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Abstract 

A numerical method is developed for the buckling analysis of 

moderately thick plate with different boundary conditions. The 

procedure use the finite strip method in conjunction with the 

refined plate theory (RPT). Various refined shear displacement 

models are employed and compared with each other. These models 

account for parabolic, hyperbolic, exponential, and sinusoidal 

distributions of transverse shear stress, and they satisfy the condi-

tion of no transverse shear stress at the top and bottom surfaces 

of the plates without using a shear correction factor. The number 

of independent unknown functions involved here is only four, as 

compared to five functions in the shear deformation theories of 

Mindlin and Reissner. The numerical results of present theory are 

compared with the results of the first-order and the other higher-

order theories reported in the literature. From the obtained re-

sults, it can be concluded that the present study predicts the 

behavior of rectangular plates with good accuracy.  
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1 INTRODUCTION 

The buckling behavior of orthotropic and laminated composite plates has been extensively stu-

died, and various plate theories have been developed on the basis of transverse shear deformation 

effect. 

 The classical plate theory (CPT), which totally disregards the transverse shear deformation 

effect, provides reasonable results for thin plates (Das, 1963; Harik and Ekambaram, 1988; Bao et 

al., 1997; Leissa and Kang, 2002, 2005; Eisenberger and Alexandrov, 2003; Hwang and Lee, 2006; 

Ovesy et al., 2012); however, for moderately thick plates, it underestimates the deflections and 
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overestimates the buckling loads and natural frequencies. To overcome this shortcoming of the 

CPT, many shear deformation plate theories, which account for the transverse shear deformation 

effects, have been developed including the first-order shear deformation theory (FSDT) developed 

by Reissner (1945); Mindlin (1951). The FSDT accounts for the transverse shear deformation 

effect, but requires a shear correction factor to satisfy the stress-free conditions at the top and 

bottom surfaces of the plate (Dawe and Roufaeil, 1978; Wang et al., 2001; Bui and Rondal, 2008). 

Although the FSDT provides a sufficiently accurate description of response for thin to moderate-

ly-thick plates, it is not convenient to use due to the difficulty of determining an accurate shear 

correction factor. Thus, to avoid the use of a shear correction factor, many higher-order shear 

deformation plate theories (HSDTs) were proposed, including the theories of Reddy (1984); Am-

bartsumian (1958); Levinson (1980); Murthy (1981); Kaczkowski (1968); Panc (1975); Karama et 

al. (2009, 2003); Mantari et al. (2012); Zenkour (2005); Mechab et al. (2012); Touratier (1991); 

Benyoucef et al. (2010); Atmane et al. (2010); Soldatos (1992). Although the HSDTs with five 

unknowns provided sufficiently accurate results for thin to thick plate, their equations of motion 

were more complicated than those of the FSDT and CPT. Therefore, Shimpi (2002) developed a 

two-variable refined plate theory (RPT) which is simple to use. The Shimpi’s theory is based on 

the assumption that the in-plane and transverse displacements consist of bending and shear com-

ponents, and that the bending components do not contribute to shear forces and, likewise, the 

shear components do not contribute to bending moments. The most significant feature of this 

theory is that it applies transverse shear strains across the thickness as a quadratic function and 

satisfies the zero stress boundary conditions at the top and bottom surfaces of the plate without 

using a shear correction factor. Also, by having fewer unknowns in the equations, this theory en-

joys a simpler form which is close to that of the classical plate theory. Some of the most impor-

tant papers written based on this theory are:   

 Shimpi and Patel (2006a) extended the RPT to the vibration of isotropic plates. The RPT was 

applied to orthotropic plates by Shimpi and Patel (2006b) in the bending and vibration problems. 

Thai and Kim (2012, 2011) derived the Levy solution of the RPT for the bending, buckling, and 

vibration of orthotropic plates. Kim et al. (2009) derived the Navier solution of the RPT for the 

buckling of orthotropic plates. Vo and Thai (2012) adopted the RPT for the buckling and vibra-

tion analyses of laminated beams. Recently, the RPT has been extend to nanobeams (2012), na-

noplates (2013, 2011), functionally graded sandwich plates (2011), and functionally graded plates 

(2012). Most of the studies based on the refined plate theory has been confined to the use of a 

particular function for the prediction of transverse shear deformation and have been conducted by 

using the Navier and Levy solutions.  

 In this paper, various simple higher-order shear deformation plate theories for the buckling of 

orthotropic and laminated composite plates are developed. These theories account for parabolic, 

hyperbolic, exponential, and sinusoidal distributions of transverse shear stress, and they satisfy 

the condition of no transverse shear stress at the top and bottom surfaces of the plates without 

using a shear correction factor. The number of unknown functions involved here is only four, 

compared to five functions in the case of shear deformation theories of Mindlin and Reissner 

which by removing this one unknown, we can save in the volume, time and cost of extra compu-

tations. The analysis employs the finite strip method. This method is applied to study the local 

instability of thick plates under compression with different boundary conditions. The numerical 
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results of present theory are compared with the results of the first-order and the other higher-

order theories reported in the literature. This paper is organized into the following sections. In 

section 2, the different shear strain shape functions are presented and its application in the finite 

strip procedure is overviewed. Numerical results and discussions are presented in section 3. In 

section 4, some concluding remarks are highlighted. 
 

2 THEORETICAL FORMULATION  

2.1 Refined plate theory (Basic assumptions) 

Consider the plate and a cartesian coordinate system as shown in Figure 1.  

 

  

Figure 1: Illustrations of displacements and plate meshing arrangement. 

 

The assumptions of the present theory are as follows: 

i.  The displacements are small in comparison with the plate thickness and, therefore, the result-

ing strains are infinitesimal. 

ii.  The transverse normal stress zσ  is negligible in comparison with the in-plane xσ  and yσ . 

iii. The transverse displacement w  includes two components of bending bw  and shear sw . These 

components are functions of coordinates x ,y . 
 

 ( , , ) ( , ) ( , )b sw x y z w x y w x y= +   (1) 

 

iv. The in-plane displacements u  and v  consist of extension, bending, and shear components. 

 

 e b su u u u= + +  and e b sv v v v= + +  (2) 

 



564       S. Mirzaei et al. / On the use of finite strip method for buckling analysis of moderately thick plate by refined plate theory and using new types of functions 

 

Latin American Journal of Solids and Structures 12 (2015) 561-582 

 

 The bending components bu  and bv  are assumed to be similar to the displacements given by 

the CPT. Therefore, the expressions for bu  and bv  are 

 b
b

w
u z

x

∂
= −

∂
 and b

b

w
v z

y

∂
= −

∂
 (3.a) 

 
 The shear components su  and sv , in conjunction with sw , give rise to the ( )if z  variations of 

shear strains xzγ , yzγ  and hence to shear stresses xzσ , yzσ  along the plate thickness h  in such a 

way that shear stresses xzσ , yzσ  are zero at the top and bottom surfaces of the plate. Consequen-

tly, su  and sv  can be expressed as 
 

 ( ) s
s i

w
u f z

x

∂
=

∂
 and ( ) s

s i

w
v f z

y

∂
=

∂
 (3.b) 

 

 The objective of this paper is to develop various models to employ the new functions ( )if z  for 

the buckling analysis of orthotropic and laminated composite plates under compression loading. 

These functions are shown in Table 1 and are depicted in Figure 2. 

 

( )if z function Theory 

2 2

1( ) 2 4 3

z h z
f z z

 
 = − −   

 Parabolic shear deformation  theory (PSDT) 

2

1
( ) sinh cosh

2

z
f z h z z

h

      = − −        
 Hyperbolic shear deformation theory (HSDT) 

2

2

3( )

z

hf z ze z

  −    = −  
Exponential shear deformation theory (ESDT) 

4( ) sin
h z

f z z
h

π

π

  = −   
 Sinusoidal shear deformation theory (SSDT) 

 
Table 1: Different shear strain shape functions. 

 

 
Figure 2: Variation of functions ( )if z  along the plate thickness. 
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Functions ( )if z  must be chosen to satisfy the following constraints: (3) 
 

 
/2

/2
/2

( )
( ) 0,  1

h
i

i
h

z h

f z
f z dz

z−
=±

∂
= = −

∂∫   (4) 

 

2.2 Kinematics  

Based on the assumptions made in the preceding section and using equations (1) through (3b), 

the displacement field can be obtained as 

 

 

0

0

( , , ) ( , ) ( )

( , , ) ( , ) ( )

( , , ) ( , ) ( , )

b s
i

b s
i

b s

w w
u x y z u x y z f z

x x
w w

v x y z v x y z f z
y y

w x y z w x y w x y

∂ ∂
= − +

∂ ∂
∂ ∂

= − +
∂ ∂

= +

  (5) 

 

where u and v are the in-plane displacements at any point (x, y, z) in direction of x and y respec-

tively; and u0 and v0 denote the in-plane displacements of point (x, y, 0) on the mid-plane in x 

and y direction respectively, and ( )if z
 
is placed  from Table 1. 

 The kinematic relations can be obtained as follows: 
 

 

2 2

2 2

2 2

2 2

2 2

( )

2 2

b s

x
b s

x

xy
b s

w wu

x xx
w wv

z f z
y y y

u v w w

y x x y x y

ε

ε

γ

    ∂ ∂     ∂   −          ∂ ∂  ∂              ∂ ∂    ∂      = + − +            ∂ ∂ ∂                  ∂ ∂  ∂ ∂    +   −   ∂ ∂     ∂ ∂ ∂ ∂   

, ( )

s

yz

xz s

w

yg z
w

x

γ

γ

   ∂           ∂  =        ∂           ∂     

  (6.a) 

 

where 
 

 
( )

( ) 1
df z

g z
dz

= +   (6.b) 

 

2.3 Constitutive equations 

It is assumed that the laminate is manufactured from orthotropic layers of pre-impregnated uni-

directional fibrous composite materials (see Figure 3). Neglecting zσ , the stress-strain relations 

for each layer in the ( , , )x y z  coordinate system may be written as(6) 

 

 

11 12

12 22

66

44

55

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x x

y y

xy xy

yz yz

xz xz

Q Q

Q Q

Q

Q

Q

σ ε

σ ε

σ γ

σ γ

σ γ

                                =                                    

  (7) 
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where ijQ  are the plane stress-reduced stiffness values, which are known in terms of the enginee-

ring constants in the material axes of the layers: 

 

 1 12 2 2
11 12 22 66 12 44 23 55 13

12 21 12 21 12 21

, , , , ,
1 1 1

E E E
Q Q Q Q G Q G Q G

υ

υ υ υ υ υ υ
= = = = = =

− − −
  (8) 

 

where 1E  and 2E  are the Young’s moduli; 12υ  and 21υ  are the Poisson’s ratios, and 12G , 23G  and 

13G  are the shear moduli.  

 By performing a coordinate transformation, the stress-strain relations in the global coordinate 

system can be obtained as 

 

 

11 12 16

12 22 26

16 26 66

44 45

45 55

0 0

0 0

0 0

0 0 0

0 0 0

x x

y y

xy xy

yz yz

xz xz

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

σ ε

σ ε

σ γ

σ γ

σ γ

                                =                                    

  (9) 

 

and the compact form of Eq. (9) will be 

 

 { } { }Qσ ε =     (10) 

 

 The components of Q    for each laminated plate has been discussed by Reddy (2004).  

 

 

Figure 3: Coordinate system and layer numbering used for a typical laminated plate. 
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Figure 4: Pre-buckling stresses in a strip. Figure 5: Pre-buckling system of displacements in a strip. 

 

2.4 Finite strip method 

In this section, the rectangular plate is modeled by a number of finite strips, each of which has 

three equally spaced nodal lines (see Figure 5) (Cheung, 1976). For the thm  harmonic, the displa-

cement parameters of nodal line i  are 
 

 { }
, , , , , , for 1, 3

, , for 2

T
b b s s

im im im im im im

Tim

im im

u v w w i

u v i

θ θ
δ

    =    =     =      

  (11.a) 

 

where 
 

 ,  ,  ,  and  b s b b s s
b s

w w
w w w w

x x
θ θ

∂ ∂
= = = =

∂ ∂
  (11.b) 

 

 The unknown displacement field functions (Eq. (5))  are assumed as follows: (11) 

 

 { }
3

0
1 1

r

m im
m i

u X S δ
= =

= ∑∑   (12.a) 

 { }
3

0
1 1

r

m im
m i

v Y S δ
= =

′= ∑∑   (12.b) 

 { }
3

1 1

r
b

b m im
m i

w R S δ
= =

= ∑∑   (12.c) 

 { }
3

1 1

r
s

s m im
m i

w R S δ
= =

= ∑∑   (12.d) 

 

in which(12) 
 

 
( )m

m

d S
S

dy
′ =   (13) 
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where r  is the number of harmonics and mS  is the thm  term of the basic function series (see 

Appendix) corresponding to particular end conditions, and X , Y , bR , sR  are the interpolation 

matrices defined by Eq. (14). 
 

 21 1
( 1) 0 0 0 0 0 1 0 ( 1) 0 0 0 0 0

2 2
X η η η η η

 
 = − − +  

  (14.a) 

 21 1
0 ( 1) 0 0 0 0 0 1 0 ( 1) 0 0 0 0
2 2

Y η η η η η
 
 = − − +  

  (14.b) 

2 2 2 21 1
0 0 (1 ) (2 ) (1 )(1 ) 0 0 0 0 0 0 (1 ) (2 ) (1 )(1 ) 0 0

4 8 4 8
b s sb b

R η η η η η η η η
 
 = − + + − + − − − +  

 (14.c) 

2 2 2 21 1
0 0 0 0 (1 ) (2 ) (1 )(1 ) 0 0 0 0 0 0 (1 ) (2 ) (1 )(1 )

4 8 4 8
s s sb b

R η η η η η η η η
 
 = − + + − + − − − +  

  (14.d) 

 

In the above equations, 2
s

x bη =  and sb  is the strip width. 

 It should be noted that the Hermitian cubic polynomials used in the interpolation functions of 

bw  and sw  in the x  direction, guarantee the inter-element continuity of the transverse displace-

ment w and of its first derivatives b
w x∂ ∂  and s

w x∂ ∂ . The linear and nonlinear buckling strain 

vectors { }Lε  and { }NLε  are given by(14)  
 

 { } ; ; ; ;

T

L

u v u v w v w u

x y y x y z x z
ε

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  = + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
  (15) 

 { }

2 2 2

2 2 2

1

2

1

2
NL

u v w

x x x

u v w

y y y

u u v v w w

x y x y x y

ε

         ∂ ∂ ∂        +  +                 ∂ ∂ ∂             ∂ ∂ ∂       =  +  +                 ∂ ∂ ∂      ∂ ∂ ∂ ∂ ∂ ∂  + +  ∂ ∂ ∂ ∂ ∂ ∂  



  (16) 

 

 Using Eqs. (12a) through (12d) and (4) the linear strain vector { }Lε  becomes 

 

 { } { }
3

1 1

r

L imim
m i

Bε δ
= =

 =  ∑∑   (17) 

 

where 
im

B    is the strain matrix. 

 The total strain energy U  stored during buckling may be written as 

 

 { } { }1

2

T

L
V

U dVε σ= ∫   (18) 

 

where V  is the volume of the strip. Hence, by substituting Eqs. (10) and (17) into Eq. (18) the 

stiffness matrix is obtained from 
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 { } { }1

2

T

im jnijmn
U Kδ δ =     (19) 

 

in which 
ijmn

K    is the stiffness matrix corresponding to nodal lines i  and j , and it can be ex-

pressed as  
 

 
1

2

0 1
2

h
b T

hijmn im jn
K B Q B dxdydz

−−

       =       ∫ ∫ ∫   (20) 

 

where m  and n  denote the related series terms. 

 The strip is subjected to in-plane stresses xσ  and yσ  shown in Figure 4. The potential energy 

reduction of these stresses ( pV ) during buckling is given by 

 

 { } { }1

2

T

p NL
V

V dVε σ= ∫   (21) 

 

 By appropriate substitution, the stability matrix GK
    can be obtained from 

 

 { } { }1

2

T

Gim jnijmn
V Kδ δ =     (22) 

 

in which 
 

 { }0 0 01

2

T T T

G u u v v w wijmn im jn im jn im jnV
K G G G G G G dVσ σ σ                   = + +                   ∫   (23) 

 

Where 
 

 { }
3

1 1

r

u imim
m i

u u
G

x y
δ
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and(24) 
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0
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σ σ
σ

σ σ

 
   =      

  (25) 

 

 In the equations (24a-c), u im
G   , v im

G    and w im
G    are the stability matrices. Once the stiff-

ness matrix 
ijmn

K    and stability matrix G ijmn
K    have been derived, and combined for each com-



570       S. Mirzaei et al. / On the use of finite strip method for buckling analysis of moderately thick plate by refined plate theory and using new types of functions 

 

Latin American Journal of Solids and Structures 12 (2015) 561-582 

 

posite strip, they can be assembled into the respective global matrices K    and GK
    using stan-

dard procedures. The buckling problem can then be solved by eigenvalue equations 

 

 ( ){ } 0GK Kλ   − ∆ =      (26) 

 

where λ  is a scaling factor related to the critical load and { }∆  is the eigenvector. 

 

3 NUMERICAL RESULTS 

The numerical program has been written in the MATLAB environment which can model various 

boundary conditions and three types of isotropic, orthotropic and laminated composite plates.      

In this section, to verify the accuracy of the RPT in predicting the buckling behavior of orthotro-

pic and asymmetric cross-ply laminates under different boundary conditions, various numerical 

examples are presented for laminates with the following properties, and the results of the RPT 

are compared with those of the classical plate theory (CPT), first-order shear deformation theory 

(FSDT) and higher-order shear deformation plate theory (HSDT). The explanations of various 

displacement models are given in Table 2. 

 Material type (1) Reddy (2004) 

 1 2 12 13 2 23 2 12varied, 0.5 , 0.2 , 0.25E E G G E G E υ= = = = =  

 Material type (2) Reddy (2004) 

 1 2 12 13 2 23 2 12varied, 0.6 , 0.5 , 0.25E E G G E G E υ= = = = =  

 To more conveniently present the numerical results in graphical and tabular forms, they are 

dimensionless using the following relation: 

 

 
2

2
2

cr

a
N N

E h

  =    
  (27) 

 

 In obtaining the results, plate strips with 14 degrees of freedom have been used. Also in all the 

results, except the mentioned cases, one harmonic and 10 strips have been used. 

 In all the tables and figures, a, b and h are the plate width, length and thickness, respectively; 

and k is shear correction factor for the first-order shear deformation theory (FSDT). 

 

Model Theory Unknowns 

CPT Classical plate theory 3 

FSDT First-order shear deformation theory 5 

TSDT Third-order deformation theory 5 

Present PSDT Parabolic shear deformation  theory 4 

Present HSDT Hyperbolic shear deformation theory 4 

Present ESDT Exponential shear deformation theory 4 

Present SSDT Sinusoidal shear deformation theory 4 

 

Table 2: Description of various displacement models. 



S. Mirzaei et al. / On the use of finite strip method for buckling analysis of moderately thick plate by refined plate theory and using new types of functions       571 

 

Latin American Journal of Solids and Structures 12 (2015) 561-582 

 

3.1 Buckling analysis of simply-supported square orthotropic plate 

The dimensionless buckling loads of the simply-supported square orthotropic plate (a b= ) have 

been presented in Tables 3 and 4 as well as Figures 6, 8 and 9. Material type (1), 10 strips and 

the first harmonic are used. The results obtained from the RPT numerical solution agree well 

with the Kim’s Navier solutions and the FSDT results. Also, the difference between the results of 

the present theory, FSDT (k = 5/6), and CPT have been illustrated in Figures 6 and 7 as an 
increase in the a h  ratio and in Figures 8 and 9 as an increase in the elasticity modulus. As 

shown in Table 3, the differences between the results of the present study and FSDT (k = 5/6), 
and between the results of the present study and FSDT (k = 1) are 15.42% and 1.6%, respective-
ly, for the same case of square orthotropic plate ( 5a b h= =  and 1 2 40E E = ). The buckling 

load of a square orthotropic plate subjected to in-plane biaxial pressure was presented in Table 4 

and Figure 7, which for converging the results, we used the first two harmonics (m =1 and m =2) 

and 10 strips. The first two buckling mode shapes of a simply supported square orthotropic plate 

boundary conditions and a h = 5 and subjected to in-plane uniaxial compressive load is depicted 
in Figure 10. 
 

b h           Theories Orthotropic 

1 2 10E E =  1 2 25E E =  1 2 40E E =  

5 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

6.2126 

6.3478 

5.5679 

6.1804 

6.6715 

9.0109 

9.1039 

7.1122 

8.2199 

9.1841 

10.5133 

10.5785 

7.7411 

9.1085 

10.3463 

10 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

9.2655 

9.3732 

8.8988 

9.2733 

95415 

16.6319 

16.7719 

14.7011 

15.8736 

16.7699 

22.1168 

22.2581 

18.3575 

20.3044 

21.8602 

20 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

10.6138 

10.6534 

10.4926 

10.6199 

10.7066 

21.2759 

21.3479 

20.4034 

20.9528 

21.3363 

30.9730 

31.0685 

28.8500 

30.0139 

30.8451 

50 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

11.0709 

11.0780 

11.0497 

11.0721 

11.0871 

23.1080 

23.1225 

22.9366 

23.0461 

21.3363 

34.9503 

34.9717 

34.4886 

34.7487 

34.9244 

100 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 
CPT 

11.1398 

11.1415 

11.1343 

11.1400 

11.1438 

11.1628 

23.3971 

23.4007 

23.3527 

23.3810 

23.3999 

23.4949 

35.6067 

35.6120 

35.4852 

35.5538 

35.5996 

35.8307 
 

Table 3: Nondimensional critical buckling loads of simply-supported (SSSS) square plates subjected to uniaxial 

compression. 
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b h           Theories Orthotropic 

1 2 10E E =  1 2 25E E =  1 2 40E E =  

5 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

2.7453a 

2.8549a 

2.5042a 

2.8319a 

3.1027a 

3.2417a 

3.3309a 

2.7332a 

3.1422a 

3.4933a 

3.5995a 

3.4800a 

2.8303a 

3.2822a 

3.6793a 

10 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

4.5555 

4.6718 

4.4259 

4.6367 

4.7708 

5.9363a 

6.0646a 

5.4351a 

5.8370a 

6.1425a 

7.1217a 

7.2536a 

6.0797a 

6.6325a 

7.0690a 

20 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

5.3069 

5.3267 

5.2463 

5.3100 

5.3533 

7.5993a 

7.6643a 

7.3701a 

7.5546a 

7.6834a 

9.5835a 

9.6614a 

8.9895a 

9.3049a 

9.5297a 

50 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 

5.5355 

5.5390 

5.5249 

5.5361 

5.5436 

8.2653a 

8.2784a 

8.2199a 

8.2566a 

8.2812a 

10.6409a 

10.6576a 

10.5111a 

10.5810a 

10.6282a 

100 

Present PSDT 

Kim et al. (2009a) 

FSDT k = 2/3 
FSDT k = 5/6 
FSDT k = 1 
CPT 

5.5699 

5.5707 

5.5672 

5.5700 

5.5719 

5.5814 

8.3710a 

8.3744a 

8.3593a 

8.3687a 

8.3751a 

8.4069a 

10.8129a 

10.8172a 

10.7788a 

10.7972a 

10.8095a 

10.8715a 

 
a (10 strips and first two harmonics) 

Table 4: Nondimensional critical buckling loads of simply-supported (SSSS) 

square plates (a b= ) subjected to biaxial compression. 

 

 
Figure 6: The effect of side-to-thickness ratio on the critical buckling load 

of square plates subjected to uniaxial compression; 1 2 25E E = . 
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Figure 7: The effect of side-to-thickness ratio on the critical buckling load 

of square plates subjected to biaxial compression; 1 2 25E E = . 

 

 
Figure 8: The effect of modulus ratio on the critical buckling load 

of square plates subjected to uniaxial compression; 10a h = . 

 

 
Figure 9: The effect of modulus ratio on the critical buckling load 

of square plates subjected to uniaxial compression; 20a h = . 
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Figure 10: The first two buckling mode shapes of a square orthotropic 

plate with simply supported boundary conditions. 

 

3.2 Buckling analysis of simply-supported square orthotropic plate with various shear deformation theories 

Table 5 has listed the critical buckling loads obtained from various shear deformation theories for 

simply-supported orthotropic square plates subjected to uniaxial compression. Material type (1), 

10 strips and the first harmonic are used to solve the problem. As shown in Table 5, the non-

dimensional buckling loads obtained by sinusoidal and exponential functions are greater than 

those obtained by hyperbolic and parabolic functions. 

 

b h            present ( )if z  Orthotropic 

1 2 10E E =  1 2 25E E =  1 2 40E E =  

5 

1( )f z  (PSDT) 

2( )f z  (HSDT) 

3( )f z  (ESDT) 

4( )f z  (SSDT) 

FSDT 1k =  

6.2126 

6.2122 

6.2390 

6.2637 

6.6715 

9.0109 

9.0090 

9.0921 

9.0897 

9.1841 

10.5133 

10.5094 

10.6577 

9.9596 

10.3463 

20 

1( )f z  (PSDT) 

2( )f z  (HSDT) 

3( )f z  (ESDT) 

4( )f z  (SSDT) 

FSDT 1k =  

10.6138 

10.6138 

10.6168 

10.6253 

10.7066 

21.2759 

21.2759 

21.2885 

21.3218 

21.3363 

30.9730 

30.9729 

31.0011 

31.0692 

30.8451 

100 

1( )f z  (PSDT) 

2( )f z  (HSDT) 

3( )f z  (ESDT) 

4( )f z  (SSDT) 

FSDT 1k =  

11.1398 

11.1398 

11.1399 

11.1402 

11.1628 

23.3971 

23.3971 

23.3977 

23.3992 

23.3999 

35.6067 

35.6067 

35.6080 

35.6116 

35.5996 
 

Table 5: Nondimensional critical buckling loads obtained by various ( )if z  

for simply-supported square plates subjected to uniaxial compression. 

 

3.3 Buckling analysis of square orthotropic plate with different boundary conditions 

The non-dimensional buckling loads of square orthotropic plates (a b= ) with different boundary 

conditions have been shown in Table 6 and Figure 11. In this section, the boundary conditions of 

two loaded ends are simply supported and side edges boundary conditions are considered as sim-
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ply supported, clamped and  free. Material type (1), 10 strips and the first harmonic term is used 

to solve the problem. In Table 6, a comparison has been made between the critical buckling loads 

of thin plates (a h = 100) achieved by the present RPT numerical solution, the Levy-Thai solu-
tion (2011) and the CPT solution. The changes of the critical buckling load with thickness ratio 

and PSDT model are shown in Figure 11. In Table 6, 1β  and 2β  are the load parameters that 

indicate the loading conditions. Positive values for 1β  and 2β  indicate that the plate is subjected 

to biaxial compressive loads. Also, a zero value for 1β  or 2β  shows uniaxial loading in the x or y 

direction, respectively. The buckling mode shapes of a square orthotropic plate with various 

boundary conditions and a h = 5, subjected to in-plane uniaxial pressure are shown in Figure 12. 

 

1 2( , )β β    1 2E E              Method Boundary condition 

SSSS  SSCC  SSSC  SSFF  

(0,1) 

10 

   Present PSDT 

   Thai et al. (2011) 

   CPT  

11.1398 

11.1415 

11.1628 

45.5671 

45.5714 

45.9207 

23.3279 

23.3315 

23.4222 

2.8190 

2.8192 

2.8206 

25 

   Present PSDT 

   Thai et al. (2011) 

   CPT  

23.3971 

23.4007 

23.4949 

107.3591 

107.3597 

109.3141 

53.0498 

53.0572 

53.5274 

2.8200 

2.8203 

2.8216 

40 

   Present PSDT 

   Thai et al. (2011) 

   CPT  

35.6067 

35.6120 

35.8307 

167.8998 

167.8887 

172.7103 

82.4827 

82.4930 

83.6346 

2.8203 

2.8206 

2.8219 

(1,1) 

10 

   Present PSDT 

   Thai et al. (2011) 

   CPT  

5.5698 

5.5707 

5.5814 

20.1498 

20.1558 

20.2904 

10.7250 

10.7273 

10.7658 

1.2742 

1.2745 

1.2750 

25 

   Present PSDT 

   Thai et al. (2011) 

   CPT  

11.6984 

11.7003 

11.7475 

47.4986 

47.5122 

48.2668 

2403747 

24.3799 

24.5792 

1.2735 

1.2737 

1.2743 

40 

   Present PSDT 

   Thai et al. (2011) 

   CPT  

17.8031 

17.8060 

17.9154 

74.3589 

74.3794 

76.2450 

37.9024 

37.9103 

38.3944 

1.2732 

1.2735 

1.2741 

 

Table 6: Comparison between nondimensional critical buckling loads 

of square orthotropic plates with different boundary conditions (a h =  100). 

 

3.4 Buckling analysis of simply-supported square asymmetric cross-ply laminated plate 

The critical buckling loads of two-layer asymmetric cross-ply laminated plates under uniaxial and 

biaxial loadings are presented in Table 7 for modulus ratios 1 2E E = 10, 25, 40 and material type 
(1). In Tables 7 and 8 as well as Figure 13, 10 strips and the first harmonic term are used to solve 

the problem. In table 8, a simply-supported asymmetric cross-ply (0 / 90)n ( 2,3,5)n =  square 

laminate subjected to uniaxial compressive load on sides ( 0, )x a=  and with modulus ratios

1 2E E = 40 is considered. Material type (2) is used. Table 8 shows a comparison between the re-
sults obtained by using various models and the 3-D elasticity solutions given by Noor (1975). The 

results clearly indicate that the present theories predict the buckling loads more accurately than 

the identical HSDTs.  
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Figure 11: The effect of side-to-thickness ratio on the critical buckling load of square plates with different boun-

dary conditions subjected to uniaxial compression along the y-axis; 1 2E E = 10 and PSDT model. 

 

  

  
 

Figure 12: The buckling mode shapes of a square orthotropic plate 

with various boundary conditions; A: SSSS, B: SSSC, C: SSCC, D: SSFF 

 

 The effect of side-to-thickness ratio on the buckling load of simply-supported four-layer 

(0 / 90 / 0 / 90)  square laminates has been presented in Figure 13 with modulus ratios 1 2E E =
40. Buckling mode shape of a square laminated composite plate (0/90/0/90) with simply suppor-

ted boundary conditions and a h = 5, subjected to in-plane uniaxial pressure have been illustra-
ted in Figure 14. 
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b h          Theories (0 / 90)  

1 2 10E E =  1 2 25E E =  1 2 40E E =  

Uniaxial Compression    

10 

Present (PSDT) 

Present (HSDT) 

Present (SSDT) 

Reddy (2004) 

5.6641 

5.6636 

5.6645 

5.746 

8.1636 

8.1620 

8.1652 

8.189 

10.4671 

10.4639 

10.4705 

10.381 

20 

Present (PSDT) 

Present (HSDT) 

Present (SSDT) 

Reddy (2004) 

6.1777 

6.1775 

6.1778 

6.205 

9.1378 

9.1373 

9.1383 

9.153 

11.9961 

11.9951 

11.9972 

11.980 

100 

Present (PSDT) 

Present (HSDT) 

Present (SSDT) 

Reddy (2004) 

CLPT 

6.3662 

6.3662 

6.3662 

6.367 

6.374 

9.5102 

9.5101 

9.5102 

9.511 

9.526 

12.6016 

12.6015 

12.6016 

12.601 

12.628 

Biaxial Compression    

10 

Present (PSDT) 

Present (HSDT) 

Present (SSDT) 

Reddy (2004) 

2.8319 

2.8317 

2.8321 

2.873 

4.0816 

4.0808 

4.0824 

4.094 

5.2333 

5.2317 

5.2350 

5.190 

20 

Present (PSDT) 

Present (HSDT) 

Present (SSDT) 

Reddy (2004) 

3.0888 

3.0888 

3.0889 

3.102 

4.5689 

4.5686 

4.5691 

4.576 

5.9980 

5.9975 

5.9986 

5.990 

100 

Present (PSDT) 

Present (HSDT) 

Present (SSDT) 

Reddy (2004) 

CLPT 

3.1831 

3.1831 

3.1831 

3.184 

3.187 

4.7551 

4.7551 

4.7551 

4.755 

4.763 

6.3008 

6.3008 

6.3008 

6.300 

6.314 
 
Table 7: Nondimensional critical buckling load of simply-supported asymmetric cross-ply square plates (a b= ). 

 

 

Figure 13: The effect of side-to-thickness ratio on nondimensionlized uniaxial buckling load of simply-supported 

four-layer (0 / 90 / 0 / 90)  square laminates subjected to uniaxial buckling; 1 2 40E E = . 
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Number of layers Source N  Error (%) 

4 

Exact (Noor, 1975) 21.2796 - 

TSDT (Reddy, 2004) 22.5790 6.11 

FSDT (Reddy, 2004) 22.8060 7.17 

RPT (Kim et al., 2009b) 22.5700 6.06 

Present (PSDT) 22.3306 4.93 

Present (HSDT) 22.3337 4.95 

Present (SSDT) 22.3044 4.81 

CLPT 30.3591 42.67 

6 

Exact (Noor, 1975) 23.6689 - 

TSDT (Reddy, 2004) 24.4596 3.34 

FSDT (Reddy, 2004) 24.5777 3.84 

RPT (Kim et al., 2009b) 24.4581 3.33 

Present (PSDT) 24.2258 2.352 

Present (HSDT) 24.2267 2.356 

Present (SSDT) 24.2264 2.355 

CLPT 33.5817 41.88 

10 

Exact (Noor, 1975) 24.9636 - 

TSDT (Reddy, 2004) 25.4225 1.84 

FSDT (Reddy, 2004) 25.4500 1.95 

RPT (Kim et al., 2009b) 25.4225 1.84 

Present (PSDT) 25.1976 0.937 

Present (HSDT) 25.1975 0.936 

Present (SSDT) 25.2100 0.986 

CLPT 35.2316 41.13 
 

Table 8: Nondimensionalized uniaxial buckling load of simply-supported asymmetric 

cross-ply (0 / 90 / ...)   square laminates with ( 10)a h =  and 1 2 40E E = . 

 

 

Figure 14: Buckling mode shape of a square laminated composite plate (0/90/0/90) 

with simply supported boundary conditions and a h = 5. 

 

4 CONCLUSIONS  

The finite strip numerical solution and the use of the refined plate theory for orthotropic and 

laminated composite plates at different boundary conditions have been investigated. Also in this 
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solution, the results of various transverse shear functions have been compared. The important 

findings of this analysis can be expressed as follows: 

  

1- In this paper, we employed the four transverse shear functions of PSDT, HSDT, ESDT and SSDT 

(Table 1). In section 3.2 (Table 5), all four functions are used for the analysis of different plate 

samples and demonstrated that the non-dimensional buckling loads of the PSDT and HSDT func-

tions are less than those obtained the ESDT and SSDT functions. Therefore in Section 3.1, we only 

used the PSDT function for analysis. 

2- In Section 3.4 (Table 8), it is shown that the results obtained by the PSDT function are closer 

to the exact solution. 

3- The present theory yields more accurate buckling load values than the first-order shear defor-

mation theory. 

4- The buckling loads of the hyperbolic transverse shear function has a good accuracy compared 

with those of the first-order shear deformation theory. 

5- The buckling loads of the exponential transverse shear function is usually higher than those of 

the first-order shear deformation theory. 

6- This paper provided many examples for the the analysis of orthotropic plates with different 

boundary conditions and subjected to uniaxial and biaxial loading situations. Examples of 

laminated composite plats with different layers and sizes are presented in section 3.4, in all 

cases good accuracy is observed. 

7- The most significant feature of this theory is that it may apply the transverse shear strains 

across the thickness as parabolic, sinusoidal, hyperbolic and exponential functions. Also, by 

having fewer unknowns in the equations, this theory enjoys a simpler form which is close to 

that of the CPT. 
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Appendix  

Basic function ( )mS : 
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