beam geometry (Sulbhewar and Raveendranath, 2014 c). 

 
4 VARIATIONAL FORMULATION 

Hamilton’s principle is used to formulate the piezoelectric smart beam. It is expressed as 

(Sulbhewar and Raveendranath, 2014 c): 
 

2 2

1 1

( ) ( ) 0

t t

t t

K H W dt K H W dt           (6) 

 

where, K =kinetic energy, H =electric enthalpy density function for piezoelectric material and 

mechanical strain energy for the linear elastic material and W =external work done. 

 
4.1 Electromechanical and Strain Energy Variations 

For the thj  conventional/composite material layer, the mechanical strain energy variation is given 

as: 

 j j
j x x

V

H dV       (7) 

 

The electromechanical strain energy variation of the thi piezoelectric layer is given as: 
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 i i i i
i x x z z

V

H E D dV        (8) 

 

Substituting values of axial strain ( x ), electric field ( i
zE ) form equations (3), (4) and using them 

along with constitutive relations given by equation (5) in expressions (7) and (8); the total varia-

tion on the potential energy of the smart beam is given as: 
 

     

   

 

   

 

2 2

1 1

' ' ''
0 11 0 0 11 1 0 31 0

' '' ' ''
11 1 0 11 2 0 31 0 0 31 1 0

''
0

2
31 1 3 0 ( )

t t
k k k k i i

i i

t t x

k k k k i i i i
i i

i
i i i i

i i i i

H dt u Q I u Q I w e I h

Q I u Q I w e I h u e I h w
w dxdt

e I h I h

  

 
 

   
 

     
        

         

  

   (9) 

 

where ( i =1….number of piezoelectric layers), ( k =1…..total number of layers in beam) and  

 

 
4.2 Variation of Kinetic Energy 

Total kinetic energy of the beam is given as (Sulbhewar and Raveendranath, 2014 c): 
 

 
1

2 21

2

k

k

z

k

x z

K b u w dz dx


      (10) 

 

where k  is volumic mass density of thk layer in 3kgm and ( k =1…total number of layers in the 

beam).  Substituting values of u and w  from equations (1) and (2) and applying variation, to de-

rive at: 
 

     
2 2

1 1

' ' '
0 0 0 1 0 0 1 0 2 0 0 0 0

t t
k k k k k

k

t t x

K dt u I u I w w I u I w w I w dxdt                (11) 

 

where 
.

( )  denotes t  . 

 
4.3 Variation of Work of External Forces 

Total virtual work of the structure can be defined as the product of virtual displacements with 

forces for the mechanical work and the product of the virtual electric potential with the charges 

for the electrical work. The variation of total work done by external mechanical and electrical 

loading is given by (Sulbhewar and Raveendranath, 2014 c): 
 

   

 

2 2

1 1 0

V V S S
u w u w

t t
V S

C C
u wt t

S

uf wf dV uf wf dS

W dt dt
uf wf q dS





   


  

    
 
 

  
  

  

 

 
 

   (12) 

1 1
1( ) ( 1).

q qk
q k kI b z z q

 
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in which , ,V S Cf f f  are volume, surface and point forces, respectively. 0q and S  are the charge 

density and area on which charge is applied. 

 
5 DERIVATION OF COUPLED FIELD RELATIONS  

The relationship between field variables is established here using static governing equations. For 

static conditions without any external loading, the variational principle given in equation (6) reduc-

es to (Sulbhewar and Raveendranath, 2014 c): 
 

0H     (13) 
 

Applying variation to the basic variables in equation (9), the static governing equations are ob-

tained as: 

     '' ''' '
0 11 0 0 11 1 0 31 0: 0k k k k i i

i iu Q I u Q I w e I h     
 

   (14) 

     ''' '''' ''
0 11 1 0 11 2 0 31 1: 0k k k k i i

i iw Q I u Q I w e I h     
 

   (15) 

 

From equation (14), we can write the relationship of axial displacement ( 0u ) with transverse dis-

placement ( 0w ) and electric potential ( ) as: 
 

'' ''' '
0 1 0 2

u ui
iu w       (16) 

 

where 1 11 1 11 0( ) / ( )u k k k kQ I Q I   and 2 31 0 11 0( ) / ( )ui i i k k
ie I h Q I   . The constants ( 1,2)u

m m  which relate 

the field variables are the functions of geometric and material properties of the beam. This rela-

tion is used in the next section to derive coupled field polynomials. 

 
6 FINITE ELEMENT FORMULATION 

Using the variational formulation described above, a finite element model has been developed here. 

The model consists of two mechanical variables ( 0u and 0w ) and layerwise  electrical variables ( i ) 

where ( i  1…..number of piezoelectric layers in the beam). In terms of natural coordinate , a cubic 

polynomial for transverse displacement ( 0w ) and linear polynomials for i are assumed as given in 

equations 17 (a) and 17 (b), respectively. The transformation between  and global coordinate x

along the length of the beam is given as 1 2 12( ) / ( ) 1x x x x     with 2 1( )x x l  , being the length 

of the beam element. 

2 3
0 0 1 2 3w b b b b         (17a) 

0 1
i i

i c c      
(17b

) 
 

Using these polynomials for 0w and i in equation (16) and integrating with respect to  , we get 

the quadratic polynomial for axial displacement 0u as: 
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    2
0 1 3 2 1 1 06 / / 4u ui iu l b l c a a       

 
   (18) 

 

It is noteworthy that equation (18) contains a quadratic term in addition to the conventional 

linear terms. The formulation which use linear interpolation for 0u (Bendary et al., 2010) is known 

to exhibit material-locking when applied to beams with asymmetric cross-section (Sulbhewar and 

Raveendranath, 2014 b). A higher-order interpolation for 0u  as given in equation (18), is expected 

to relieve material-locking and improve the rate of convergence (Sulbhewar and Raveendranath, 

2014 b).  It takes care of extension-bending and electromechanical couplings in a variationally 

consistent manner with the help of the coupled quadratic term which has contributions from 

transverse displacement and layerwise electric potential. The 1
u takes care of the bending effects, 

while 2
ui takes care of electromechanical effects on the axial displacement. As seen from equa-

tions (17) and (18), while employing a quadratic polynomial for interpolation of axial displace-

ment, the generalized degrees of freedom are efficiently maintained the same as of the conven-

tional formulation of Bendary et al. (2010).  

Using equations (17) and (18), the coupled shape functions in equation (19) are derived by 

usual method. 
 

1
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 
 
 
 

   (19) 

 

The expressions for these shape functions in the natural coordinate system are given as: 
 

2 2 21 1 2
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   
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   (20) 

 

Now the variation on basic mechanical and electrical variables can be transferred to nodal degrees 

of freedom. Substituting equation (19) in equations (9), (11), (12) and using them in equation (6), 

the following discretized form of the model is obtained: 
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   

 

   
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   (21) 

 

where M is the mass matrix, , , ,uu u uK K K K   are global stiffness sub-matrices. ,U  are the glob-

al nodal mechanical displacement and electric potential degrees of freedom vectors, respectively.  F

and Q are global nodal mechanical and electrical force vectors, respectively.  Now the general for-

mulation has been converted to matrix equation which can be solved according to electrical condi-

tions (open/closed circuit), configuration (actuator/sensor) and type of analysis (static/dynamic).  

 
7 NUMERICAL EXAMPLES AND DISCUSSIONS 

The developed formulation is tested here for the accuracy and efficiency to predict the structural 

behaviour of piezoelectric extension mode smart beams. The formulation is validated for static 

(actuator/sensor configuration) and modal analyses. The present Euler-Bernoulli smart beam 

formulation which uses coupled polynomial based interpolation (hereafter designated as EB-CPI) 

is compared for performance against conventional Euler-Bernoulli smart beam formulations with 

assumed independent polynomial based interpolation as used by Bendary et al. (2010) (designated 

hereafter as EB-IPI).  

The particular test problem chosen here is the host layer made up of aluminum or 0/90 

graphite-epoxy composite material with surface bonded piezoelectric PVDF material layer as 

shown in Figure 2. The material and geometric properties of the beam are: 

Aluminum (Bendary et al., 2010): 368.9 ; 0.25; 2769E GPa kgm     . 

Graphite-epoxy (Beheshti-Aval and Lezgy-Nazargah, 2013): 

( , , , ) (181,10.3,7.17,2.87)L T LT TTE E G G GPa 3( , ) (0.28,0.33); 1578LT TT kgm     . 

PVDF (Sun and Huang, 2000): 2 9 1
31 32 ; 0.29; 0.046 ; 0.1062 10E Gpa e Cm Fm        

31800kgm   

4 ; 1 ; 100c ph mm h mm L mm   . 

 

 
 

Figure 2: Geometry of a extension mode piezoelectric smart cantilever beam. 
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The set of reference values is obtained from the numerical simulation of test problems with 

the ANSYS 2D simulation, for which a mesh of PLANE 183 element for host layer with size 

100 8  and a mesh of PLANE 223 element for piezoelectric layer with size 100 2 is used. 

 
7.1 Static Analysis: Sensor Configuration 

For sensor configuration, the piezoelectric smart cantilever shown in Figure 2 is subjected to a tip 

load of 1000N . The structural response of the beam is evaluated by present EB-CPI, convention-

al EB-IPI of Bendary et al. (2010) and ANSYS 2D simulation. The variations of transverse and 

axial deflections and potential developed across the piezoelectric layer along the length of the 

0/90/PVDF and Al/PVDF beams are plotted in Figures 3, 4 and 5, respectively. As seen from 

the plots, EB-CPI gives accurate predictions as of EB-IPI of Bendary et al. (2010) and ANSYS 

2D simulation. The through-thickness variations of axial stresses developed at the roots of the 

0/90/PVDF and Al/PVDF beams are plotted in Figure 6, which validate the use of present cou-

pled polynomial interpolation for calculation of derived quantities also. 
 

 
Figure 3: Sensor configuration: Variation of the transverse deflection along 

the length of the piezoelectric smart cantilever subjected to a tip load of 1000 N. 

 

 
Figure 4: Sensor configuration: Variation of the axial deflection along 

the length of the piezoelectric smart cantilever subjected to a tip load of 1000 N. 
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Figure 5: Sensor configuration: Variation of the potential developed across the piezoelectric 

layer along the length of the piezoelectric smart cantilever subjected to a tip load of 1000 N. 

 

 
(a) 0/90/PVDF 

 

 
(b) Al/PVDF 

 

Figure 6: Sensor configuration: Through-thickness variation of the axial stress developed 

at the root of the piezoelectric smart cantilever subjected to a tip load of 1000 N. 
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Now the efficiency of the present coupled polynomial based interpolation scheme over the conven-

tional independent polynomial based interpolation is proved by the convergence graphs plotted in 

Figures 7 and 8 for tip deflection and potential developed at the root of the beam, respectively. 

As seen from the graphs, EB-IPI of Bendary et al. (2010) exhibit material-locking and takes a 

large number of elements to converge to the accurate predictions as given by 2D simulation.  The 

present EB-CPI is free from material-locking effects and shows single element convergence. This 

improvement in the performance can be attributed to the coupled term present in the description 

of the axial displacement given by equation (18). The performance of the conventional formula-

tion (Bendary et al., 2010) may be improved by using an assumed independent quadratic interpo-

lation for the axial displacement; however it will increase the number of elemental degrees of 

freedom and computational efforts. 

 

 
(a) 0/90/PVDF 

 

 
(b) Al/PVDF 

 
Figure 7: Sensor configuration: Convergence characteristics of the Euler-Bernoulli based piezoelectric beam finite 

elements to predict the tip deflection of the piezoelectric smart cantilever subjected to a tip load of 1000 N. 
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(a) 0/90/PVDF 

 

 
(b) Al/PVDF 

 
Figure 8: Sensor configuration: Convergence characteristics of the Euler-Bernoulli based 

piezoelectric beam finite elements to predict the potential developed across the piezoelectric 

layer at the root of the piezoelectric smart cantilever subjected to a tip load of 1000 N. 

 
7.2 Static Analysis: Actuator Configuration 

For actuator configuration, the voltage of 10 KV is applied to the top surface of piezoelectric 

layer of the smart cantilever shown in Figure 2. The variations of transverse and axial deflections 

along the length of the 0/90/PVDF and Al/PVDF cantilever beams, obtained by EB-CPI, EB-

IPI of Bendary et al. (2010) and ANSYS 2D simulation are plotted in Figures 9 and 10, respec-

tively. The through-thickness variations of axial stresses developed at the roots of the 

0/90/PVDF and Al/PVDF beams are plotted in Figure 11. As seen from the deflection and stress 

plots, results by the present EB-CPI closely match with the results given by 2D simulation and 

EB-IPI of Bendary et al. (2010), which prove the accuracy of the present formulation in actuator 

configuration.    
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Figure 9: Actuator configuration: Variation of the transverse deflection along 

the length of the piezoelectric smart cantilever actuated by 10 KV. 

 

 
 

Figure 10: Actuator configuration: Variation of the axial deflection along 

the length of the piezoelectric smart cantilever actuated by 10 KV. 

 

 

 
(a) 0/90/PVDF 
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(b) Al/PVDF 

 

Figure 11: Actuator configuration: Through-thickness variation of axial stresses 

developed in the piezoelectric smart cantilever actuated by 10 KV. 

 
7.3 Modal Analysis 

The present EB-CPI is tested here for the accuracy and efficiency to predict the natural frequen-

cies of the piezoelectric smart cantilever shown in Figure 2. The converged values of first three 

natural frequencies of the 0/90/PVDF and Al/PVDF beams evaluated by EB-CPI, EB-IPI of 

Bendary et al. (2010) and ANSYS 2D simulation are tabulated in Table 1. As seen from the re-

sults, EB-CPI gives the accurate predictions for the natural frequencies as predicted by 2D simu-

lation and EB-IPI. This validates the use of consistent mass matrices generated by the present 

coupled polynomial field based interpolation scheme. 

    
 Natural frequency in Hz 

 0/90/PVDF Al/PVDF 

Reference First Second Third First Second Third 

EB-CPI 296.89 1849.9 5132.1 303.92 1899.3 5294.3 

EB-IPI (Bendary et al., 2010) 296.91 1850.6 5137.1 303.93 1899.5 5295.3 

ANSYS 2D 296.17 1815.9 4921.1 303.92 1899.4 5294.6 

 

Table 1: Natural frequencies in Hz for piezoelectric smart cantilever beam (Refer Figure 2). 
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(a) 0/90/PVDF 

 

 
(b) Al/PVDF 

 
Figure 12: Modal analysis: Convergence characteristics of the Euler-Bernoulli based piezoelectric beam finite ele-

ments to predict the first natural frequency of the piezoelectric smart cantilever. 

 
Now, the efficiency of the present interpolation scheme over conventional one is proved by the 

convergence graphs plotted for the first three natural frequencies in Figures 12, 13 and 14. These 

convergence graphs once again prove the merit of present EB-CPI over EB-IPI of Bendary et al. 

(2010). Also, the first three natural bending modes of the 0/90/PVDF piezoelectric smart cantile-

ver are plotted in Figure 15. 
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(a) 0/90/PVDF 

 

 
(b) Al/PVDF 

 
Figure 13: Modal analysis: Convergence characteristics of the Euler-Bernoulli based piezoelectric 

beam finite elements to predict the second natural frequency of the piezoelectric smart cantilever. 

 

 

 
(a) 0/90/PVDF 
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(b) Al/PVDF 

 
Figure 14: Modal analysis: Convergence characteristics of the Euler-Bernoulli based piezoelectric 

beam finite elements to predict the third natural frequency of the piezoelectric smart cantilever. 

 

 

 
 

Figure 15: Natural bending modes of the 0/90/PVDF piezoelectric smart cantilever. 

 
8 CONCLUSION 

An efficient Euler-Bernoulli piezoelectric beam finite element formulation has been proposed. The 

efficiency has been achieved by using the coupled polynomial field interpolation scheme. The rela-

tionship between field variables established using governing equations, is used to generate a cou-

pled polynomial for the axial displacement field for the beam. Consequently, the shape functions 

derived are also coupled which handle extension-bending and piezoelectric coupling in an efficient 

manner. From the numerical analysis, it was found that: 



Litesh N. Sulbhewar and P. Raveendranath/Coupled polynomial interpolation scheme for  EB piezoelectric beam FE       171 

Latin American Journal of Solids and Structures 12 (2015) 153-172 

 

 The present formulation gives accurate predictions of finite element results in both static 

(sensing/actuation) and modal analyses as given by conventional formulation and 2D finite ele-

ment simulation, which validate the use of present coupled polynomial field based interpolation.  

 The present interpolation scheme is free from any locking effect unlike conventional indepen-

dent polynomial based interpolation which suffers from material-locking. The convergence studies 

carried out prove the merit of the present coupled polynomial based interpolation over the con-

ventional independent polynomial based interpolations. 

 The present formulation proves to be the most efficient way to model piezoelectric smart 

beam with Euler-Bernoulli beam theory. 
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