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Abstract 
Exact solutions of buckling configurations and vibration response 
of post-buckled configurations of beams with non-classical bounda-
ry conditions (e.g., elastically supported) are presented using the 
Euler-Bernoulli theory. The geometric nonlinearity arising from 
mid-plane stretching (i.e., the von Kármán nonlinear strain) is 
considered in the formulation. The nonlinear equations are re-
duced to a single linear equation in terms of the transverse deflec-
tion by eliminating the axial displacement and incorporating the 
nonlinearity and the applied load into a constant. The resulting 
critical buckling loads and their associated mode shapes are ob-
tained by solving the linearized buckling problem analytically. The 
buckling configurations are determined in terms of the applied 
axial load and the transverse deflection. The first buckled shape is 
the only stable equilibrium position for all boundary conditions 
considered. Then the pseudo-dynamic response of buckled beams 
is also determined analytically. Natural frequency versus buckling 
load and natural frequency versus amplitudes of buckling configu-
rations are plotted for various non-classical boundary conditions. 
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1 INTRODUCTION AND BACKGROUND 

Beams are common structural elements in many engineering systems. Often beams are subjected 
to axial compressive loads, which cause them to buckle. Linear eigenvalue problems can be formu-
lated to determine the buckling loads and buckling configurations for a variety of boundary con-
ditions (see Reddy, 2004; 2007). In reality, beams subjected to axial loads develop axial internal 
forces that stretch the centroidal axis of the beam, resulting in the geometric nonlinearity that 
couples the axial displacement to the transverse displacement. Although onset of buckling does 
not imply total failure of the structure, the knowledge of the value of the load that initiates buck-
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ling is of value in the design of engineering structures. 
 The study of buckling of beams has received considerable attention in the last decade. Nayfeh 
and Emam (2008) and Emam and Nayfeh (2009) have obtained exact solutions for the buckling 
configurations of beams under classical boundary conditions, while including the von Kármán 
nonlinearity. Both of these studies claim to have carried out post-buckling analysis of beams, but 
they are flawed because the equation they have employed is not applicable for post-buckling 
analysis, as explained by Shen (2011). Furthermore, Sınır et al. (2010) showed numerically that 
the buckling configurations of clamped-pinned beams presented by Nayfeh and Emam (2008) and 
Emam and Nayfeh (2009) are incorrect, and Sınır (2010) presented the correct ones.  
 Although there exist analytical solutions of linear buckling of beam–columns using the Euler-
Bernoulli and Timoshenko beam theories for both isotropic and laminated composite beams for 
classical boundary conditions (i.e., a combination of hinged, clamped, and free boundary condi-
tions; see Reddy, 2004; 2007), to the best of the authors’ knowledge, analytical solutions of buck-
ling as well as pseudo-dynamic response about buckled configurations of beam-columns consider-
ing the von Kármán nonlinearity are not available for non-classical (e.g., edges with elastic sup-
ports). In this study, we obtain analytical solutions for the buckling configurations and pseudo-
dynamic response about buckled configurations of beams with a variety of non-classical boundary 
conditions using the Euler-Bernoulli beam theory. The critical buckling loads and their associated 
mode shapes are obtained analytically for buckled configurations first, and then pseudo-dynamic 
response about the buckled configurations is determined using a novel analytical method.  

 

2 GOVERNING EQUATIONS 

2.1 Displacements and Strains 

The Euler-Bernoulli hypothesis of straight lines normal to the axis of the beam before defor-
mation remain (a) straight after deformation, (b) inextensible, and (c) rotate as rigid lines to 
remain perpendicular the bent axis is satisfied by the following choice of the displacement field 
(see Reddy, 2004; 2007, and Figure 1) 
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Figure1: Kinematics of the Euler–Bernoulli beam theory. 

 
2.2 Equations of Motion 

The equations of motion can be obtained using Hamilton’s principle (see Reddy, 2004; 2007): 
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where Kd-  is the virtual kinetic energy, Qd  is the virtual strain energy due to the actual inter-
nal forces moving through virtual displacements, and Vd  is the virtual work done by actual ex-
ternal forces, and d  denotes the variational operator. The equations of equilibrium are given by 
(Arbind et al., 2014; Reddy and Mahaffey, 2013)  
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where  
 
 ( ) ( )0 2

2, 1,
A

m m z dAr= ò   (6) 
 
and 
 
 (0) (1),xx xx xx xxA A

M dA M z dAs s= =ò ò   (7) 

 
are the stress resultants, q  is the distributed transverse load, r  is density of the material, and P  
is the axial compressive load. The natural boundary conditions are to specify the following ex-
pressions [when the corresponding displacements are not specified]:  
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The stress resultants can be expressed in terms of the displacements by invoking the linear elastic 
constitutive relation, xx xxEs e= , where E  is the modulus of elasticity. We have 
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where A  is the cross-sectional area and I  is the moment of inertia of the beam. 
 
2.3 Elimination of the Axial Displacement  

We note that the equations of equilibrium governing the axial displacement ( , )u x t  and the trans-
verse displacement ( , )w x t  are coupled due to the von Kármán nonlinearity. Consequently, the 
equations cannot be solved analytically. In this section we discuss a strategy to eliminate the axi-
al displacement ( , )u x t  from the governing equations so that the von Kármán nonlinear term (in 
terms of the transverse deflection w ) is absorbed into a constant, which enables analytical solu-
tion. We consider a beam of uniform cross-sectional area A , moment of inertia I , length l , con-
stant modulus E , and subjected to a periodic transverse load 
 
 ˆ( , )q F x t=   (10) 
 
We make the following assumption (see Nayfeh and Pai, 2004): The beam is supported at the end 
points. Integrating the first equation in (5) with respect to x , we obtain 
 
 ( )(0) 0xxM C t+ =   (11) 
 
Where C  is a time depentendent coefficient. Expressing eq. (11) in terms of the displacements, 
we obtain 
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Integrating the above expression from 0  to l , we obtain the result 
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where ( ) (0, ) ( , )u t u t u l t= - . The negative value of ( )u t  means that beams gets longer. However, 
when the is subjected to a compressive load, ( )u t  is positive (i.e., the beam gets shorter). Using 
eq. (11)-(13) in the second equation of (10), we arrive at 
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2.4. Nondimensionalized Equation 

In the interest of convenience, we introduce the following non-dimensional quantities, and write 
eq. (14) in terms of the non-dimensional quantities: 
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In view of the non-dimensional quantities, the equation of equilibrium (14) reduces to 
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Eq. (16) is a nonlinear integro-differential equation. h  is inverse of slenderness ratio and may be 
greater than 100. Thus, effects of the first term is getting disappear when increasing slender prop-
erties. On the other hand, importance of the axial deflection gets increase. So, we can say that the 
axial deflection has important effect on critical buckling load for highly slender beam.  

 
2.5 Equation of Equilibrium 

The equilibrium equation for buckling problem can be obtained by dropping the time dependent, 
damping, and forcing terms and denoting the buckled configuration by ( )sv x . The time depend-
ent axial deflection, U , become a constant in spatial domain.  
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Eq. (17) is a linear, fourth-order, differential equation in sv  because of the fact that 
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and U  are constants, although the former is not known. This equation is to be solved subject to 
various different boundary conditions. For hinged-hinged and clamped-clamped, and clamped-
hinged boundary conditions, Nayfeh and Emam (2008) have presented the buckling solutions by 
assuming that 0U = . With this restriction, only onset of buckling can be predicted; post-
buckling under applied in-plane load requires the movement of the end where the load is applied 
and, therefore 0U ¹ . In addition, most designs of monolithic structures consider onset of buck-
ling as a failure and, therefore, post-buckling becomes unimportant. 
 In the following section, analytical solutions for buckling, based on Eq. (17), are presented for 
non-classical boundary conditions that were not considered in the literature before. 

 

3 ANALYTICAL SOLUTIONS FOR BUCKLING 

3.1 General Solution 

Eq. (16) simplifies for buckling analysis under axial load P  as follows, 
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The general solution to Eq. (19) is given by (see Reddy, 2004; 2007) 
 

 1 2 3 4( ) sin cossv c c c cx lx lx x= + + +   (20) 

 
where 1 2 3 4( , , , )c c c c  are constants to be determined using the boundary conditions, as discussed 
in the next two sections. 

 

3.2 Boundary Conditions 

Two types of non-classical boundary conditions are considered. The first one is termed elastically 
hinged, in which the beam is supported vertically by a linear elastic spring. Therefore, the vertical 
deflection in the spring is proportional to the vertical force, the proportionality constant is known 
as the extensional spring constant. The second type of non-classical boundary condition is called 
elastically clamped, in which the vertical deflection is zero but rotation is allowed in proportion to 
the moment. The proportionality constant in this case is the rotational spring constant. The solu-
tions for these two types of boundary conditions are discussed first, followed by solutions for the 
four types of beams shown in Table 1. 
 
Elastically hinged edge (vertically spring-supported): In this case we have 
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where a  is the inverse of a non-dimensional elastic (spring) constant. When 0a =  (i.e., the sup-
port is rigid), we recover the conventional simply supported boundary conditions that require the 
deflection and bending moment to be zero. When a  is very large, the boundary condition ap-
proaches that of a free edge, requiring that the shear force and bending moment to be zero. Fig-
ure 2(a) shows the variation of l  with 1 a . For large values of 1 a , the solution asymptotically 
approaches the solution of the clamped-pinned (CP) type support. 

 
Elastically clamped edge (rotationally spring-supported): For this case, we require 
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where b  is the inverse of the torsional spring constant. When 0b =  (i.e., the restraint is rigid), 
we recover the conventional clamped boundary conditions that the deflection and rotation be 
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zero. If b  is very large (i.e., the restraint is very flexible), the condition approaches that of a 
simply supported case, where the deflection and bending moment are zero. Figure 2(b) shows the 
relationship between b  and l . Note that as 0b   we recover the result of the classical 
clamped-clamped (CC) boundary condition; and as b  ¥  , we recover the results of the 
clamped-pinned (CP) beam. 
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Table 1: Analyzed boundary conditions. 
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Figure 2: Plots of (a) 1 a  versus l  (clamped-clamped beam) and (b) b  versus l  (clamped-pinned beam). 

 

3.2.1 Clamped-Elastically Pinned Beam  

For this case, we have 0s sv v ¢= =  at 0x = , and 0sv ¢¢ =  and ( )2 0s s sv v va l¢¢¢ ¢+ + =  at 1x = , 
where prime denotes the derivative with respect to coordinate x . Using these boundary 
conditions, we arrive at 2 4 0c c+ = , 1 3 0c cl + = , and 
 
 1 2sin cos 0c cl l+ =   (23) 

 ( )2
1 2 3 4sin cos 1 0c c c cl l al+ + + + =   (24) 

 
From these equations, we obtain 1 tannc b l= - , where 2 4nb c cº = -  . The buckling mode shape 
is 
 
 ( )cot sin cos 1s nv b l lx lx lxé ù= - + + -ë û   (25) 

 
The case 0a = , the characteristic equation corresponds to a CP beam. The case a = ¥  
corresponds to a clamped-free beam with the characteristic equation cos 0l = .  
 
3.2.2 Clamped-Elastically Clamped Beam  

For a beam clamped at one end and rotationally spring-supported (while prevented from moving 
vertically) at the other end is considered here. Using the boundary conditions / 0v dv dx= = at 

0x = , we obtain 
  
 2 4 0c c+ =   (26) 

 1 3 0c cl + =   (27) 
 
Using the boundary conditions in Eq. (22), we obtain 
 
 1 2 3 4sin cos 0c c c cl l+ + + =   (28) 
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 ( ) ( )2
1 2 1 2 3cos sin sin cos 0c c c c cl l l bl l l- - + + =   (29) 

 
Solving for the constants  1 3 4( , , )c c c  in terms of 2 nc b= , we obtain 
 

 1 3 4
cos 1 cos 1
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sin sinn n nc b c b c b

l l
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l l l l
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The characteristic equation for this case is 
 
 ( )2 2cos sin cos sin 0l l l lb l l l- + + + - =   (31) 
 
and the eigenvector is 
 

 ( )cos 1
sin cos 1

sins nv b
l

lx lx lx
l l

é ù-ê ú= - + -ê ú-ë û
  (32) 

 
When 0b =  we obtain 2 2 cos sin 0l l l- + + = , which is valid for a beam clamped both ends. 
When b = ¥ then eq. (29) reduces to cos sin 0l l l- = , which corresponds to a beam clamped 
at one end pinned at the other end. For other values of the spring constant b , the value of l
and, hence, the critical buckling load, depends on b .  
 
3.2.3 Pinned-Elastically Pinned Beams 

For this case, the boundary conditions yield the relations 
 
 2 2 40 ,    0c c c= + =   (33) 

 24 sin cos 0cl l+ =   (34) 

 ( )2
1 2 3 4sin cos 1 0c c c cl l al+ + + + =   (35) 

 
The solution of these equations is 2 4 0c c= =  
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1
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= -

+
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where 1nb cº . The characteristic equation becomes 
 

 ( )2sin 1 0l al+ =   (37) 
 
and the eigenvector is  
 

 
2

sin
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1
s nv b

l
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al

é ù
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  (38) 

 
The case 0a =  means pinned-pinned supports corresponds to a pinned-pinned (PP) beam and 
the case a = ¥  is nonphysical. 
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3.2.4 Pinned-Elastically Clamped Beams 

For this case, we have 2 0c =  and 2 4 0c c+ =  
 
 1 2 3 4sin cos 0c c c cl l+ + + =   (39) 

 ( ) ( )2
1 2 3 1 2cos sin sin cos 0c c c c cl l l l b l l- + - + =   (40) 

 
The characteristic equation is 
 

 2sin cos sin 0l l l l b l- + =   (41) 
 
The case 0b =  corresponds to a CP beam with the characteristic equation, sin cos 0l l l- = ; 
and the case b = ¥  corresponds to a pinned-pinned (PP) beam with characteristic equation, 
sin 0l= , and the eigenvector ( ) sin sins nv bx lx x lé ù= -ë û .  

 
3.3 Numerical Results of Analytical Solution of Buckling 

In this section, numerical results of buckling for four different non-classical boundary conditions 
are determined. Four parameters influence the behaviour of the beam: inverse of torsional spring 
coefficient ( )b , inverse of vertical spring coefficient ( )a , axial deflection ( ),U  and slenderness 
ratio ( )h . In the following subsections, effects of these parameters is shown in detail. Numerical 
results indicate that there is no deflection up to the ciritical load. When the load reaches a 
critical value, the beam buckles. The region after the critical load is called the super-critical or 
post-buckling region. In this study, we do not show second and higher modes of buckling because 
the second buckled configuration is dynamically unstable (Nayfeh and Emam, 2008; Sinir, 2013). 
All plots are made for the point 0.25x =  along the beam. 

 
3.3.1 Effects of b  on Buckling 

Recall that depending on the value of b , the elastically clamped support may be either clamped 
or pinned. The effect of b  on buckling load and deflection is shown in Figure 3. The bifurcation 
diagram shows that the critical buckling load increases with decreasing b  for a certain value of 
U  and h . In other words, the stable region becomes larger with decreasing b  (or increasing the 
support rigidity). In Figure 3a, the first curve is for PP beam and the last curve is for PC beam. 
Similiarly, in Figure 3b, the first and last curves denote deflections of CP and CC beams. 

 
3.3.2 Effects of a  on Buckling 

In Figure 4, to show effects of inverse of vertical spring coefficient ( )a , the bifurcations diagrams 
are plotted only for the clamped-elastically pinned beam due to impractical application of pinned-
elastically pinned beam. The bifurcation diagram shows that critical buckling load increases with 
increasing a  (or decreasing vertical spring constant). The minimum critical load in the 
bifurcation diagram (Figure 4) corresponds to the critical buckling load of clamped-pinned beams.  
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Figure 3: Effects of b  on buckling for 0.0001U =  and 50h =  when the support is (a) pinned-elastically 
clamped (b) clamped-elastically clamped. 
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Figure 4: Effects of a  on buckling for clamped-elastically pinned support when 0.001U =  and 50h = . 

 

3.3.3 Effects of Axial Deflection U  on Buckling 

The solutions of the non-classical boundary conditions for clamped-clamped (CC), clamped-
pinned (CP), pinned-pinned (PP) support conditions are presented in Figures 5a, 5b and 5c, re-
spectively. Nayfeh and Emam (2008) obtained the critical buckling load and bifurcation diagrams 
without considering the axial deflection (i.e., they assumed 0U = ). 
 The critical buckling load values are 2 2 24 ,2.05 ,p p p  for CC, CP and PP, respectively. The 
same results are obtained by using the non-classical boundary conditions. The buckling load is 
larger than the critical load. The effect of axial deflection on the critical buckling load is demon-
strated clearly for the first time in the literature. The integral term in Eq. (19) arises from mid-
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plane-stretching of the beam, making the beam stiffer. Therefore, the stretched beam can take 
larger load than the critical load. However, if an axial deflection (U ) occurs, the load that the 
beam can take decreases, as can be seen from Figure 5. This has a practical importance. That is, 
if the beam is designed for large axial loads, the beam should not be allowed to experience axial 
movement (e.g., CC and PP beams). 
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Figure 5: Effects of axial deflection, U  on buckling for 50h =  when the support is (a) clamped-elastically 
clamped for 0b =  (clamped-clamped) (b) pinned-elastically clamped for 0b =  (pinned-clamped) (c) pinned-

elastically pinned for 1 10000a =  (pinned-pinned). 
  

4 ANALYTICAL SOLUTION OF THE DYNAMIC RESPONSE 

4.1 Governing Equations 

The governing equation of motion of the Euler- Bernoulli beam in non-dimensional form is given 
by Eq. (16). Buckling is a static instability due to in plane axial compressive loads. To investigate 
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the dynamic stability of a buckled configuration, one can introduce a small disturbance and de-
termine the time evolution of that disturbance. In this state, vibrations take place around a buck-
led configuration. In this section, the main objective is to investigate the significance of the axial 
load on the fundamental natural frequency of vibration, and to investigate the dynamic stability 
of a buckled configuration. Here we introduce different solution procedure than that of Nayfeh 
and Emam (2008) to determine the natural frequencies. 
 We first induce small change in the amplitude of the vibration mode, ( ),dv x t , around the 
buckled configuration,  
 
 ( ) ( ) ( ), ,s dv v vx t x x t= +   (42) 
 
Substituting this equation into the equation of motion in Eq. (16), we obtain 
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ò

ò ò ò
  (43) 

 
Note that this equation includes quadratic and cubic nonlinearities and harmonically varying 
external excitation, and its analytical solution is not possible. To investigate the fundamental 
natural frequencies (i.e., 0)q =  and mode shapes of vibration in the vicinity of a buckled configu-
ration, we consider only pseudo-nonlinear dynamic behavior of beams by dropping the damping 
term and all nonlinear terms.  
 
4.2. The Pseudo-Nonlinear Dynamical Analysis 

The pseudo-nonlinear vibrations problem is described the following equation: 
 

 
12 4 4 2 2

2 2
2 2 2 4 2 2

0

0d d d d s s dv v v v v v v
dh l x

x xt x t x x x

¶ ¶ ¶ ¶ ¶ ¶ ¶
- + + - =

¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ò   (44) 

 
In view of the fact the equation is linear; we can assume that the time variation is periodic 
 
 ( )i( , ) ( ) e m

d mv X ccw tx t x= +   (45) 
 
where i 1= - , mw  is the natural frequency, and cc  denotes complex conjugate. The mode 
shape, ( )mX x , is not complex. The equation becomes 
 

 ( ) ( )
1

2 2 2 2 2
1 2

0

sin cos 0iv
m m m m m s mX X X c c v X dh w l w l lx lx x¢¢ ¢ ¢+ + - + + =ò   (46) 

 
where the coefficients 1c , 2c , and buckled shape sv  depend on the boundary conditions. Eq. (46) 
is a non-homogenous ordinary differential equation; its solution consists of two parts: homogenous 
solution and the particular solution. The homogeneous solution is 
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 ( )
4

1

jr
mh j

j

X a e xx
=

= å   (47) 

 
where jr  are found by solving the equation 
 

 ( )4 2 2 2 2 2 0n m mr rl h w w+ + - =   (48) 
 
Since the definite integral 
 

 
1

0

m sh X v dx¢ ¢= ò   (49) 

 
is a constant, the particular solution takes form, 
 
 ( ) 1 2sin cosmpX A Ax lx lx= +   (50) 

 
where 1A  and 2A  are undetermined coefficients. Substituting Eq. (50) into Eq. (46) and solving 
for 1A  and 2A we obtain 
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The complete solution is  
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where h  is yet to be determined from Eq. (51). We have 
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To calculate the vibration mode shapes and frequencies of the buckled beam, we apply boundary 
conditions and obtain four algebraic equations in terms of 1a  , 2a  , 3a  , and 4a . These equations 
represent an eigenvalue problem for mw . Equating the determinant of the coefficient matrix of 
these equations to zero yields a fourth-order equation for 2 .mw  The roots of this equation, which 
are the eigenvalues of the coefficient matrix, are the natural frequencies of the buckled beam and 
the corresponding eigenvectors are the associated vibration mode shapes. The solutions procedure 
presented in this section is valid for all boundary conditions. 

 
4.3. Numerical Results 

4.3.1. Solution for a pinned-elastically pinned beam 

As an example, we consider a pinned-elastically pinned beam due to its simplicity, to illustrate 
the procedure discussed. For this case, we obtain 1 nc b= , ( )2 2

3 sin 1nc b n np a p= - +  and 

2 4 0c c= = . Using these relations and following the procedure outlined earlier, one can obtain 
mode shapes and natural frequencies of pinned-elastically pinned buckled beams as 
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For the vibrations around the first buckled mode, the mode shape is 
 

 ( )
( )( )

4 2 2
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Applying the boundary conditions, a set of algebraic equations are obtained (not presented here 
due to their algebraic complexity and without loss of information). This type of dynamic analysis 
is called post buckling analysis. In the following subsections, plots of natural frequency versus 
both buckling amplitude and axial load presented to show the effects of parameters b , a ,U , h , 

nb  and L on natural frequencies. 

 
4.3.1. Effects of Inverse of Torsional Spring Coefficient, b  on Natural Frequency  

In this study, two different boundary conditions, namely, clamped-elastically clamped and 
pinned-elastically clamped are considered. Depending on the value of the inverse of torsional 
spring coefficient, b , the clamped-elastically clamped beam may become either clamped-clamped 
beam ( 0)b =  or clamped-pinned beam ( )b  ¥ ; the pinned-elastically clamped beam becomes 
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pinned-clamped beam or pinned–pinned beam. As can be seen from Figure 6a, the fundamental 
natural frequency increases with decreasing value of b . However, the second natural frequency 
essentially does not change for very small values of b , but for large values the frequency increas-
es. In the plots of frequency versus axial load (see Figure 6b), the fundamental frequency increas-
es with decreasing values of b  up to a certain value of the axial load, and then the trend is re-
versed for higher axial loads. Nayfeh and Emam (2008) show that there is an intersection point 
between the first and the second natural frequencies for both clamped-clamped and pinned-pinned 
beams in contrast to clamped-pinned supports. This intersection point may lead to one-to-one 
internal resonance. Depending on the b  values this intersection point may or may not exist.  
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Figure 6: Effects of b  on the natural frequencies (a) versus buckling amplitude and (b) versus axial load 
( 0.0U = ) for clamped-elastically clamped beams. 
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Figure 7 contains plots similar to those in Figure 6, but for pinned-elastically clamped beam. In 
this case the trends reverse compared to those for the clamped-elastically clamped beam. This is 
expected because the beam becomes stiffer (and frequencies go up) with decreasing values of b .  
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Figure 7: Effects of b  values on natural frequencies (a) versus buckling amplitude (b) versus axial load 
( 0.0U = ) for pinned-elastically clamped beams. 

 
4.3.2. Effects of Inverse of Vertically Spring Coefficient of a  on Natural Frequency 

Figures 8a and 8b show the natural frequency versus buckling amplitude and natural frequency 
versus axial load, respectively, for clamped-elastically pinned beams. It can be seen from Figures 
8a and 8b, that there are small differences in natural frequencies obtained with different values of 
a  (the inverse of vertical spring constant). When the value of the vertical spring coefficient in-
creases, the second mode natural frequencies also increase. Also, pinned-elastically pinned beam 
has no physical meaning for a = ¥ . 
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Figure 8: Effects of vertically spring coefficient on the natural frequency (a) versus buckling amplitude (b) versus 

axial load ( 0U = ) for clamped-elastically pinned beams. 

 

4.3.3 Effects of Axial Deflection U  on the Natural Frequency 

The value of [ (0, ) ( , )] /U u t u l t l= -  affects the axial load directly, If the axial deflection is al-
lowed, then lower axial load can be obtained. In Figures 9a-9c, graphs of the natural frequency 
versus axial load are plotted to show the effect of axial deflection for classical boundary condi-
tions (i.e., CC, PP, and PC). For CC and PP boundary conditions, the natural frequencies of 
vibration at the second mode are almost constant. Thus, the effect of axial deflection at the sec-
ond mode for these boundary conditions disappears in contrast to the PC boundary condition. 
However, the effect of the axial deflection on the natural frequency can be seen at first mode vi-
bration mode in vicinity of buckled beam.  

 
4.3.4 Effects of Second Mode Buckling on Stability of the Beam  

Another interesting case is the vibration about the second buckled configuration. In this case, the 
beam buckles at the second mode (see Figure 10). When the smallest frequency around the sec-
ond buckled mode is calculated, the mode shape of the smallest frequency looks the same as the 
second mode shape.  It is noted that the second mode is physically unstable.  

 

5 SUMMARY AND CONCLUSIONS 

In this study, exact solutions for the buckling configurations of beams with fixed/hinged and elas-
tically supported ends using the Euler-Bernoulli theory with the von Kármán nonlinearity are 
presented. The governing equations are simplified by eliminating the axial displacement, while 
retaining the nonlinear term in the form of an unknown parameter. Analytical solutions for the 
buckling configurations of beams and the natural frequencies of vibration around the buckled 
beam are obtained for a variety of non-classical boundary conditions. The critical buckling loads 
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are obtained by solving the linear buckling problem analytically after incorporating the nonlinear-
ity into a constant. The beam is stable at its original static equilibrium position, up to the first 
critical load, where it loses stability by a supercritical pitchfork bifurcation. Moreover, natural 
frequencies are obtained in post-buckling region about buckled configuration. Some interesting 
results are obtained for variety of non-classical boundary conditions. When the beam is elastically 
clamped, at certain spring values, the mode number of the calculated natural frequencies is not 
identifiable. It means that a calculated natural frequency for the spring coefficients may be for 
either first mode or second mode. The axial deflection and slenderness ratio have meaningful ef-
fects on the behavior of buckled beam. Extension of the present study using the Timoshenko 
beam theory is awaiting attention. 
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Figure 9: Effects of axial deflection, U  on natural frequency for 50h =  when the support is (a) clamped-
elastically clamped for 0b =  (clamped-clamped) (b) clamped-elastically clamped for 40b =  (clamped-pinned) 

(c) pinned-elastically clamped for 40b =  (pinned-pinned). 
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Figure 10: 0b =  (fixed-fixed beam), 1.0nc =  and 10.23L = . 
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