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Abstract 

This paper addresses the static deformation of simply supported 

rectangular micro/nano plates made of functionally graded (FG) 

materials based on the three-dimensional nonlocal elasticity theo-

ry of Eringen. The plates are assumed to be simply supported 

and rested on a Winkler-Pasternak elastic foundation. Elasticity 

modulus is assumed to obey an exponential law along the thick-

ness direction of the micro/nano plate. Using the Fourier series, a 

displacement field is defined that satisfies simply supported 

boundary condition and reduces three elasticity equations to two 

independent equations. The closed-form bending response is 

achieved by exerting boundary conditions of the lateral surfaces. 

Numerical results are presented to investigate the influences of 

the gradient index of the material properties, nonlocal parameter 

and stiffness of elastic foundation on the mechanical behavior of 

the plates. 
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1 INTRODUCTION 

Micro- and nano-scaled plates are very important new type of structures that are utilized in dif-

ferent engineering applications such as micro- and nano-electro mechanical systems (MEMS and 

NEMS), atomic force microscopes, solar cells and many others. Therefore, to design such struc-

tures, their mechanical behaviors such as bending and free and forced vibration should be real-

ized. Recently, FG materials are used in structures such as MEMS and NEMS (Witvrouw et al., 

2005; Lee et al., 2006) to increase their thermal resistance. FG materials refer to nonhomogeneous 

composite materials with smooth and continuous variation of material properties from one surface 

to the other that is mainly composed of ceramic and metal constituents (Suresh and Mortensen, 

1998).  
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At micrometer and nanometer scale, the effect of van der Waals forces between the atoms be-

comes important. Since the size effect is not considered in the classical continuum theory, other 

size-dependent continuum theories such as modified couple stress (Yang et al., 2002), strain gra-

dient (Aifantis, 1999) and nonlocal elasticity (Eringen, 2002) have been developed. Based on size-

dependent theories, some works have been carried out to investigate mechanical behavior of mi-

cro/nano structures made of FG materials. Lu et al. (2009) considered the surface effects to de-

velop classic and Mindlin plate theories for nano-scaled FG circular films. They evaluated cylin-

drical bending for simply supported boundary conditions to demonstrate the stability of the de-

veloped theories. In another work, Lu et al. (2011) utilized the nonclassical thin plate theory and 

nonlinear strain of von Karman to solve nonlinear cylindrical bending of simply supported nano-

scaled FG rectangular films. Ansari et al. (2011) proposed a size-dependent model for bending 

and free vibration of Timoshenko microbeams made of FG materials based on the modified strain 

gradient elasticity theory. Reddy and Kim (2012) presented a nonlinear size-dependent third-

order plate theory based on the modified couple stress theory using nonlinear strains of von Kar-

man and power-law distribution for FG material along the thickness direction. They utilized the 

linear form of this theory to observe mechanical behavior of simply supported rectangular plates 

(2013). Sharafkhani et al. (2012) obtained mechanical responses of circular FG microplates under 

nonlinear transverse electrostatic and dynamic forces. They used Galerkin-based step-by-step 

linearization method to numerically solve the nonlinear governing equations. Natarajan et al. 

(2012) utilized the numerical method of iso-geometric based finite element to solve nonlocal free 

flexural vibration of FG nanoplates based on Reissner–Mindlin plate theory. Ke et al. (2012) ap-

plied the Hamilton principle and differential quadrature (DQ) method to study size-dependent 

mechanical behavior of FG annular microplates by incorporating the Mindlin plate theory and 

modified couple stress theory. Also, Ke et al. (2012) employed the numerical DQ method to in-

vestigate nonlinear free vibration of FG Timoshenko microbeams using the modified couple stress 

theory and von Karman geometric nonlinearity. Shatt et al. (2012; 2013) investigated the surface 

energy effects with and without the effect of neutral plane position on the static behavior of ultra-

thin FG films using Mindlin plate theory. Thai et al. (2013) carried out bending and free vibra-

tion of simply supported FG microplates based on the modified couple stress theory. They used 

Kirchhoff, Mindlin, Reddy and sinusoidal plate theories. Sahmani and Ansari (2013) determined 

natural frequencies of FG rectangular microplates using third-order shear deformation theory of 

plate and size-dependent theory of strain gradient. Jung and Han (2013) employed a nonlocal 

model and used first-order shear deformation theory to study bending and vibration of sigmoid 

FG nanoplates with simply supported boundary conditions. Hosseini-Hashemi and Nazemnezhad 

(2013) analytically determined the nonlinear natural frequencies of Euler–Bernoulli microbeams 

made of FG material in explicit form by the multiple scale method. Hosseini-Hashemi et al. 

(2013) incorporated Eringen nonlocal elasticity and Mindlin plate theory and presented exact 

analytical solution for free vibration of circular/annular FG nanoplates with arbitrary boundary 

conditions. Recently, Salehipour et al. (2015) has presented analytical closed-form solution for 

free vibration of nonlocal FG plates based on the three-dimensional elasticity theory. 

In the present article, using three-dimensional nonlocal elasticity theory of Eringen, exact 

closed-form solution is derived for cylindrical bending of thick simply supported FG rectangular 

micro/nano plates resting on Winkler-Pasternak elastic foundations. The variation of material 
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properties in the thickness direction is based on the exponential law. The closed-form solution is 

obtained by introducing a displacement field that includes two unknown functions and satisfies 

edges boundary conditions. Unknown functions are obtained from the governing equations of mo-

tion, exerting boundary conditions of the top and bottom surfaces. Numerical examples are pre-

sented to examine the influences of the gradient index of the material properties, nonlocal param-

eter and foundation stiffness on the bending behavior of FG micro/nano plates. The three-

dimensional elasticity is an exact theory without any simplicity assumption. The results that ob-

tained by analytical three-dimensional elasticity solution can be used as a benchmark to validate 

the accuracy of other analytical and numerical methods, which will be developed by researchers in 

the future.  

 

2 THEORETICAL FORMULATION 

Consider a rectangular FG micro/nano plate with a length of a in the x direction, width of b in 

the y direction and a uniform thickness h in the z direction. Origin of the Cartesian coordinate 

system (0; x, y, z) is located at a corner of the rectangular plate. The plate is assumed to be simp-

ly supported in all edges and attached at the bottom surface to a Winkler-Pasternak elastic foun-

dation.    

It is assumed that the material of micro/nano plate is isotropic functionally graded and the 

Young's modulus varies exponentially from the bottom surface to the top surface as follows 

 

 0 exp( )E E zφ=   (1) 

 

where φ is the gradient index of the variation and 
0

E  is Young's modulus at the bottom surface. 

In addition, Poisson’s ratio is assumed to be constant ( 0.3ν = ).The reason for the choice of ex-

ponential law of variation is to be able to obtain analytical solution for three-dimensional elastici-

ty equations. Although the exponential law of variation for FG materials does not exactly reflect 

any physical reality, but the variation of properties based on this law is similar to some realistic 

laws such as the power law (for special power indexes). 

 

2.1 Three-dimensional nonlocal equilibrium equations  

Nonlocal elasticity theory states that due to the effect of van der Waals forces, the stress at a 

point in an elastic body depends on the strain at all neighbor points as: 

 

 ( ) ( )  d ( )l
ij ij

V

x x x V xσ γ σ′ ′= −∫   (2) 

 

where ijσ  and l
ijσ  are nonlocal and local stresses, respectively, ( )x xγ ′−  is nonlocal kernel func-

tion and x x ′−  denotes the distance between the reference point x and any neighbor point x ′  in 
the continuum body. The integral constitutive relation (2) can be represented in a linear differen-

tial form (6) as:  
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 2(1 ) l
ij ijµ σ σ− ∇ =   (3) 

 

in which 2
0( )e aµ =  is the nonlocal parameter, 0e  is a material constant evaluated by the experi-

ment and a  is an internal characteristic length.  

In the absence of body forces, the nonlocal components of stress should satisfy linear three-

dimensional elasticity equilibrium equations given as:  

 

 , , , 0xx x xy y xz zσ σ σ+ + =   (4.a) 

 , , , 0xy x yy y yz zσ σ σ+ + =   (4.b) 

 , , , 0zx x zy y zz zσ σ σ+ + =   (4.c) 

 

 The above elasticity equations can be written in terms of the displacement components u , v  

and w  as:  

 

 ( ) ( ) ( )2
, , , , ,

( )
( ) ( ) 0

(1 2 )
xx xy xz z x

G z
G z u u v w G z u w

ν
′∇ + + + + + =

−
  (5.a) 

 ( ) ( ) ( )2
, , , , ,

( )
( ) ( ) 0

(1 2 )
xy yy yz z y

G z
G z v u v w G z v w

ν
′∇ + + + + + =

−
  (5.b) 

 ( ) ( ) ( )2
, , , , , , ,

( ) 2 ( )
( ) 2 ( ) 0

(1 2 ) 1 2
xz yz zz x y z z

G z G z
G z w u v w u v w G z w

ν

ν ν

′
′∇ + + + + + + + =

− −
  (5.c) 

 

where ( ) ( ) 2(1 )G z E z ν= +  is shear modulus and 2 2 2 2 2 2 2x y z∇ = ∂ ∂ +∂ ∂ +∂ ∂ .  

 

2.2 Solution procedure 

The following displacement field with two unknown functions 1( )zψ  and 2( )zψ  is utilized to solve 

the governing equations: (4)(5) 

 

 
1

1
1 1

2

( )( )cos( )sin( )

( )( )sin( )cos( )

( )sin( )sin( )n m

u z m a m x a n y b

v z n b m x a n y b

w z m x a n y b

ψ π π π

ψ π π π

ψ π π

∞ ∞

= =

               =                  

∑∑   (6) 

 

This displacement field satisfies the following boundary conditions of the simply supported plate: 

  

 
0, ( 0, )

0, ( 0, )
xx

yy

v w x a

u w y b

σ

σ

= = = =
= = = =

  (7) 

 

Substituting displacement field, Eq. (6), and Young's modulus, Eq. (1), into the equilibrium 

equations, Eqs. (5), leads to just two independent ordinary differential equations with constant 

coefficients as: 



H. Salehipour et al. / Closed-form elasticity solution for three-dim. deformation of functionally graded micro/nano plates on elastic foundation     751 

 

Latin American Journal of Solids and Structures 12 (2015) 747-762 

 

 0 0
0 1 0 1 1 2 0 2

(1 )
( ) ( ) ( ) ( ) ( ) 0

2mn
G z G z z z G z

λ ν λ
ψ φψ γ ψ ψ φψ

ν ν

−′′ ′ ′+ − + + =   (8.a) 

 0 0 0
2 2 0 2 1 0 1

(1 ) (1 )
( ) ( ) ( ) ( ) ( ) 0

2mn mn mn
z z G z z z

λ ν λ φ ν λ
ψ ψ γ ψ γ ψ λ φγ ψ

ν ν ν

− −′′ ′ ′+ − − − =   (8.b) 

where(8) 

 

0 0
0 0

2 2

,
2(1 ) (1 2 )(1 )

( ) ( )mn

E E
G

m a n b

ν
λ

ν ν ν

γ π π

= =
+ − +

= +

  (9) 

 
The solutions of Eqs. (8) are 
 
 1 2( ) exp( ), ( ) exp( )z A z z B zψ η ψ η= =   (10) 

 
Substituting 1( )zψ  and 2( )zψ  from Eq. (10) into Eqs. (8) and simplifying leads to:  
 

 2 0 0
0 0 0

(1 )
0

2mn
G G A G B

λ ν λ
η φη γ η φ

ν ν

   −   + − + + =   
   

  (11a.) 

 0 0 2 0
0 0

(1 ) (1 )
0

2 mn mn mn
A G B

λ λ ν λ φ ν
γ η λ φγ η η γ
ν ν ν

   − −   − − + + − =   
   

  (11.b) 

 

From Eqs. (11), characteristic equation is obtained as: (11) 

 

 

2 2 2
4 3 2 20 0 0 0 0 0 0

0 2

2 2
2 2 20 0 0 0 0 0
0 0 0

(1 ) 2 (1 ) (1 ) ( 3 8 4 )

4

(1 ) (1 )
0

2 2

mn mn

mn mn mn mn mn mn

G G G
G

G G
G G

λ ν λ φ ν λ φ ν λ ν ν
η η γ γ η

ν ν ν ν

λ ν λ φ λ φ λ ν
φγ φγ γ γ η γ λ φ γ

ν ν ν ν

 − − − − + − + + − + 
  

     − −     + − − + + + + =           

  (12) 

 

The fourth-order characteristic equation (12) have four roots as follows:  
 

 

1

2

3

4

1 1
cos( ) sin( ) , 1

2 2
j j

η

η
φ ξ θ θ

η

η

         = − ± ± = −          

  (13) 

where 

 

1/4
2

2 2

2

16
( 4 )

1

41
tan

4 ( 4 ) 1

mn
mn

mn

mn

Arc

φ νγ
ξ φ γ

ν

φ νγ
θ

φ γ ν

 
 = + + −  

 
 =  + −  

  (14) 

 
It can be found that the roots of the characteristic equation are complex.  Therefore, 1( )zψ  and 

2( )zψ  are expressed as:  



752     H. Salehipour et al. / Closed-form elasticity solution for three-dim. deformation of functionally graded micro/nano plates on elastic foundation 

 

Latin American Journal of Solids and Structures 12 (2015) 747-762 

 

 1 2 1 1 2 1 3 3 1 4 1( ) exp( ) cos( ) sin( ) exp( ) cos( ) sin( )z c z A c z A c z c z A c z A c zψ    = + + +      (15.a) 

 2 2 1 1 2 1 3 3 1 4 1( ) exp( ) cos( ) sin( ) exp( ) cos( ) sin( )z c z B c z B c z c z B c z B c zψ    = + + +      (15.b) 

where 

 1

1
sin( )

2
c ξ θ=   (16.a) 

 2

3

1 1
cos( )

2 2

c

c
φ ξ θ

    = − ±    
  (16.b) 

 

Moreover, by inserting 1( )zψ  and 2( )zψ  into either of Eqs. (8.a) or (8.b), iB  are obtained in terms 

of iA  as: (15)(16) 
 

 

1 1 3 2 4 1 1 4 2 3 2

2 2
2 2 3 1 4 1 2 4 1 3 21 2

3 1 3 2 4 3 1 4 2 3 4

2 2
4 2 3 1 4 3 2 4 1 3 41 2

( ) ( )1

( ) ( )

( ) ( )1

( ) ( )

B d d d d A d d d d A

B d d d d A d d d d Ad d

B f f f f A f f f f A

B f f f f A f f f f Af f

   + + −      =      − + ++      
   + + −      =      − + ++      

  (17) 

where 

 

1 20
0

1 3

0 1
2 2

2 2
3 2 2 1 0

0 0 2 2
3 3 3 1

4 1 2
0 1 0

4 1 3

2

2
(1 )

2

mn

d c
G

f c

c
d f

d c c c
G G

f c c c

d c c
G c G

f c c

λ
φ

ν

λ

ν

λ ν
φ γ

ν

φ

         = +            

= =

      −    −      = − − +          −           
         = − −            

  (18) 

 

 To obtain unknown coefficients 
i

A  (1, 2, 3, 4), the boundary conditions on the lateral surfaces 

should be satisfied. The shear stresses on the lateral surfaces are zero, hence, 
 

 0, ( 0, )
xz yz

z hσ σ= = =   (19) 

 

 The top surface of the FG micro/nano plate is subjected to the transverse load ( , )Q x y  and the 

bottom surface is on an isotropic Winkler-Pasternak elastic foundation. Thus, 

 

 
2 2

2 2
, ( 0)

w pzz

w w
k w k

x y
zσ

 ∂ ∂  −  +   ∂
=

∂
=   (20.a) 

 ( , ), ( )
zz

Q x y z hσ = =   (20.b) 

 

where wk  and pk  are the Winkler stiffness and shear stiffness of the foundation, respectively. The 

stress components xzσ , yzσ  and zzσ  are obtained from Eqs. (3) and (6) as: 
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1 1

( )cos( )sin( )

( )sin( )cos( )
xz

yz n m

U m a m x a n y b

V n b m x a n y b

σ π π π

σ π π π

∞ ∞

= =

         =            
∑∑   (21.a) 

 
1 1

sin( )sin( )
zz

n m

W m x a n y bσ π π

∞ ∞

= =

= ∑∑   (21.b) 

where 

 { }0 2 1 1 2 1 3 3 1 4 1exp ( ) cos( ) sin( ) exp ( ) cos( ) sin( )
U

G c z K c z K c z c z K c z K c z
V

φ φ
           = + + + + +            

  (22.a) 

 { }0
2 5 1 6 1 3 7 1 8 1exp ( ) cos( ) sin( ) exp ( ) cos( ) sin( )W c z K c z K c z c z K c z K c z

λ
φ φ

ν
       = + + + + +          (22.b) 

and 

 

1 2 1 1 2 1 1 2 2 1 1 2 2

2 2
2 2 2 1 1 2 1 2 1 1 2 1 21 2

3 3 3 1 4 3 3 3 4 1 3 4 4

2 2
4 3 4 1 3 4 3 3 3 1 4 3 43 4

( ) ( )1

( ) ( )

( ) ( )1

( ) ( )

K c A c A B g c A c A B g

K c A c A B g c A c A B gg g

K c A c A B g c A c A B g

K c A c A B g c A c A B gg g

   + + + − +      =      − + − + ++      
  + + + − +   =   − + − + ++  

       

  (23.a) 

 

5 2 1 1 2 1 1 2 2 1 1 2 2

2 2
6 2 2 1 1 2 1 2 1 1 2 1 21 2

7 3 3 1

2 2
8 3 4

(1 )( ) (1 )( )1

(1 )( ) (1 )( )

(1 )(1

mn mn

mn mn

K c B c B A g c B c B A g

K c B c B A g c B c B A gg g

K c B c B

K g g

ν νγ ν νγ

ν νγ ν νγ

ν

       − + − + − − −         =         − − − − − + −+         
  − +   =   +  

4 3 3 3 4 1 3 4 4

3 4 1 3 4 3 3 3 1 4 3 4

) (1 )( )

(1 )( ) (1 )( )
mn mn

mn mn

A g c B c B A g

c B c B A g c B c B A g

νγ ν νγ

ν νγ ν νγ

     − + − − −          − − − − − + −     

  (23.b) 

 

2 2
1 2 1

2 2
3 3 1

2 1 2

4 1 3

( )
1

( )

( )
2

( )

mn

g c c

g c c

g c c

g c c

φ
µγ µ

φ

φ
µ

φ

    + −      = + −      + −       
   +      =      +      

  (23.c) 

 

 Using Eqs. (21.a) and (21.b), the four shear boundary equations, Eq. (19), reduce to two inde-

pendent equations as follows: (20)(21)(22)(23) 
 

 
2 1 1 2 1

3 3 1 4 1

exp ( ) cos( ) sin( )

exp ( ) cos( ) sin( ) 0, ( 0, )

c z K c z K c z

c z K c z K c z z h

φ

φ

   + + +   
   + + = =   

  (24) 

 

Also, the two boundary equations (20.a) and (20.b), lead to the following algebraic equations: 
 

 
{ }

{ }

0
2 5 1 6 1 3 7 1 8 1

2 2
2

exp ( ) cos( ) sin( ) exp ( ) cos( ) sin( )

( ) ( ) (0), ( 0)
w p

c z K c z K c z c z K c z K c z

k k m a n b z

λ
φ φ

ν

π π ψ

       + + + + + =       

 + + =  

  (25.a) 
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3 7 1 8 1

exp ( ) cos( ) sin( )

exp ( ) cos( ) sin( ) , ( )mn
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c z K c z K c z Q z h

λ
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ν

φ

   + + +   

   + + = =   

  (25.b) 
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where(25) 

 
0 0

4
( , )sin( )sin( )

b a

mnQ Q x y m x a n y b dxdy
ab

π π= ∫ ∫   (26) 

 

 The solution is completed by obtaining the constant coefficients 
1

A , 
2

A , 
3

A  and 
4

A  from the 

four algebraic equations (24) and (25).  

 

3 NUMERICAL RESULTS AND DISCUSSION 

For the simplicity and without loss of generality, in all examples it is assumed that the transverse 

loading has one of the following sinusoidal or uniform forms: 

 

 ( , ) sin( )sin( )Q x y q x a y bπ π= −   (27.a) 

 ( , )Q x y q= −   (27.b) 

 

The following dimensionless forms of the displacements, stresses, nonlocal parameter, gradient 

index of the material properties and foundation parameters are utilized in the numerical exam-

ples: 
 

 0 0 0, ,u G u qh v G v qh w G w qh= = =   (28.a) 

 
ij ij

qσ σ=   (28.b) 

 4 2,
W w p p

K k a D K k a D= =   (28.c) 

 2
0 exp( ),

h
E E h hφ φ µ µ= = =   (28.d) 

 

where 3
0 6(1 )D G h ν= −  is a reference of the bending rigidity of the plate. 

 No results have been published for bending response of micro/nano FG plates with exponential 

variation of material properties based on the nonlocal elasticity. Thus, the comparison study is 

presented for local FG plates and nonlocal homogeneous plates. Table 1 compares the central out-

of-plane displacement
 
of a thick square local FG plate, 

h
G w qh , with the results given by 

Kashtalyan (2004). The results are presented for the length-to-thickness ratio of 3 ( 3a h = ) and 

a range of the inhomogeneity gradient index ( 0ln( )
h

E E ), where 
h

G  and 
h

E  denote shear modu-

lus and Young's modulus of the top surface of the plate. Excellent agreement is observed between 

the results. 

In Table 2, the central out-of-plane displacement
 
of a square local homogeneous plate on Win-

kler-Pasternak elastic foundation is compared with the results given by Huang et al. (2008). The 

results are presented for different stiffness values of foundation. Excellent agreement is observed 

between the results. 

The central out-of-plane displacement
 
of a square nonlocal homogeneous plate is tabulated in 

Table 3 and compared with the results obtained by two-dimensional Third-order plate theory 

(Aghababaei and Reddy, 2009) for different values of nonlocal parameter. 
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Inhomogeneity 

0ln( )hE E  

Method 
, ,
2 2 2

hG w a a h

qh

     
 

10-1 
Kashtalyan (2004) -1.41464 

Present -1.414636 

10-2 
Kashtalyan (2004) -1.34960 

Present -1.349603 

10-3 
Kashtalyan (2004) -1.34326 

Present -1.343258 

10-4 
Kashtalyan (2004) -1.34263 

Present -1.342625 

10-5 
Kashtalyan (2004) -1.34256 

Present -1.342562 

10-6 
Kashtalyan (2004) -1.34256 

Present -1.342555 

Table 1: Comparison of normalized out-of-plane displacement ( ) ( )2, 2, 2hG w qh f a a h=  for a square FG plate 

with 3,a h = subjected to a sinusoidal load q. 

 

WK  PK  Method 3
3 0

2 4
10 , ,

2 2 212(1 )

E h w a a h

qaν

  − ×    −
 

1 

1 Huang et al. (2008) 3.8546 

 Present (100 term series) 3.85495 

34
 

Huang et al. (2008) 0.7630 

 Present (100 term series) 0.76314 

54 Huang et al. (2008) 0.1153 

 Present (100 term series) 0.11539 

34 

1 Huang et al. (2008) 3.2105 

 Present (100 term series) 3.21084 

34
 

Huang et al. (2008) 0.7317 

 Present (100 term series) 0.73189 

54 Huang et al. (2008) 0.1154 

 Present (100 term series) 0.11461 

54 

1 Huang et al. (2008) 1.4765 

 Present (100 term series) 1.47673 

34
 

Huang et al. (2008) 0.5704 

 Present (100 term series) 0.57052 

54 Huang et al. (2008) 0.1095 

 Present (100 term series) 0.10955 

Table 2: Comparison of normalized out-of-plane displacement ( 3 3 2 4
010 12(1 )E h w qaν − × − =   ( )2, 2, 2f a a h ) 

for a square local homogeneous plate with 100,a h = subjected to a uniform load q resting on Winkler-Pasternak 

elastic foundation. 
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Dimensionless Nonlocal 

parameter 
Method 

3
2 0

4
10 , ,

2 2 2

E h w a a h

qa

 − ×    
 

0 Aghababaei and Reddy (2009) 4.1853 

 Present (100 term series) 4.6401 

0.5 Aghababaei and Reddy (2009) 4.5607 

 Present (100 term series) 5.2221 

1 Aghababaei and Reddy (2009) 4.9362 

 Present (100 term series) 5.8041 

1.5 Aghababaei and Reddy (2009) 5.3116 

 Present (100 term series) 6.3861 

2 Aghababaei and Reddy (2009) 5.6871 

 Present (100 term series) 6.9681 

Table 3: Comparison of normalized out-of-plane displacement ( ( )2 3 4
010 E h w qa− × = ( )2, 2, 2f a a h ) for a 

square nonlocal homogeneous plate with 10,a h =  subjected to a uniform load q. 

 

Through-thickness variations of the dimensionless longitudinal displacement, ( )0, 2,u a z , and 

dimensionless transverse displacement, ( )2, 2,w a a z , in a square FG micro/nano plate on elastic 

foundation with the length-to-thickness ratio of 5 ( 5a h = ) are illustrated in Figures 1 and 2, 

respectively. Results are shown for the dimensionless gradient index φ  of 1 and 5, dimensionless 

nonlocal parameter µ  of 0 and 1, and different values of foundation stiffnesses. It is noticiable 

that the results of Figures 1-6 are for the case of transverse sinusoidal loading.  

By comparing the results of Figures 1a and 1b, and also Figures 2a and 2b, it can be observed 

that the absolute longitudinal displacement of the local FG plate is higher than that of the iso-

tropic one while, the absolute transverse displacement is lower. Moreover, from Figures 1a and 1c, 

and also Figs. 2a and 2c, it can be seen that the absolute longitudinal displacement of the non-

local isotropic plate is lower than that of the local isotropic plate, whereas the absolute transverse 

displacement is higher. It can be concluded from Figures 1a-c and 2a-c that by increasing the 

foundation stiffness, the absolute longitudinal and transverse displacements, and also their 

through-thickness variation slopes decrease. But, for the nonlocal FG plate with 5φ =  and 

1µ = , increasing the foundation stiffness decreases the stiffness of the structure. Dissimilar re-

sults of Figures 1d and 2d are due to the fact that in the nonlocal elasticity theory Laplace opera-

tor 2∇  exerts on both the material properties and displacement components. 

 Figures 3-6 show through-thickness distribution of dimensionless in-plane and out-of-plane 

stress components, ijσ , in a square FG micro/nano plate ( 5a h = ) with different elastic founda-

tion values. It can be seen from Figures 3 and 4 that the through-thickness distribution of in-

plane stresses xyσ  and xxσ for the local and nonlocal FG plates, contrary to the local isotropic and 

nonlocal plates, are nonlinear. Moreover, it is deduced from Figures 3-6 that the through-

thickness distribution of stress components are the same for the local and nonlocal isotropic 

plates, and also for the local and nonlocal FG plates, without elastic foundation. 
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Figure 1: Through-thickness variation of the dimensionless longitudinal displacement, (0, 2, )u a z , for differ-

ent values of foundation stiffness, (a) local isotropic plate with 0, 0φ µ= = ; (b) local FG plate with
 

5, 0φ µ= = ; (c) nonlocal isotropic plate with
 

0, 1φ µ= = ; (d) nonlocal FG plate with
 

5, 1φ µ= = . 

 

 
Figure 2: Through-thickness variation of the dimensionless transverse displacement, ( 2, 2, )w a a z , for different 

values of foundation stiffness, (a) local isotropic plate with 0, 0φ µ= = ; (b) local FG plate with
 

5, 0φ µ= = ; 

(c) nonlocal isotropic plate with
 

0, 1φ µ= = ; (d) nonlocal FG plate with
 

5, 1φ µ= = . 
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Figure 3: Through-thickness variation of the dimensionless in-plane shear stress, (0, 0, )xy zσ , for different values 

of foundation stiffness, (a) local isotropic plate with 0, 0φ µ= = ; (b) local FG plate with
 

5, 0φ µ= = ; 

(c) nonlocal isotropic plate with
 

0, 1φ µ= = ; (d) nonlocal FG plate with
 

5, 1φ µ= = . 

 

 
Figure 4: Through-thickness variation of the dimensionless longitudinal normal stress, ( 2, 2, )xx a a zσ , for differ-

ent values of foundation stiffness, (a) local isotropic plate with 0, 0φ µ= = ; (b) local FG plate with
 

5, 0φ µ= = ; (c) nonlocal isotropic plate with
 

0, 1φ µ= = ; (d) nonlocal FG plate with
 

5, 1φ µ= = . 
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Figure 5: Through-thickness variation of the dimensionless transverse shear stress, (0, 2, )xz a zσ , for different 

values of foundation stiffness, (a) local isotropic plate with 0, 0φ µ= = ; (b) local FG plate with
 

5, 0φ µ= = ; 

(c) nonlocal isotropic plate with
 

0, 1φ µ= = ; (d) nonlocal FG plate with
 

5, 1φ µ= = . 

 

 
Figure 6: Through-thickness variation of the dimensionless transverse normal stress, ( 2, 2, )zz a a zσ , for different 

values of foundation stiffness, (a) local isotropic plate with 0, 0φ µ= = ; (b) local FG plate with
 

5, 0φ µ= = ; 

(c) nonlocal isotropic plate with
 

0, 1φ µ= = ; (d) nonlocal FG plate with
 

5, 1φ µ= = . 
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 For nonzero values of foundation stiffness, the absolute values of the in-plane stress compo-

nents xyσ  and xxσ , and the absolute value of shear stress xzσ  of the local isotropic plate are high-

er than those of the nonlocal isotropic one while, the normal transverse stress zzσ  has opposite 

results. From Figures 3-6, it is observed that the values of the stress component at a certain di-

mensionless coordinate z h  are independent of the foundation stiffness value. The mentioned 

coordinate for the in-plane stress components xyσ  and xxσ  is on the neutral plane whose position 

varies with the gradient index value of the material properties. It is obvious that except for the 

nonlocal FG plate ( 5,  1φ µ= = ), increasing the stiffness foundation decreases the absolute val-

ues of the in-plane and out-of-plane stress components. For the case of the nonlocal FG plate 

with 5φ =  and 1µ = , the absolute values of the in-plane and out-of-plane stress components 

increase when the foundation stiffness increases. As mentioned, this is attributed to the effect of 

Laplace operator 2∇  in the nonlocal elasticity theory.  

 

4 CONCLUSION 

In this work, a closed-form nonlocal solution for bending of simply-supported FG micro/nano 

plates, under transverse load, is presented based on the three dimensional elasticity. Plates are 

assumed to be rested on a Winkler-Pasternak elastic foundation. Variation of the elasticity modu-

lus in the thickness direction is assumed to be exponential, while the Poisson’s ratio is considered 

to be constant. The through-thickness distribution of the displacement and stress fields are stud-

ied for different values of the nonlocal parameter, gradient index of material properties and foun-

dation stiffness. The following noticeable conclusions are obtained from the results: 

• The absolute transverse displacement of the local isotropic plate is higher than that of the 

local FG plate while, it is lower than that of the nonlocal isotropic plate. 

• The through-thickness variations of stress components are the same for the cases of the local 

isotropic and nonlocal plates, and also for the local and nonlocal FG plates, without elastic 

foundation. 

• Stress components are independent of the foundation stiffness for certain values of dimension-

less z coordinate. 

• For the local and nonlocal isotropic plates, and local FG plates, increasing the foundation 

stiffness decreases the absolute displacements and the stress components values. 

• For the nonlocal FG case, by increasing the foundation stiffness, the transverse displacement 

increases, which is the opposite what was expected. This is attributed to the effect of Laplace 

operator 2∇  in the nonlocal elasticiti theory. 
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