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Abstract 

Deflection is an important design parameter for structures 

subjected to service load. This paper provides an explicit 

expression for effective moment of inertia considering cracking, 

for uniformly distributed loaded reinforced concrete (RC) beams. 

The proposed explicit expression can be used for rapid prediction 

of short-term deflection at service load. The explicit expression 

has been obtained from the trained neural network considering 

concrete cracking, tension stiffening and entire practical range of 

reinforcement. Three significant structural parameters have been 

identified that govern the change in effective moment of inertia 

and therefore deflection. These three parameters are chosen as 

inputs to train neural network. The training data sets for neural 

network are generated using finite element software ABAQUS. 

The explicit expression has been validated for a number of 

simply supported and continuous beams and it is shown that the 

predicted deflections have reasonable accuracy for practical 

purpose. A sensitivity analysis has been performed, which 

indicates substantial dependence of effective moment of inertia 

on the selected input parameters. 
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Nomenclatures  

,st sbA A
 

 area of top and bottom reinforcement, respectively 

,B D   width and depth of beam 

,f fB D   width and depth of flange 

,w wB D   width and depth of web 

,c sE E   modulus of elasticity of concrete and steel, respectively 

eI   effective moment of inertia 

,g crI I   moment of inertia of gross and fully cracked transformed cross section, respectively 

jI   thj  input parameter 

L
 

 length of beam 
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,cr eM M   
minimum moment at which the cracking takes place at a cross-section in the beam and applied 

(elastic) moment, respectively 

1O   output parameter 

bias   bias of hidden or output neuron 

, ,EXP FEM NNd d d
 

 mid-span deflection from experiments, FEM, and neural network/explicit expression, respectively 

,t bd d
 

 effective concrete cover at top and bottom. respectively 

tf  
 tensile strength of concrete 

'
cf   cylindrical compressive strength of concrete at 28 days 

kh   thk  hidden neuron 

m   constant 

q   number of input parameters 

r   number of hidden neurons 

,w n   uniformly distributed load and modular ratio, respectively 

crw   minimum load at which the cracking takes place in the beam cracking 

,
ih
j kw   weight of the link between jI  and kh  

,1
ho
kw   weight of the link between kh  and 1O  

,cr u  
 cracking strain, and maximum tensile strain of concrete, respectively 

,t c   percentage tension and compression reinforcement, respectively 

Subscript 

j   input neuron number 

k   hidden neuron number or function number 

o   output neuron number 

Superscript 

ho   connection between hidden and output layers 

ih   connection between input and hidden layers 

 

1  INTRODUCTION 

Deflection is an important parameter to check the serviceability criteria of structure. The short 

term deflection is generally calculated using effective moment of inertia of entire span at service 

load. The equations for effective moment of inertia, available in literature, are mainly based on 

two approaches: (i) springs in parallel and (ii) springs in series (Kalkan, 2010). The stiffnesses of 

the uncracked and cracked portions are averaged in the springs in parallel approach (Branson, 

1965; Al-Zaid et al., 1991; Al-Shaikh and Al-Zaid, 1993; SAA-AS 3600, 1994; TS 500, 2000; CSA-

A23.3, 2004; ACI 318, 2005; AASHTO, 2005), whereas the flexibilities of the uncracked and 

cracked portions are averaged in the springs in series approach (Ghali, 1993; CEN Eurocode 2, 

2004; Bischoff, 2005; Bischoff and Scanlon, 2007; Bischoff, 2007). 

 Considering parallel springs approach first, the following equation of effective moment of 

inertia eI  in terms of fully cracked and uncracked moment of inertia was originally proposed by 

Branson (1965) for simply supported beams as 

 

 1
m m m

cr cr cr
e g cr cr g cr g

e e e

M M M
I I I I I I I

M M M
  (1) 
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where, crM = minimum moment at which the cracking takes place at a cross-section in the beam; 

eM  = applied (elastic) moment along the span; gI  = moment of inertia of the gross cross section; 

crI  = moment of inertia of the fully cracked transformed cross section and m =constant. 

 Eq. (1) was derived empirically based on the experimental test results of simply supported 

rectangular reinforced concrete (RC) uniformly loaded beams with tension reinforcement, t  = 

1.65% and ratio of moment of inertia of the fully cracked transformed cross section and moment 

of inertia of the gross cross section, cr gI I  = 0.45 at maximum applied (elastic) moment equal to 

2.5 crM (Branson, 1965). 

 Eq. (1) has been adopted in many international standards and codes (SAA-AS 3600, 1994; TS 

500, 2000; CSA-A23.3, 2004; ACI 318, 2005; AASHTO, 2005) to calculate eI  and therefore 

deflection, taking m = 3. Some researchers (Bischoff, 2005; Gilbert, 1999; Scanlon et al., 2001; 

Gilbert, 2006) found out that Eq. (1) with m = 3 calculates effective moment of inertia accurately 

in case of medium to high tension reinforcement( t > 1%), while it overestimates effective 

moment of inertia for low tension reinforcement ( t < 1%). 

 Al-Zaid et al. (1991) experimentally proved that the value of m in Eq. (1) depends on the 

loading configurations and suggested m = 2.8 (in Eq. (1)) for uniformly distributed load when 

1.5 .e crM M  The value of m was found to change from about 3 to 4.3 for moderately-reinforced 

concrete beams ( t = 1.2%, cr gI I  = 0.34) in the range of 1.5cr e crM M M . Al-Shaikh and Al-

Zaid (1993) performed experiments on mid-span point loaded beams with varying reinforcement. 

The values of m was found to vary from about 1.8 to 2.5 for lightly reinforced beams ( t = 0.8%, 

cr gI I = 0.22) in the range of 1.5 4cr e crM M M , while for the heavily reinforced beams ( t  = 

2%, cr gI I = 0.44), m varied in a range of 0.9 to 1.3. They also suggested 3 0.8 tm  

incorporating reinforcement effect in Eq. (1) for point loaded beams. Al-Zaid et al. (1991); Al-

Shaikh and Al-Zaid (1993) also proposed to calculate eI  based on cracked length incorporating 

reinforcement and loading effects respectively. 

 Next, consider the springs in series approach. The models based on this approach (Bischoff, 

2005; Bischoff and Scanlon, 2007; Bischoff, 2007) take into account tension stiffening effect in 

concrete for calculating eI . The deflections obtained by the expression proposed by Bischoff 

(2005) have been found in good agreement with experimental deflections for lightly reinforced 

beams ( t < 1%) (Gilbert, 2006; Bischoff and Scanlon, 2007).   

 Kalkan (2010) found out that the expressions given by Eq. (1) and Bischoff (2005) estimate 

deflections of moderately-reinforced to highly-reinforced concrete beams ( t >1%) accurately on 

using the experimental value of cracking moment which, however, is difficult to obtain for each 

and every case. 

 It is observed from the review that no single approach or model is directly applicable for the 

entire range of practical reinforcement. Therefore, development of an approach for rapid 

estimation of the mid-span deflections in uniformly distributed loaded RC beams considering 

entire practical range of reinforcement at service load is desirable. The approach should be simple 

to use requiring a minimal computational effort but must give accuracy that is acceptable for 

practical applications. The application of neural network can be such an alternate approach. For 

generation of training data for neural networks, finite element technique may be used. 

 Nowadays, neural networks are being extensively applied in the field of structural engineering. 

Some of the recent applications of neural networks in the field of structural engineering include 
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prediction of time effects in RC frames (Maru and Nagpal, 2004), prediction of damage detection 

in RC framed buildings after earthquake (Kanwar et al., 2007), structural health monitoring (Min 

et al., 2012; Kaloop and Kim, 2014), bending moment and deflection prediction in composite 

structures (Chaudhary et al., 2007, 2014; Pendharkar et al., 2007, 2010, 2011; Tadesse et al., 

2012; Gupta et al., 2013), predicting the creep response of a rotating composite disc operating at 

elevated temperature (Gupta et al., 2007), optimum design of RC beams subjected to cost 

(Sarkar and Gupta, 2009), static model identification (Kim et al., 2009), response prediction of 

offshore floating structure (Uddin et al., 2012), prediction of deflection in high strength self-

compacting concrete deep beams (Mohammadhassani et al., 2013a; 2013b) and prediction of 

energy absorption capability and mechanical properties of fiber reinforced self-compacting 

concrete containing nano-Silica particles (Tavakoli et al., 2014a; 2014b). These studies reveal the 

strength of neural networks in predicting the solutions of different structural engineering 

problems. 

 This paper presents an alternative approach for estimating effective moment of inertia which is 

neither spring in parallel nor spring in series approach. Neural network model is developed, at 

service load, for predicting effective moment of inertia (and deflection), in a RC beam considering 

entire practical range of tension and compression reinforcement, tension stiffening and flexural 

concrete cracking. The data sets for training, validating and testing are generated using finite 

element models. The finite element models have been developed in ABAQUS (2011) software and 

validated with the experimental results available in literature. Explicit expression has been 

obtained based on developed neural network model which can be used in design offices by 

practicing engineers. The proposed neural network/explicit expression has been validated for a 

number of simply supported and continuous RC beams. Sensitivity analysis has been performed 

to understand the influence of relevant parameters on effective moment of inertia.  

 

2 FINITE ELEMENT MODEL AND ITS VALIDATION 

The finite element model (FEM) has been developed using the ABAQUS (2011) software. The 

beam has been modelled using B21 elements (2-node linear Timoshenko beam element). Under 

service load, the stress-strain relationship of concrete is assumed to be linear in compression. 

Concrete has been considered as an elastic material in tension before cracking and softening 

behaviour is assumed after cracking (Figure 1). Further, at service load, the stress in 

reinforcement is assumed to be in the linear range. The steel reinforcement has been embedded 

into the concrete using “REBAR” option in which a perfect bond is considered between steel 

reinforcement and concrete. In order to consider cracking and tension stiffening, the smeared 

crack model has been used. Tension stiffening has been defined using post-failure stress-strain 

data proposed by Gilbert and Warner (1978). A high shear stiffness has been assumed to neglect 

the shear deformations. 

The results of FEM have been compared with the experimental results (mid-span deflections 

of the beam under increasing uniformly distributed load, ,w  after the cracking of the concrete) 

reported by Al-Zaid et al. (1991) for a simply supported beam (VB) with 2.5 m clear span 

(effective span = 2.62 m) and cross-sectional dimensions B D 200 200 mm (Figure 2). The 

other properties considered are: cylindrical compressive strength of concrete at 28 days, '
cf = 38.2 
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N/mm2; modulus of elasticity of concrete, cE = 2.96 104 N/mm2; modulus of elasticity of steel, 

sE = 2 105 N/mm2; tensile strength of concrete, tf = 3.47 N/mm2; cracking moment, crM = 5.2 

kNm; area of top reinforcement, stA = 78.54 mm2 and area of bottom reinforcement, sbA = 402.12 

mm2. The effective concrete cover at top td  
and at bottom bd  

have been taken as 30 mm and 

33 mm respectively. 

 

 
 

Figure 1: Tension stiffening model. 

 

 
 

Figure 2: Rectangular cross-section. 

 

 In order to define the smeared crack model, the absolute value of the ratio of uniaxial tensile 

stress at failure to the uniaxial compressive stress at failure is taken as 0.09. The strain at 

cracking, cr  is taken as 0.00012 and in view of low/moderate tensile reinforcement, sbA = 402.12 

mm2 (= 1.2%), the plastic strain is u cr  
taken as 0.0004. For convergence, about 16 

elements are required when cracking is considered (Patel et al., 2014). Results from the developed 

FEM and experiments are compared in Figure 3. Close agreement is observed between the results 

from FEM and experiments. 

 Next, the results have been compared with experimental results reported by Washa and Fluck 

(1952) for four sets of rectangular cross-sectional (Figure 2) simply supported beams: A1,A4; 

B1,B4; C1,C4; D1,D4 subjected to uniformly distributed loads at service load. Two beams in a set 

are identical. The cross-sectional properties, material properties, span lengths and uniform 

db 

RC 

rectangular  

cross-section 

Asb 

B 

dt 

Ast 

D 
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distributed loads of all four beams have been given in Table 1. Additionally, sE  has been 

assumed as 2 105 N/mm2. cE  and tf  
are taken in accordance with ACI 318 (2005). The mid-

span deflections obtained from the FEM FEMd  are in close agreement with the reported 

experimental deflections EXPd
 
as shown in Table 1. The finite element models can therefore be 

used for generation of data sets. 

 

 

Figure 3: Comparison of mid-span deflections of beam VB. 

 

Beams 

Properties Mid-span deflections 

B  

(mm) 

D  

(mm) 

M  

(kNm) 

w  

(kN/m) 

'

cf  

(N/mm2) 

L  

(mm) 

t bd d  

(mm)
 

st sbA =A

(mm2)
 

EXPd  

(mm) 

FEMd  

(mm) 

A1-A4 203 305 25.65 5.52 28.1 6096 48 852 13.50 13.27 

B1-B4 152 203 7.25 1.56 23.6 6096 46 400 23.40 23.38 

C1-C4 305 127 6.01 1.20 22.7 6340 25 516 40.10 39.75 

D1-D4 305 127 6.07 3.35 24.3 3810 25 516 12.00 13.17 
 

Table 1: Properties of simply supported beams with rectangular cross-sections, considered for validation of FE 

model. 
 

3 SAMPLING POINTS AND DATA SETS 

For development of neural network, significant parameters need to be identified. Eq. (1) shows 

that e gI I explicitly depends on cr gI I
 
and cr aM M . It is assumed that e gI I

 
depends on t  

and c  (percentage compression reinforcement) also. The value of c  
however depends on t  

and 

ranges from 0.0 to ( 1)t n n , where, n = modular ratio. The value of cr gI I  in turn also 

depends on the combinations of t  
and c . Consider a typical beam cross-section as shown in 

Figure 2 (B= 300 mm; D = 700 mm; cE = 4 22.73 10 N mm ; sE = 5 22.00 10 N mm ; td = 30 

mm and bd = 33 mm). For this beam, the variations of c  and cr gI I  with t  
are shown in 

Figure 4. The parameter cr aM M
 
depends on the load and moment only. 

 Taking the above observations into account, t  is also considered as an input parameter 

alongwith cr gI I  and cr eM M . The sampling points of the parameters considered for data 

generation are shown in Table 2. It may be noted that the combinations of sampling points take 
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into account the different values of the c  (fourth and left out parameter), corresponding to each 

value of t . Considering the equation 45 384FEM c ed wL E I , the output parameter e gI I  is 

obtained as 45 384 c FEM gwL E d I . 

 

 

Figure 4: Variation of c  and cr gI I
 
with t . 

 

Input Parameters Sampling points 

t  0.12 0.15 0.25 0.45 0.75 1.00 2.00 3.00 4.00 

cr gI I  0.0783 0.0963 0.1525 0.2550 

 

0.3785 

0.4085 

 

0.4734 

0.4993 

0.4734 

0.7802 

0.8733 

0.7802 

1.0143 

1.1461 

1.2538 

1.3425 

1.2032 

1.3684 

1.5073 

1.6249 

1.7253 

cr eM M  As per increment in FE analysis 
 

Table 2: Input parameters and sampling points. 

 

4 TRAINING OF NEURAL NETWORK 

Neural network has been developed for the prediction of effective moment of inertia in RC beams. 

The neural network chosen is a set of multilayered feed-forward networks with neurons in all the 

layers fully connected in the feed forward manner (Figure 5). The training is carried out using the 

MATLAB Neural Network toolbox (2009). Sigmoid function (logsig) is used as an activation 

function and the Levenberg-Marquardt back propagation learning algorithm (trainlm) is used for 

training. The back propagation algorithm has been used successfully for many structural 

engineering applications (Maru and Nagpal, 2004; Kanwar et al., 2007; Gupta et al., 2007; 

Pendharkar et al., 2007; 2010; 2011; Chaudhary et al., 2007; 2014; Sarkar and Gupta, 2009; 

Gupta and Sarkar, 2009; Min et al., 2012; Tadesse et al., 2012; Mohammadhassani et al., 2013a; 

Gupta et al., 2013) and is considered as one of the efficient algorithms in engineering applications 

(Hsu et al., 1993). One hidden layer is chosen and the number of neurons in the layer is decided 

in the learning process by trial and error. 
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Figure 5: Configuration of a typical neural network. 

 

 Different combinations of sampling points of the input parameters and the resulting values of 

the output parameters are considered in order to train the neural network. Each such 

combination of the input parameters and the resulting output parameters comprises a data set. 

The total number of data sets considered for the training, validating and testing of the network 

are 3444.  

 Normalisation factors are applied to input and output parameter to bring and well distribute 

them in the range. No bias is applied to the input and output parameters. Normalisation factors 

of 4, 2, 7 and 3 are applied to input parameters t , cr gI I , cr eM M  and output parameter e gI I
 

respectively. 

 70% data sets are used for training and the remaining data sets are divided equally in the 

validating and testing sets. For the training, several trials are carried out with different numbers 

of neurons in the hidden layer starting with a small number of neurons in the hidden layer and 

progressively increasing it, and checking the mean square errors (MSE) for the training, 

validating and testing. The number of neurons in the hidden layer is decided on the basis of the 

least mean square errors (MSE) for the training as well as validating and testing. Care is taken 

that the mean square error for test results should not increase with the number of neurons in 

hidden layer or epochs (overtraining). The final configuration (number of input parameters - 

number of neurons in the hidden layer - number of output parameters) of NN is 3-6-1. The 

responses of proposed neural network model to predict effective moment of inertia for training, 

validating, and testing are shown in Figures 6(a)-(c) respectively. The proposed neural network 

model achieved good performance as the testing data points are mostly on equity line (Figure 

6(c)). The statistical parameters i.e. mean square error (MSE), root mean square error (RMSE), 

mean absolute percentage error (MAPE), average absolute deviation (AAD), correlation 

O1 

h1 

h2 

hk 

hr 

I1 

I2 

Ij 

I 

 

Input 

neurons 

Hidden 

neurons 

Output 

neuron 
ho w 
k,1 

w ih j,k 



K.A. Patel et al. / Explicit expression for effective moment of inertia of RC beams          550 

 

Latin American Journal of Solids and Structures 12 (2015) 542-560 

coefficient (R2) and coefficient of variation (COV) (Sozen et al., 2004; Azmathullah et al., 2005) 

of training, validating and testing data sets are shown in Table 3. All the parameters indicate a 

good agreement. 

 

Statistical 

parameters 

Data sets 

Training Validating Testing 

MSE 0.00005 0.00006 0.00006 

RMSE 0.00735 0.00742 0.00748 

MAPE 1.99790 2.00716 2.05474 

AAD 1.75733 1.78257 1.78176 

R2 0.99819 0.99822 0.99815 

COV 2.31244 2.33217 2.3433 
 

Table 3: Statistical parameters of neural network. 

 

 
 (a) (b) 

 

 
(c) 

Figure 6: Response of neural network model in predicting e gI I : (a) training; (b) validating; and (c) testing. 

 

5 EXPLICIT EXPRESSION FOR PREDICTION OF EFFECTIVE MOMENT OF INERTIA 

For the ease of practicing engineers and users, simplified explicit expression can be developed for 

the prediction of effective moment of inertia. The explicit expression requires the values of inputs, 

weights of the links between the neurons in different layers, and biases of output neurons 

(Tadesse et al., 2012; Gupta et al., 2013). 
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 As stated earlier, the sigmoid function (logsig) has been used as the activation function. The 

output 1O  
(Figure 5) may therefore be obtained as below (Tadesse et al., 2012; Gupta et al., 

2013): 
 

 
k,1

o
1

1

1

1

1

hor

H
kk

w
bias

e

O

e

  (2) 

 ih
k j,k j k

1

q

j

H w I bias   (3) 

 

where, q  and r  are the number of input parameters and the number of hidden neurons 

respectively; kbias  and obias  are the bias of thk  hidden neuron ( kh ) and the bias of output 

neuron respectively; ih
j,kw  

and ho
k,1w  

are the weight of the link between jI  
and kh  

and the weight of 

the link between kh  
and 1O  

respectively. The weights of the links and biases of the output 

neurons for NN are listed in Table 4. 

 

Connection 
Weight/ 

Bias 

Number of the hidden layer neuron ( k ) 

1 2 3 4 5 6 

Input to Hidden 

1,
ih
kw  -0.1978 4.3806 2.8322 3.0191 10.1889 -3.7310 

2,
ih
kw  1.2333 -22.0048 -4.1654 -4.3927 -15.7592 5.4520 

3,
ih
kw  0.0011 -0.1823 9.4775 9.7598 5.0682 -0.0189 

kbias  -0.0386 6.2396 -6.7756 -7.1914 -3.2443 -2.9660 

Hidden to Output ,1
ho
kw  8.7116 -0.3754 11.6985 -10.7167 0.6177 22.9397 

 
Table 4: Weight values and biases of neural network. 

 

 The value of e gI I
 
is equal to de-normalized output 1O . The effective moment of inertia eI  

may be obtained from Eq. (2) by putting the values of ,1
ho
kw  

from Table 4 as 
 

 

1 2 3 4 5 6

8.7116 0.3754 11.6985 10.7167 0.6177 22.9397
7.4688

1 1 1 1 1 1

3

1
H H H H H H

g
e

e e e e e e

I
I

e

  (4) 

 
where, 1 2 3 4 5, , , ,H H H H H

 
and 6H  may be obtained from Eqs. (5)-(10) by using the weights and 

biases (Table 4) as 
 

 1 0.1978 1.2333 0.0011 0.0386t cr g cr eH I I M M   (5) 

 2 4.3806 22.0048 0.1823 6.2396t cr g cr eH I I M M   (6) 

 3 2.8322 4.1654 9.4775 6.7756t cr g cr eH I I M M   (7) 

 4 3.0191 4.3927 9.7578 7.1914t cr g cr eH I I M M   (8) 

 5 10.1889 15.7592 5.0682 3.2443t cr g cr eH I I M M   (9) 

 6 3.7310 5.4520 0.0189 2.9660t cr g cr eH I I M M   (10) 
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6 VALIDATION OF NEURAL NETWORK/ EXPLICIT EXPRESSION 

The developed neural network/explicit expression is validated for a number of simply supported 

and continuous beams with a wide variation of input parameters. The results (mid-span 

deflections), obtained from the proposed neural network/explicit expression are compared with 

the experimental results for simply supported beams available in literature and with the FEM 

results for continuous beams. 

 

6.1 Simply supported beams 

First, the results have been compared with experimental results reported by Washa and Fluck 

(1952) for sets of simply supported beams with rectangular cross-section (Figure 2): A2,A5; 

B2,B5; C2,C5; D2,D5 subjected to uniformly distributed loads, and designated, here, as VB1-

VB4, respectively. Two beams in a set are identical. The details of the beams are given in Table 

5. Additionally, sE  is assumed as 5 22.05 10 N/mm . cE  
and tf  

are taken in accordance with ACI 

318 (2005). The mid-span deflections obtained from the proposed explicit expression NNd  
are 

shown in Table 5 along with the reported experimental mid-span deflections EXPd . The values 

obtained from the proposed explicit expression are in reasonable agreement with the reported 

experimental values of mid-span deflections.  

 

Beams 

Properties Mid-span deflections 

B  

(mm) 

D  

(mm) 

M  

(kNm) 

w  

(kN/m) 

'
cf  

(N/mm2) 

L  

(mm) 

t bd d

(mm)
 

stA

(mm2)
 

sbA

(mm2)
 

EXPd  

(mm) 

NNd  

(mm) 

VB1 (A2,A5) 203 305 25.65 5.52 28.1 6096 48 400 852 15.80 13.55 

VB2 (B2,B5) 152 203 7.25 1.56 23.6 6096 46 200 400 24.90 24.41 

VB3 (C2,C5) 305 127 6.01 1.20 22.7 6340 25 258 516 43.40 39.48 

VB4 (D2,D5) 305 127 6.07 3.35 24.3 3810 25 258 516 14.20 14.24 
 

Table 5: Properties of simply supported beams with rectangular cross-sections, considered for validation of the 

explicit expression. 

 

 Next, the results have been compared with experimental results reported by Yu and Winter 

(1960) for simply supported beams with T cross-section (Figure 7): A-1; B-1; C-1; D-1; E-1; F-1 

subjected to uniformly distributed loads, and designated, here, as VB5-VB10, respectively. The 

cross-sectional and material properties of the beams are given in Table 6. The mid-span 

deflections obtained from the proposed explicit expression NNd  
are shown in Table 6 along with 

the reported experimental mid-span deflections EXPd . Again, the values obtained from the 

proposed explicit expression are in reasonable agreement with the reported experimental values of 

mid-span deflections. 

 The results (mid-span deflections) obtained from the proposed neural network/explicit 

expression need to be compared with the finite element results for lightly reinforced simply 

supported beams 1%t  
also. Consider a 2.625 m long simply supported beam VB11 with 

rectangular cross-section (Figure 2) subjected to uniformly distributed load. The other properties 

are: B= 200 mm; D = 500 mm; '
cf = 27.9 N/mm2; sE = 2.05 105 N/mm2; stA = 400 mm2; sbA = 
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700 mm2; t bd d = 35 mm. cE  and tf  
are taken in accordance with ACI 318 (2005). Mid-span 

deflections, for beam VB11 are obtained from the proposed explicit expression, FEM and ACI 318 

(2005) for varying magnitude of uniformly distributed loads, w  and shown in Figure 8. The mid-

span deflections obtained from the proposed explicit expression and FEM are close for the range 

of the load considered. The difference between FEM and proposed explicit expression is 2.91% as 

compared to 16.81% difference between FEM and ACI 318 (2005) at 4 crw ,( crw = cracking 

uniformly distributed load). 
  

 

Figure 7: T cross-section. 

 

Parameters 

Properties of beams 

VB5 

(A-1) 

VB6 

(B-1) 

VB7 

(C-1) 

VB8 

(D-1) 

VB9 

(E-1) 

VB10 

(F-1) 

fB (mm) 304.87 304.87 304.87 609.74 304.87 304.87 

fD (mm) 63.52 63.52 63.52 63.52 63.52 50.81 

wB (mm) 152.44 152.44 152.44 152.44 152.44 152.44 

wD (mm) 241.36 241.36 241.36 241.36 241.36 152.44 

td (mm) - 39.63 39.63 - - - 

bd (mm) 45.98 45.98 45.98 58.94 55.64 45.98 

stA (mm2) - 200.09 400.19 - - - 

sbA (mm2) 400.19 400.19 400.19 774.56 400.19 400.19 

'fc (N/mm2) 25.37 26.77 24.27 25.37 29.36 29.36 

cE (N/mm2) 2.53 104 2.60 104 2.47 104 2.53 104 2.72 104 2.72 104 

sE (N/mm2) 2.05 105 2.05 105 2.05 105 2.05 105 2.05 105 2.05 105 

w (N/mm) 6.42 6.44 6.41 11.73 12.29 3.79 

tf (N/mm2) 2.78 2.66 2.73 2.78 3.06 3.06 

L (mm) 6098 6098 6098 6098 4268 6098 

Mid-span deflections 

EXPd (mm) 34.04 31.50 30.23 32.23 12.96 55.89 

NNd (mm) 30.21 29.88 30.00 32.72 14.66 51.83 
 

Table 6: Properties of simply supported beams with T cross-sections, considered  

for validation of the explicit expression. 

db 

RC T  

cross-section 

Bw 

dt Df 

Dw 

Bf 

Asb 

Ast 
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Figure 8: Comparison of mid-span deflections of beam VB11. 

 

 Consider another simply supported beam VB12 subjected to uniformly distributed load with 

the same cross-sectional (Figure 2) and material properties as that of beam VB11 except sbA . The 

value of sbA  is now assumed as 900 mm2. The close agreement is observed between the mid-span 

deflections obtained from the proposed explicit expression, FEM and ACI 318 (2005) as shown in 

Figure 9. 
 

  

Figure 9: Comparison of mid-span deflections of beam VB12. 

 

6.2 Continuous beams 

In order to validate the proposed explicit expression for a continuous beam, results from the 

explicit expression are also compared with FEM and ACI 318 (2005) results for a 12.2 m two 

equal span uniformly distributed loaded continuous beam (VB13) with rectangular cross-section 

(Figure 2). The other properties are: B= 152.4 mm; D = 203.2 mm; '
cf = 24.1 N/mm2; sE

2.07x105 N/mm2; st sbA A
 
= 112 mm2; t bd d = 25 mm. cE  and tf  

are taken in accordance 

with ACI 318 (2005). 

 The mid-span deflections obtained from the proposed explicit expression and FEM are close 

for the range of the load considered (Figure 10). The difference between FEM and proposed 

explicit expression is 5.34% as compared to 28.25% difference between FEM and ACI 318 (2005) 

at 5 crw . 

0

50

100

150

200

250

0 1 2 3 4 5 6 7

U
n
if

o
rm

ly
 D

is
tr

ib
u
te

d
 L

o
ad

 (
k
N

/m
)

Mid-span Deflection (mm)

FEM

Explicit expression

ACI 318-05 (2005)

0

50

100

150

200

250

300

0 1 2 3 4 5 6

U
n

if
o

rm
ly

 D
is

tr
ib

u
te

d
 L

o
ad

 (
k

N
/m

)

Mid-span Deflection (mm)

FEM

Explicit expression

ACI 318-05 (2005)



555          K.A. Patel et al. / Explicit expression for effective moment of inertia of RC beams 

 

Latin American Journal of Solids and Structures 12 (2015) 542-560 

  
Figure 10: Comparison of mid-span deflections of beam VB13. 

 

 Similarly, another 12.2 m two equal span continuous beam VB14 with rectangular cross-

section (Figure 2) subjected to uniformly distributed load has been considered. The cross-

sectional and material properties are taken same as that of beam VB13 and only sbA  and stA  are 

increased to 200 mm2. The close agreement is observed between the mid-span deflections obtained 

from the proposed explicit expression, FEM and ACI 318 (2005) as shown in Figure 11. 

 

  

Figure 11: Comparison of mid-span deflections of beam VB14. 

 

7 SENSITIVITY ANALYSIS 

The proposed explicit expression shows satisfactory performance on validation with experimental 

results available in literature and FEM results. A sensitivity analysis is carried out next to 

capture the influence of individual input parameters on output parameter using the proposed 

explicit expression. The effect of input parameters t , cr gI I , cr eM M  along with additional 

parameters c , n  on output parameter e gI I  is studied. Only one parameter (the parameter 

under consideration) is varied at a time, keeping the other parameters constant. 
 

7.1  Effect of t  

As stated earlier, t  
has been considered as the input parameter in the present study. Figure 12 

shows the variation of e gI I
 
with respect to t  

for various values of cr gI I , keeping the value of 
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cr eM M  constant as 0.5. Rich influence of t  
on e gI I

 
is seen in Figure 12. Though, the effect is 

significant for all values of t , the effect of lower values of t  is more significant in case of higher 

cr gI I . 
 

 
Figure 12: Variation of e gI I with respect to t . 

 

7.2  Effect of cr gI I  

The variation of e gI I
 
with respect to cr gI I

 
for various values of t  

is shown in Figure 13. The 

value of cr eM M
 
is kept constant as 0.5. The effect is significant only for lower values of cr gI I  

in case of low t . However, the effect extends of the range considered for cr gI I  in case of higher 

values of t . The effect of cr gI I  is significant for all values of t . 

 

 
Figure 13: Variation of e gI I with respect to cr gI I . 

 

7.3  Effect of cr eM M  

As stated earlier, cr eM M  has been considered as the input parameter affecting e gI I . The 

variation of e gI I
 
with respect to cr eM M

 
for different values of t  is shown in Figure 14(a). 

The value of cr gI I
 
is kept constant as 0.5. Similarly, Figure 14(b) shows the variation of the 

ratio e gI I with respect to cr eM M for different values of cr gI I . The value of t  is kept constant 

as 1.5. As expected, the effect of cr eM M  is significant during cracking 1cr eM M  and the 

value of e gI I  increases with increase in value of cr eM M  up to 1.00. The effect is more for 

higher value of t . 
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 (a) (b) 

Figure 14: Variation of e gI I with respect to cr eM M for different (a) t values, and  

(b) cr gI I values. 

 

7.4  Effect of c  

Figure 15 shows the variation of e gI I
 
with respect to c  

for different values of t . The value of 

cr eM M
 
is kept constant as 0.5. The value of e gI I  is found to increase with the increase in 

value of c . A significant variation is observed in case of higher value of t . 

 

 
Figure 15: Variation of e gI I with respect to c . 

 

7.5  Effect of n  

The variation of e gI I
 
with respect to n  for different values of t  is shown in Figures 16(a)-(b) 

for 0c  and ( 1)c t n n  respectively. The value of cr eM M
 is kept constant as 0.5. The 

nature of plot changes from concave to convex with increase in t . 

 

8 CONCLUSIONS  

An explicit expression has been proposed for the prediction of effective moment of inertia (and 

deflection) considering concrete cracking, tension stiffening and entire practical range of 

reinforcement at service load. A set of three parameters ( t , cr gI I , cr eM M ) has been identified 
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that govern the change in e gI I
 
and therefore deflection. Using the sampling points of these 

parameters and the validated FEM, the data sets have been generated for training, validating and 

testing of neural network. The explicit expression has been developed from the trained neural 

network. The proposed explicit expression has been validated for a number of simply supported 

and continuous beams and it is found that the predicted deflections have reasonable accuracy for 

practical purpose. Sensitivity analysis has been carried out to capture the influence of individual 

input parameters on output parameter. The effect of the input parameters t , cr gI I , cr eM M
 

on output parameter e gI I
 
is studied using the proposed explicit expression . The lower values of 

t  are found to have more significant effect on e gI I . The effect of cr eM M  is found to be 

significant during cracking 1cr eM M  and the value of e gI I  is found to increase up to 10.0 

with increase in value of cr eM M . The effect of c and n  is found to be less significant and can 

be incorporated through cr gI I .  

 

 
 (a) (b) 

Figure 16: Variation of e gI I with respect to n  for (a) 0c  and (b) ( 1)c t n n . 

 

 The methodology presented herein can be further developed for beams with point loads. The 

effect of shear deformation may be incorporated in future studies by considering span to depth 

ratio of beam as an input parameter. Similarly, age of loading and characteristic compressive 

strength of concrete can also be considered as input parameters to account for shrinkage cracking 

in future studies. 
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