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Bending of floating wedges with initial curvature under deformation
dependent loading
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Abstract

The bending moment distribution of beams of variable width, with initial curvature, while
resting on a linear elastic foundation, loaded by in-plane as well as out-of-plane resultants
is formulated. A numerical procedure is developed to generate the solution of the two point
boundary value problem. As interface loading is deformation dependent, an iterative proce-
dure is devised to obtain the correct loads. A specific case is analyzed and its bending field
presented. Dependence with respect to the interface variables, wedge angle and imperfection
profile is considered. Comparison to the uniform beam case is also performed. While initial
curvature has limited effects on bending moments, wedging has dramatic effects, decreasing
overall values dramatically.
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1 Introduction

Wedge type modeling occurs in several fields of engineering, like geology, structures and ice
mechanics. In the last case, in particular, it has attracted lots of attention in what concerns
impact to an offshore facility as ice floes are really irregular and many times with an increasingly
larger width. Or it may well be that the model is used to capture the post radial cracking
behavior of ice plates indented in the contact with inclined walls [7]. In any case a complete
description of this kind of problem, whose loading is deformation dependent, and deals with a
semi-infinite field, is hard to attain with finite element techniques.

Techniques used in this context consider several simplifications, including use of ice sheets,
of rectangular form, supported by springs to model foundation effect, and held far away from
the contact interface as in [5]. Loading may be of the displacement or point force boundary
type. Wedging geometry of ice caused by radial and circumferential cracks during deformation
may then be mapped. An alternative to this procedure includes use of semi-infinite elements,
as in Abaqus program [2] or lattice models [12]. But initial curvature and thickness variations
are not considered. In the last case use of an effective bearing band is proposed [13], but this
solution does not eliminate the problem concerning changes of the equal area axis, caused by
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thickness variations, and therefore the curvature of this axis. Or if not, changes of strength
through thickness on its own.

Particular way an ice floe geometry changes has been considered under the diverse points
of view, included the dynamic one [10]. Starting from a perfect ice formation, driven by wind,
currents and waves, a model is constructed to show how impact, lateral and frontal, builds
thickness variations in the ice floe. These variations result, unless a symmetrical profile is
considered, in a curved equal area axis. Ridges and consolidated rubbles complete the panorama
[3,4].

Here it is developed a numerical scheme of solution that can be used with many descriptions
of width variation. This scheme allows the choosing of the width variation profile, and the
solution is attained by means of an iterative process in a two-point boundary value problem.
Initial curvature of the beam, occurring at the cause of natural conditions, or caused by past
events, may have a geometric or material character. Profile variations are complex, but they
may be built from series algebra of harmonic functions used here.

Analysis of the contact interaction with inclined walls shows loading to be deformation
dependent. This correction is taken into account. Particular dependence on the boundary
terms, b.t., wedge angle and initial curvature is looked upon. Results show the bending field
to be very affected by wedge angle, and to a lesser degree by initial curvature, that controls
most the position of point of maximum, not its value. In the end, by using Taylor expansion,
it is shown how to add up these effects to the close form solution of the uniform beam, so as to
estimate the behavior of the wedge.

2 Modeling

2.1 Element equilibrium

The pair of differential equations of equilibrium of a beam element constituted by an homo-
geneous elastic material, identified by the pair < E, ν >, with constant thickness h0, variable
width b = ω b0, and initial curvature described by a profile function wi, while resting on a linear
elastic foundation of constant γsw, Fig. 1, will be [11]:

∂yN ∼= 0
∂yy[E′I∂yy(w)]− ∂y[N∂y(w + wi)] + bγsww ∼= 0; ∂y = d

dy

(1)

The first of these equations refers to in-plane conditions, whereas the second considers the
out-of-plane ones. Quasi-static conditions of loading along with initial curvature of the equal
area axis are admitted. Reason for this particular modeling choice lies in the characteristics of
the early winter impact-failure scenario of brittle ice.

Combination of these equations into a single statement gives:

∂yy[ω∂yy(w)] + 4γ4
0∂yy(w) + 4δ4

0ωw = −4γ4
0∂yy(wi) (2)
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which depends on the coefficients,

γ0 = (
n0

4E′i0
)

1
4 ; n0 ≥ 0 ; δ0 = (

γsw

4E′i0
)

1
4 ; (3)

In these n0 = N0
b0

is the value of the normal force per unit width b0 at the origin. Function ω

is a width-variation multiplicative function that measures the variations of width b with respect
to the origin width b0. The second moment of inertia per unit width is i0 = I0/b0 and E′ is the
equivalent beam Young’s modulus and γsw is the mass density of salt water. So,

i0 =
h3

0

12
; E′ =

E

(1− ν2)
(4)

Here E is the elastic modulus of the material and ν its Poisson’s ratio, introduced to allow
modeling of wide beams as well as strips with due care of proper choice of value.

2.2 End conditions

For the case where the beam is loaded at the origin by a shear force and a bending moment, as
occurs when an inertia driven ice floe hits a fixed offshore platform wall, loading introduced by
the contact at this end may be described by

y = 0; m0 = −E′i0ω0∂yy(w)0
v0 = −E′i0ω0∂yyy(w)0 − n0∂y(w + wi)0 + ∂y(ω)0

ω0
m0

. (5)

These equations relay on the free parameter n0, related to the solution of the in-plane
problem. They also reveal dependence upon the deformation of the beam at the origin. At the
other end, the far end, regularity conditions apply.

y = L; wL ≤ Kw

∂y(w)L ≤ Kθ
(6)

where < Kw,Kθ >are suitable small constants. Here the subscripts are employed to describe the
position where the variable should be computed. Hence, for the semi-infinite body, for example,
setting L →∞ is mandatory.

2.3 System of equations

Solution of the fourth order differential equation of equilibrium shown above, subjected to the
stated boundary conditions, may be accomplished by a transformation of this equation into a
set of four linear equations, as it includes derivatives up to this order. A transformation of the
boundary conditions has to be performed as well. Let u be the vector:

buc =
⌊

(w) ∂y(w) ∂yy(w) ∂yyy(w)
⌋
; w = w(y; b.t.; θ0, ω0; wi) (7)
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Figure 1: Variable width ice floe impact scenario.

where b.t. stands for the boundary terms < n0,m0, v0 >. Here the row representation form is
employed. To this kind of dependence, interface rotation θ0 = ∂y(w)0 is added. And this allows
Eq. (2) to be rewritten in the form:

{u′} = [K]{u}+ {ui} ; u′l = ∂y(ul); l = 1, 2, 3, 4 (8)

where the matrix [K] comprises the elements,

[K] =




0 1 0 0
0 0 1 0
0 0 0 1

−4δ4
0 0 −∂yy(ω)+4γ4

0
ω −2∂y(ω)

ω


 ; {ui} =





0
0
0

−4γ4
0

ω ∂yy(wi)





. (9)

The set of boundary conditions, on the other hand, considered the proper equivalent form,
follows from Eqs. (5) and (6) and can be cast into the form:

{ϕ} = [A]{u0}+ [B]{uL}+ {α} − {β} ; {ϕ} = {0} (10)

where the matrices [A] and [B] are such that:

[A] =




0 0 0 0
0 0 0 0
0 0 E′i0ω0 0
0 n0 0 E′i0ω0


 ; [B] =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 (11)

whereas the vector {α}, in row form, will be:

bαc =
⌊
0 0 m0 − ∂y(ω)0

ω0
m0 + v0

⌋
bβc =

⌊
Kw Kθ 0 −n0∂y(wi)0

⌋
(12)
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which then completes the system of equations to be solved.

2.4 Numerical solution

Solution of the above system depends, for every value of n0, on the determination of the exact
{u} vector that makes {ϕ} null for specified values of the left and right end vectors. It should be
kept in mind, however, that in general these values may depend upon the behavior of the beam,
and as such are not exactly known a priori. A numerical trial and error type of approach may
then be applied, using a Newton scheme of solution. Specifically: trial vectors are chosen to set
conditions at the left end of the interval [0, L). This is a subset in the vector space as some of
the components at the origin vector are free. It comprises an iteration sequence intended the
matching of the correct boundary conditions at the other end of the beam [6].

Hence, in the iterative process, if at iteration j, of a series of M trials,

{ϕj} 6= {0}; {ϕj} = [A]{uj
0}+ [B]{uj

N}+ {αj} − {βj}; j = 1, 2, ..., M (13)

over a discretized space containing N + 1 stations, {yl}; l = 0, 1, 2, ..., N , being

{uj
0} = {uj(y0)}; {uj

N} = {uj(yN )}; y0 = 0; yN = L; ∀j (14)

then requiring that the boundary conditions in the next iteration are met is equivalent to asking
for an increment that makes:

{ϕj+1} = {0}; {ϕj+1} = [A]{uj+1
0 }+ [B]{uj+1

N }+ {αj+1} − {
βj+1

}
(15)

being ∆{uj
0} the required vector increment. If this is so, then

⌊
∂{uj+1

0 }{ϕj+1}
⌋

∆{uj
0} = −{ϕj}; ∆{uj

0} = {uj+1
0 } − {uj

0} (16)

where, from Eq. (15), the partial derivative with respect to the trial vector is

[∂{uj+1
0 }{ϕj+1}] = [A][I] + [B][∂{uj+1

0 }{u
j+1
N }] + [∂{uj+1

0 }{αj+1}]− [∂{uj+1
0 }

{
βj+1

}
] (17)

being:

[∂{uj+1
0 }{u

j+1
N }] = [∂{uj+1

N−1}
{uj+1

N }] [∂{uj+1
N−2}

{uj+1
N−1}]...[∂{uj+1

1 }{u
j+1
2 }] [∂{uj+1

0 }{u
j+1
1 }] (18)

which then requires a Taylor expansion to relate the derivatives

{u′j+1
l+1 } = {u′j+1

l }+ ∂y{u′j+1
l+1 }∆y; {u′j+1

l+1 } = [Kl+1]{uj+1
l+1 }+ {uj+1

i }; [Kl+1] = [K(yl+1)]
(19)

Finally combination of this result with that of Eq. (17) produces

{uj+1
l+1 } = [T l+1

l ]{uj+1
l }; [T l+1

l ] = [M−1
l+1] [Kl] (20)
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result that relates vectors at successive stations. In it the section matrix

[Ml+1] = ([I]−∆y [K ′
l+1] [K

−1
l+1]−∆y [Kl+1])[Kl+1]; [K ′

l+1] = ∂y[Kl+1] (21)

appears in its inverse form. This form depends on parameters of the medium, sectional proper-
ties, loading as well as material variables. Complete transfer matrix from start to last section
may be displayed as the product

[TN
0 ] =

N−1∏

l=0

[T l+1
l ]; (22)

whose coefficients are polynomial expressions of the discretization step. The matrix Tl+1
l does

not depend upon the iteration being executed. Once this transfer matrix is computed, for the
iteration in case, the Jacobian, Eq. (17), can be directly calculated

[J j+1] = [A] [I] + [B] [TN
0 ] +

∂({αj+1} − {βj+1})
∂{uj+1

0 }
(23)

which allows the calculation of an increment ∆{uj
0}, Eq. (16).

3 Application

3.1 Loading

When the ice floe, driven by currents and wind, is loaded during contact with the inclined
wall of an offshore platform, quasi-static conditions are approached with loading coming from
the impulse generated by the inertia change of the ice. Flexure, shear and compression at the
interface are produced, with the rate of change of the linear momentum l equaling the sum of
the external forces, normal and shear, per unit width at the interface:

∆l = i; l =

∞∫

0

v
γi

g
ωh0dy; i =

t∫

0

(n0 − v0)dt l̇ = n0 − v0 (24)

while the rate of change of the angular momentum a equals the resultant interface moment m0:

∆a = h; a =

∞∫

0

Ω
γi

g
ω i0dy; h =

t∫

0

m0dt; ȧ = −m0 (25)

both expressions dependent on linear v and angular Ω velocities, being γi the specific weight of
the ice, and g the gravity acceleration. Added mass factors could be incorporated as well [8].

Values of normal n0, bending moment m0 and shear force v0 at the interface depend on
the contact between platform and beam. They are resultants that may be described by the
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coefficient of friction µ between ice and the rigid wall of the platform, its slope angle φ and the
coefficient of eccentricity ζ, Figs. 2 and 3. Solving the normal r0en and tangential µr0et to the
inclined wall in terms of its horizontal and vertical components

z0 = r0(cosφu − µ sinφu); y0 = r0(sinφu + µ cosφu) (26)

for the upper slope case, and denoting the rotation at the origin by θ0 leads to:

n0 = −z0 sin θ0 + y0 cos θ0; v0 = z0 cos θ0 + y0 sin θ0; m0 = −n0e (27)

being e = ζh0;−0.5 ≤ ζ ≤ 0.5 the eccentricity. The coefficient µ depends on the existence of
sliding or sticking contact conditions, for every value of r0. An additional consideration has to
be introduced here, as the shear force at the origin v0 will also depend on the direction of the
motion of the beam. For the riding-up condition, or up-slope case, under slipping and sticking
stages,

vu
0 ≤ n0 tan(φu

t ); φu
t ≤ ρ

vu
0 = n0 tan(φu

t − ρ); φu
t ≥ ρ φu

t = φu + θ0
(28)

where ρ = tan−1(µ) is a material parameter, related to the way the ice and wall interact, and
dependent on surface roughness and temperature among other factors. Notice that deformation
of the beam acts to create an effective value of friction angle.
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Figure 2: Up-slope and down-slope configurations for initial contact condition.
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Down-slope case, on the other hand, would derive from a slope angle φd, and result in a
shear force vd

0 = −vu
0 and bending moments md

0 = −mu
0 for the same normal n0 and same

absolute values of slope angle, eccentricity and coefficient of friction. Table 1 presents the values
considered in the present analysis.

Table 1: Boundary terms used in the analysis.

Loading Parameters
Slope angle set, degrees φ = {15, 30, 45}
Eccentricity set ζ = {-0.5, 0, 0.5}
Friction coefficient set µ = {0.05, 0.25}

3.2 Material parameters

Ice is a very complex material whose constitutive equation depends on the type of microstructure
considered, time of the year, form of response sought, etc. For ice features in a brittle state, in
salt water, Table 2 presents some average values of the properties of this material [9]. Foundation
constant, salt water in this case, is taken to be γsw = 1.0045e + 4Pa/m.

Table 2: Some properties of the beam material.

Properties of Ice
Elastic modulus, Pa E = 0.50e + 10
Poisson’s ratio ν = 0.30
Flexural strength, MPa Sf = 0.70
Compressive strength, MPa Sc = 5.0

3.3 Interface rotation

In the field, the monitored variable r0, the intensity of contact, has to be used to compute the
interface normal n0. However, because the displacements do depend on the interface conditions,
loading at origin is related to the rotation θ0, Eqs. (10)-(12) and (27),

∂
{
αj+1

}

∂
{

uj+1
0

} =




0 0 0 0
0 0 0 0
0 0 ∂

θj+1
0

(mj+1
0 ) 0

0 ∂
θj+1
0

[vj+1
0 −mj+1

0 (∂yω0

ω0
)] 0 0


 (29)
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where,

∂mj+1
0

∂θj+1
0

= −r0e{cos(φ)[µ cos(θj+1
0 )− sin(θj+1

0 )]− sin(φ)[cos(θj+1
0 )− µ sin(θj+1

0 )]} (30)

and,

∂vj+1
0

∂θj+1
0

= r0{cos(φ)[cos(θj+1
0 ) + µ sin(θj+1

0 )] + sin(φ)[− sin(θj+1
0 ) + µ cos(θj+1

0 )]} (31)

Moreover, from Eq. (27),

∂{βj+1}
∂{uj+1

0 }
=




0 0 0 0
0 0 0 0
0 0 0 0

0 −∂nj+1
0

∂θj+1
0

∂,y(wi)0 0 0




(32)

where the rotation correction for the normal comes from:

∂nj+1
0

∂θj+1
0

= −1
e

∂mj+1
0

∂θj+1
0

(33)

Therefore guessing the entrance values for the uj+1
0 vector requires that the curvature κj+1

0 =

∂,yy(wj+1)0 be such that κj+1
0 = −mj+1

0
E′i0 , where mj+1

0 does depend on the guessed value of θj+1
0 ,

according to the above, and it does not represent a free choice. The same can be said of the
rate of curvature at the origin, ∂,y(κj+1)0, that should obey the equation for shear force at the
interface, Eq. (5).

3.4 Geometry

Solution developed above was implemented for some specific beam geometries and the results
presented in graphic form for the internal bending moment m = −E′i0ω∂,yy(w) under different
amounts of initial curvature, and wedge angle Σ. The particular solution to Eq. (2) will depend
on the type of function wi chosen to represent the profile of initial imperfection of the axis of
the beam. For harmonic-type imperfection profiles:

wi = ai sin(κiy + ψi) (34)

where ai is the amplitude of the sinusoidal, considered constant, κi = 2π/λi is a wave-number-like
parameter, being λi the associated wave-length, and ψi some phase angle, Fig. 4. Imperfection
profiles for the equal area axis used in the analysis are shown in Table 3. Aspect ratio of the
beams at origin was taken as h0/b0 = {1, 2, 4}. Wedge description followed a linear, symmetric,
distribution starting at the loading interface, with total wedge angle Σ:

ω = 1 + 2 tg(
Σ
2

)
[

y

b0

]
(35)
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Figure 3: Point contact scenario at interface of irregular beam.

Table 3: Set of profile parameters used in the analysis.

Initial Curvature and Wedge Variables
Amplitude Ratio ai

h0
= {0, 0.125, 0.250}

Wave-length Ratio λi
λ0

= {0.125, 0.250, 0.500, →∞}
Phase angle [deg] ψi= {0, 45, 90,180,270}
Wedge angle [deg} Σ = {0.0, 7.5, 15., 22, 5}
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Figure 4: Initial curvature profile.
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4 Bending moment distribution

The effect of the wedge angle Σ on the distribution of bending moment m along variable width
beams, with initial curvature wi written in vector form, is presented in the plot of Fig. 5. It is
obtained from the third entrance to the vector u, Eq. (7), through the curvature ∂yy(w):

m = _
mΣ(y; b.t; {wi}; Σ); m = −E′i0ω∂yy(w); bwic =

⌊
ai κi λi

⌋
(36)

being non-dimensional ordinates constructed from the failure bending moment mf = 2i0Sf

h0
, and

non-dimensional abscissas from reference to the wave-like number λ0 = 2π
δ0

. Material parameters
were the ones indicated in Table 2. Loading is set according to the values: ξ = 0.50,φ = 300;
µ = 0.05 and n0

nc
= 0.001. Aspect ratio h0

b0
= 2. at the origin is chosen.

Overall, it is observed a decrease on the peak bending moment me = _
me(Σ) as the wedge

angles are increased, and all other variables kept constant. At the same time the point of its
occurrence ye = _

ye(Σ) draws closer to the loading edge. This means that the size of the broken
blocks get smaller and smaller as the beam gets wider and wider.

Points of occurrence of critical values of bending moment are therefore important. For
different values of normal force, they occur when:

∂y(m) = 0; (37)

what then requires a numerical procedure to be applied. Chosen an initial trial point, y(j) = y
(j)
e

for the j-th trial, forward Newton-Raphson application will set an increment ∆y(j) related to
the Jacobian J (j) = ∂yy(m)y(j) such that: 
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Figure 5: Plot of the dependence of bending moments upon the wedge angle.

∆y(j) = −∂y(m)(j)J (j)−1
; J (j) 6= 0 (38)
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Furthermore, for small wedge angles and small initial curvatures, a Taylor expansion of the
bending moment function m, Eq. (35), around the uniform beam profile, for different boundary
configurations, may be obtained from:

mΣ(y; b.t; {wi}; Σ) ∼= mΣ(y; b.t; wi = 0;Σ = 0)+∂,Σm(y; b.t; {wi}; Σ)uΣ+{∂{wi}m(y; b.t; {wi}; Σ)u}·∆{wi}
(39)

where m for Σ = 0 and {wi} = {0} equals mu, corresponding to the uniform beam, and whose
expression is [1]:

mu = −E′i0 exp(−αy)[Cm cos(βy) + Sm sin(βy)] (40)

with:
Cm = (α2 − β2)C − 2αβS

Sm = 2αβC + (α2 − β2)S
(41)

being:

C = −2
β(α2 + β2)m0 + 2αβv0

oE′i0
; S = 2

α(α2 + β2)m0 + (β2 − α2)v0

oE′i0
(42)

being α =
√

δ2
0 − γ4

0 and β =
√

δ2
0 + γ4

0 and o = 2β
(
α2 + β2

) (
3α2 − β2

)
. Therefore together

with the wedge angle dependence, Fig. 5, entails estimates to be obtained fast. Boundary terms
affect the bending behavior in different ways. Eccentricity of loading produces the dependency
shown in Fig. 6, with increase of bending moments, in general, with positive values of ς.  
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Figure 6: Plot of eccentricity of loading effect on bending moments for Σ = 0.

The slope angle effect is shown in Fig. 7. Here the steeper the wall, the higher the in-plane
loads. As lower slopes are considered, lateral loads increase, and the problem is dominated by
bending.

The coefficient of friction between the interacting surfaces, a line contact load for the ice strip
that conducts to the undistributed overall terms < n0,m0, v0 >, presents the effect depicted in
Fig. 8. It shows increase of peak values of bending moment, with little position change, with
increase of the coefficient of friction.
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Figure 7: Plot of slope angle effect on bending moments for Σ = 0.

Presence of the initial curvature changes the bending moment distribution in different ways.
Using the uniform beam as reference, Fig. 9 shows the dependence of bending moments with
respect to amplitude of initial imperfections. The higher the amplitude of initial curvature ai,
the greater the change in maximum value of bending moment. For peak values it represents a
decrease.
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Figure 8: Plot of dependence of bending moments upon friction coefficient for Σ = 0.

In figures 10 and 11, wavelength λi and phase angles ψi are considered. These factors present
a mixed effect, increasing and decreasing the bending moments. In a softer manner, as compared
to the amplitude effect, as qualitatively the plots show.
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Figure 9: Initial curvature amplitude effect on bending moments for Σ = 0.
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Figure 10: Effect of wave-length of imperfections on bending moments for Σ = 0.
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Figure 11: Effect of phase angle of imperfections on bending moments for Σ = 0.
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5 Conclusions and extensions

The numerical scheme of solution presented here, coded and implemented using Fortran lan-
guage, is very general and may be used with symmetric and unsymmetrical wedge profiles. In
particular bi-linear forms of variation of width appear in many instances, and they can be ad-
dressed. Results above have shown the dramatic influence of wedging in the lowering of bending
moments, and thus bending failure avoidance. Initial curvature has as a much lower importance
in setting the peak values than it has in setting its position, and therefore size of broken blocks.
It represents changes, in general, of the order of 20%, over the uniform beam case. Hence, much
less than the wedge effect.

Characterization of the limits of the solution can be pursued with the inclusion of a failure
criterion, using some damage parameter or a failure stress method, drawing the failure locus
and then generating the set of failure loads for every configuration sought.

References

[1] J. B. De Aguiar. Displacement of semi-infinite beams on a elastic foundation under bending-
compression loading. In XVIII Congresso Brasileiro de Engenharia Mecânica, COBEM 05, São
Paulo, 2005.

[2] Hibbit, Karlson & Sorensen, Inc. Abaqus Theory Manual. 2002.

[3] http://en.tek.norut.no/norut teknologi/forskning/konstruksjonsteknikk/ice mechanics.

[4] http://www.hsva.de.

[5] M. J. Kaldjian. Ice-sheet failure against inclined and conical structures. Computers and Structures,
26(1-2):145–152, 1987.

[6] H. B. Keller. Numerical Methods for Two-point Boundary Value Problems. Gim-Blausdell, Waltham,
MA., 1968.

[7] A. D. Kerr. The determination of horizontal forces that a floating ice plate exerts on a structure.
Journal of Glaciology, 20(82), 1987.

[8] C. H. Luk. A flexural and longitudinal elastic wave propagation theory applied to ice floe impact
with sloping structures. In 7th O.M.A.E., volume 109 (1), pages 75–84, 1987.

[9] M. Mellor. Mechanical behavior of sea ice. Cold Regions Research and Engineering Laboratory,
Monograph 83-1, 1983.

[10] S. Mohamed and T. Carrieres. Overview of new operational ice model. In Proc. of 9th International
Offshore and Polar Engineering Conference, pages 622–627, Brest, France, 1999.

[11] D. E. Nevel. The general solution of a wedge on a elastic foundation. CRREL Research Report 227,
1968.

[12] M. Sayed. and G. W. Timco. A lattice model of ice failure. In Proc. of 9th Int. Offshore and Polar
Eng. Conf., pages 512–516, France, May 1999.

Latin American Journal of Solids and Structures 4 (2007)



330 João B. de Aguiar

[13] G. W. Timco and M. Johnston. Ice loads on Caisson structures in the Canadian Beaufort Sea. Cold
Regions Science and Technology, 38(2):185–189, 2004.

Latin American Journal of Solids and Structures 4 (2007)


