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Abstract

Thin laminated composite plates are vulnerable to buckling under high compressive axial
load due to small thickness. These plates may exhibit considerable variation in their behavior
due to inherent uncertainties involved in various material and load parameters. Keeping
these uncertainties in view, in the present paper an effort has been made to present a simple
procedure for reliability assessment of thin antisymmetric composite laminated plates against
buckling. For this purpose, limit state functions have been derived for antisymmetric cross
ply and angle ply laminated plates considering buckling as serviceability failure criterion.
Using these limit state functions and employing First Order Reliability Method (FORM),
reliability has been computed in terms of reliability index. To study the influence of various
random variables, employed in the limit state functions, sensitivity analysis has been carried
out. Effect of number of layers, effect of fiber orientation, effect of longitudinal modulus,
effect of transverse modulus on plate reliability have also been studied on parametric basis.
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1 Introduction

Laminated composites plates exhibit a considerable variation in their material properties due to
involvement of number of parameters that cannot be controlled effectively during fabrication.
Randomness in several factors such as fiber orientation, volume fraction, fiber-matrix interface,
and curing parameters is inherent in such laminated composites plates. Despite these uncer-
tainties, its use in engineering applications has gained increasing popularity in recent years due
to advantages like, weight reduction (high strength/stiffness to weight ratio), longer life (no
corrosion, low wear), fatigue endurance, and inherent damping. These plates are commonly
employed in engineering applications as thin plates. However, due to small thickness these
plates are vulnerable to buckling under high compressive axial load. In a deterministic sense,
if nominal buckling strength of composite plate is more than the subjected compressive load,
plate is considered safe. However, even if a plate is safe in deterministic sense it may not be
reliable in probabilistic sense due to inherent uncertainties involved in various material and load
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parameters. Keeping these uncertainties in view, in the present paper, an effort has been made
to present a procedure for reliability assessment of thin composite plates against buckling.

In the past decade some good research papers appeared on reliability analysis of composite
laminated plates against buckling. Boyers et al. [2] used the first order reliability method
(FORM) to study the design of composite structure for achieving a specified reliability. Lin et
al. [8] proposed a procedure for failure probability evaluation of composite laminates subjected
to in plane loads. They considered materials properties, fiber angles and layer thicknesses of
the laminates as random variables in the reliability analysis. Lin [8] investigated the buckling
failure probability of laminated composite plates subjected to different in-plane random loads.
Adali [1] presented an optimal design of composite laminates under buckling load uncertainty.
The laminate was subjected to biaxial compressive loads and the buckling load was maximized
under worst case in-plane loading. Ibrahim et al. [4] studied the reliability of anatisymmetric
composite plates against buckling. They used FORM in their reliability calculations.

A detailed review of the past investigations shows that reliability studies on anti-symmetric
laminated plates are limited. Further, a sensitivity analysis which can demonstrate relative
effect of various random variables on plate reliability was also not seen widely. In addition,
such reliability studies in which statistics were generated using well known classical buckling
equations and calculations were carried out with computationally efficient reliability calculation
tools e.g. FORM are also limited. Keeping these scopes in view, a simple procedure for reliability
assessment of composite laminated plates against buckling has been proposed. For this purpose,
limit state functions have been derived for antisymmetric cross ply and angle ply laminated
plates considering buckling as serviceability failure criterion. Using these limits state functions
and employing First Order Reliability Method (FORM), reliability has been computed in terms
of reliability index. To study the influence of various random variables employed in the limit
state functions, sensitivity analysis has been carried out. Some parametric studies such as effect
of number of layers, effect of fiber orientation, effect of longitudinal modulus, effect of transverse
modulus are also included to obtain the results of practical interest.

2 Mathematical formulation

2.1 Limit state functions

Limit state function is the mathematical representation of a particular limit state of failure. In
the present study, a buckled state of plate is considered as failed state i.e. mathematically a
plate is identified as failed, if applied axial load exceeds from buckling strength. However, it is
to be noted that such failure (buckled state) represents failure against serviceability limit state
and not against the limit state of collapse, as buckled plate can still carry compressive loads in
post buckling range. Considering this criterion as failure criterion the limit state functions g(x)
have been derived for simply supported antisymmetric cross ply and antisymmetric angle ply
laminated plates and given in Eqns. (1) and (3). A derivation for these functions is presented
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in the Appendix II.
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where, Aij , Bij , and Dij are the extensional stiffnesses, coupling stiffnesses and flexural stiffnesses
respectively; m and n are number of half sine waves in the longitudinal and transverse direction
respectively; a, b are dimensions of rectangular plate; Pc is the applied compressive load (Fig.
1). The stiffnesses Aij , Bij , and Dij are functions of reduced stiffness matrix Qij (Appendix I)
that depends on the elastic constants E1, E2, G12, ν12, ν21 and thickness t. Hence, Eq. (1) is the
function ofE1, E2, G12, ν12, ν21,t, a, b and Pc . Therefore, vector of random variables, x, can be
written as:

x = (t, a, b, E1, E2, G12, ν12, ν21, Pc) (2)

The limit state function for the antisymmetric angle ply laminate is
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where x denotes the vector of random variables given by Eq. (2).
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Figure 1: Laminated composite plate subjected to uniform inplane compression.

2.2 Reliability analysis

Having known the limit state functions, we have employed FORM (First Order Reliability
Method, [10]) to obtain reliability of composite plates, in terms of reliability index, and prob-
ability of failure. In first order reliability method (FORM) the limit state function g(x) is
linearized at some point on the failure surface rather than at mean, and non-normal variables
are transformed into equivalent normal variables. The linearizing point is called as design point
or the Most Probable Point (MPP). An algorithm for the reliability analysis using FORM is
given in the following section.

2.2.1 Algorithm for reliability analysis

1. Input the limit state function g(x); statistical values and probability distributions for all
the random variables Xi.

2. Assume the values for the initial design point {x∗i } for (n-1) of the random variables Xi.
The limit state function g(x) = 0 is solved for the nth random variable. This ensures that
the design point is on the failure boundary.

3. Calculate the equivalent normal mean µe
xi

and equivalent standard deviation σe
xi

for all the
non-normal distributions at the design point values x∗i using Rackwitz-Fiessler procedure
[11]. If some of the random variables are normally distributed, then the equivalent normal
parameters are simply the actual parameters.

4. Determine the reduced variates {z∗i } corresponding to the design point {x∗i } using equation

z∗i =
x∗i−µe

xi
σe

xi

.
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5. Compute the partial derivatives of the limit state function g(x)=0 with respect to the
reduced variates. Define a column vector {G}, as the vector whose elements are the partial

derivatives multiplied by -1, i.e. Gi = − ∂g
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6. Compute the reliability index β using β = {G}T {z∗}√
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;

[ρ] = correlation matrix; and subscript T represent Transpose of the matrix.

7. Find sensitivity factors using {α} = [ρ]{G}√
{G}T [ρ]{G} .

8. Find a new design point in reduced variates for (n-1) of the variables using the following
equation z∗i = αiβ

9. Find the corresponding design point values in original coordinates for (n-1) values, using
the equation x∗i = µe

xi
+ z∗i σe

xi
.

10. Calculate the value of the remaining nth variable by solving the limit state function
g(x) = 0.

11. Repeat the steps from 3 to 10 until the design point {x∗i } converge.

Using above algorithm, the reliability in terms of reliability indices has been obtained for various
numerical studies.

3 Numerical study

In the present study, we have carried out reliability analysis of antisymmetric angle ply and
cross ply composite plates against buckling. The plate is simply supported on all the four edges
and subjected to axial compressive force along the edge of dimension b (Fig. 1). The stacking
sequence of antisymmetric angle ply laminate is (+45◦/− 45◦/ + 45◦/− 45◦) and for cross ply,
it is (0◦/90◦/0◦/90◦). Number of layers for both types of laminates is kept four. Necessary
statistical data for reliability assessment is presented in Table 1. In this table, mean values are
obtained after taking mean/nominal ratio as 1 and nominal values are taken from Nemeth [9] and
Chen [3]. The coefficient of variation (COV), correlation coefficient and probability distributions
are, however, assumed. This is so because information of correlation, COV and probability
distribution were not available in approachable reference.
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Table 1: Statistical data.

Random variables
Mean

/Nominal
Distribution

Distribution parameters
Mean

COV
G. E C.E B. E

Thickness, t (mm) 1.0 Normal 5.0 5.0 5.0 0.10
Length, a (mm) 1.0 Normal 1000.0 1000.0 1000.0 0.05
Width, b (mm) 1.0 Normal 150.0 150.0 150.0 0.05
Long. modulus, E1 (GPa) 1.0 Lognormal 127.55 206.84 203.95 0.12
Trans. modulus, E2 (GPa) 1.0 Lognormal 11.31 5.17 18.48 0.12
Shear modulus, G12 (GPa) 1.0 Lognormal 6.0 2.59 5.58 0.15
Main Poisson ratio, ν12 1.0 Lognormal 0.30 0.25 0.23 0.15
Secondary Poisson ratio,ν21 1.0 Lognormal 0.0266 0.0062 0.0208 0.15
Design load, Pc (N) 1.0 Normal 500 500 500 0.15

Correlation coefficient for E1 and E2 is 0.5
Correlation coefficient for E2 and G12 is 0.6
Correlation coefficient for E1 and G12 is 0.6

G.E. - Graphite Epoxy
C.E. - Carbon Epoxy
B.E. - Boron Epoxy

Table 2: Results of the analysis.
Laminate type Composite type Pf β

Antisymmetric cross ply
Graphite Epoxy 1.9× 10−01 0.86
Carbon Epoxy 7.7× 10−02 1.43
Boron Epoxy 3.2× 10−02 1.86

Antisymmetric angle ply
Graphite Epoxy 2.1× 10−02 2.04
Carbon Epoxy 1.9× 10−03 2.89
Boron Epoxy 9.4× 10−04 3.11

Table 2 shows the results of the analysis for three types of composites viz. graphite epoxy,
carbon epoxy, and boron epoxy for antisymmetric cross ply and angle ply laminates. The results
shows that the plates formed by antisymmetric cross ply are having considerably lesser reliability
than their corresponding angle ply laminated plates. This is due to the lower buckling strength
of cross ply laminates. In addition, we also observe that except for boron epoxy angle ply
laminates, the reliability index magnitude is less than 3.0 for all other laminates. This implies
that in the present study except plates made up by boron epoxy angle ply laminates, all other
plates are not as reliable against buckling as desired. This is so because in structural reliability
assessment, in general, any structure or its component having reliability index less than 3.0 (or
probability of failure above 10−4) is considered as unreliable or unsafe [12,13]. We also observe

Latin American Journal of Solids and Structures 4 (2007)



A simple procedure for reliability assessment of composite plates against buckling 273

from this table that there is a considerable difference in reliability of composite plates due to use
of different composites. Boron epoxy, in general, is giving maximum reliability against buckling;
however, the reliability of graphite epoxy is minimum. This nature is same for both the cross
ply as well as for the angle ply laminate.

3.1 Design point or most probable point

A point on the failure surface that corresponds to the shortest distance from the origin in the
reduced coordinate system is defined as the most likely failure point or design point [10]. This
point can be found from the solution of the constrained optimization problem:

Minimize β (y) =
(
yTy

)1/2 subject to G(y) = 0 (4)

Where, y is vector of basic random variables in standard normal space; and G(y) is limit
state function in reduced coordinate system.

Tables 3 and 4 show the values of the most likely failure point or design point on failure
surface for antisymmetric cross ply and angle ply laminate respectively. These values of different
random variables are necessary for reliability based probabilistic design of composite laminates.
In such design partial safety factors for load and resistance variables are

Table 3: Design point values for antisymmetric cross-ply laminate.

Random variables
Design values

Graphite epoxy Carbon epoxy Boron epoxy
(β =3.27) (β =3.26) (β =3.12)

Thickness, t (mm) 7.0 6.5 6.0
Length, a (mm) 1000 1000 1000
Width, b (mm) 150 150 150
Longitudinal modulus, E1 (GPa) 127.55 206.84 203.95
Transverse modulus, E2 (GPa) 11.31 5.17 18.48
Shear modulus, G12 (GPa) 6.0 2.59 5.58
Main Poisson ratio, ν12 0.30 0.25 0.23
Secondary Poisson ratio,ν21 0.0266 0.0062 0.0208
Design load, Pc (N) 500 500 500

determined for the target reliability (i.e. target reliability index). The desired value of
the target reliability index, as generally recommended for structural components, is 3.0 [14,15].
However, the final decision for this value is to be taken by the design engineers and professionals.
Having decided the target reliability index values, the safety factors are separately defined for
resistance and load variables. For resistance variables, it is defined as the nominal, mean or
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Table 4: Design point values for antisymmetric angle-ply laminate.

Random variables
Design values

Graphite epoxy Carbon epoxy Boron epoxy
(β =3.28) (β =3.27) (β =3.11)

Thickness, t (mm) 6.0 5.3 5.0
Length, a (mm) 1000 1000 1000
Width, b (mm) 150 150 150
Longitudinal modulus, E1 (GPa) 127.55 206.84 203.95
Transverse modulus, E2 (GPa) 11.31 5.17 18.48
Shear modulus, G12 (GPa) 6.0 2.59 5.58
Main Poisson ratio, ν12 0.30 0.25 0.23
Secondary Poisson ratio,ν21 0.0266 0.0062 0.0208
Design load, Pc (N) 500 500 500

characteristic value divided by the design value and for load variables, as the design value
divided by the nominal, mean or characteristic values.

3.2 Sensitivity analysis

This analysis has been carried out to study the influence of various random variables on plate
reliability. This influence is measured in terms of sensitivity factor (αj), which is defined for the
jth random variable as

αj =
∂g

∂yj

∣∣∣∣
y∗

=
y∗j
β

(5)

where y∗, point minimizing Eq. (4), usually referred to as design point, and y∗j , value of the jth

random variable at this point.
In the present study, using above expression, sensitivity factors for each random variables

have been determined and shown graphically in Figs. 2 and 3 for antisymmetric angle ply and
cross ply respectively. The magnitude of sensitivity factor for a random variable is a direct
measure of its influence on plate reliability. However, its sign determine whether the random
variable is a load variable or a resistance variable. The negative value of the sensitivity factor
indicates that the random variable is a resistance variable, i.e. its increase will improve the plate
reliability and decrease will reduce the reliability. Similarly, positive value of sensitivity factor
indicates that it is a load variable and its influence would be opposite to that of a resistance
variable. The major advantage of this study is that without carrying out any separate parametric
study for each variable one can directly know how a particular random variable affects the plate
reliability. Figs. 2 and 3 show that thickness of laminate (X1) is the most influencing resistance
parameter and applied load (X9) is the most influencing load variable. Hence to increase the

Latin American Journal of Solids and Structures 4 (2007)



A simple procedure for reliability assessment of composite plates against buckling 275

reliability of composite laminate, the easiest and most efficient way is to increase its thickness.
However, thickness directly affects the cost of the composite plate. Therefore, to achieve a
desirable level of reliability, change of composite type or alteration of some other influencing
parameter may be more attractive option. Further, the sensitivity diagram shows that out of
length and width (a and b), the effect of width is more pronounced on composite reliability than
its length. We also observe from this diagram that the effects of main and secondary Poisson
ratios (X7 and X8) are very small as compared to elastic modulii (X4, X5 and X6).
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Figure 2: Sensitivity diagram for angle ply laminate. 
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 X1: thickness of the plate (laminate); X6: shear modulus;

X2: length of the plate; X7: main Poisson ratio;

X3: width of the plate; X8: secondary Poisson ratio;

X4: longitudinal modulus; X9: applied load.

X5: transverse modulus;

Figure 3: Sensitivity diagram for cross ply laminate.
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3.3 Parametric study

Table 5: Variation of reliability with correlation.

Laminate type β
Correlation coefficient between

(E1 and E2) (E2 and G12) (E1 and G12)

Antisymmetric cross ply

0.88 0.0 0.0 0.0
0.87 0.5 0.0 0.0
0.87 0.0 0.6 0.0
0.87 0.0 0.0 0.6

Antisymmetric angle ply

2.05 0.0 0.0 0.0
2.04 0.5 0.0 0.0
2.05 0.0 0.6 0.0
2.05 0.0 0.0 0.6

3.3.1 Effect of correlation

Table 5 shows the variation of reliability index as a function of correlation coefficient between
longitudinal modulus and transverse modulus (E1 and E2), transverse modulus and shear mod-
ulus (E2 and G12), and longitudinal modulus and shear modulus (E1 and G12) respectively.
Table shows that there is no significant variation in the reliability index if correlation has been
considered, hence, for approximate reliability calculations correlation among random variables
may be neglected provided magnitude of correlation is of the same order as assumed in Table 1.

3.3.2 Effect of number of layers

Figures 4 and 5 show the effect of number of layers on reliability index for graphite and carbon
epoxy composite laminated plates. Trend shows that the reliability of the laminated plate against
buckling is quite small if the number of layers is two or less. However, as the number of layers
increases beyond 2, reliability improves. This improvement for angle ply carbon epoxy (Fig. 5)
is to such an extent that reliability reaches to the desirable range (i.e. ≥ 3). This increase in
reliability with number of layers is due to the fact that as number of layers increases, bending-
extension coupling decreases which in turn increases the reliability (or buckling strength) of the
laminate. However, beyond 6, the effect of bending extension coupling dies out, and due to this
reason, if number of layers goes beyond 6; there is no significant improvement in the reliability.

3.3.3 Effect of fiber orientation

Fig. 6 exhibits the variation of reliability index as a function of fiber orientation for an anti-
symmetric angle ply laminate of graphite and carbon epoxy. As we can observe, the reliability
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 Figure 4: Effect of number of layers on reliability index for graphite epoxy.
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 Figure 5: Effect of number of layers on reliability index for carbon epoxy.

index, for both the material reaches to a maximum at θ = 45◦ which is the optimal fiber angle
for laminates having simply supported edges and subjected to uniaxial compression. A higher
value of reliability in the region θ = 45◦ is due to the fact that at this angle stiffness of plate
increases substantially which leads to higher buckling strength and consequently higher relia-
bility. Further, it can be seen from this figure that trend is same for both graphite and carbon
epoxy. However, except for θ ≤ 15o carbon epoxy gives a higher reliability at all other angles of
lamination.
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 Figure 6: Effect of fiber orientation of reliability index.
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Figure 7: Effect of thickness on reliability index for graphite epoxy.

3.3.4 Effect of thickness

The thickness of composite laminate directly affects its reliability. Since it is the most influenc-
ing resistance variable (Fig. 2), its increase will improve the reliability of composite laminate
dramatically. Figure 10 shows that when the thickness is 5.0 mm, reliability of graphite epoxy

Latin American Journal of Solids and Structures 4 (2007)



A simple procedure for reliability assessment of composite plates against buckling 279

angle ply laminate is 2.0, however, it becomes 3.28 (desirable range of 3) when the thickness
is 6.0 mm. From this figure, it can be concluded that to achieve the desired reliability index,
thickness of laminate would be the simplest option, provided the cost is not the constraint.

3.3.5 Effect of length and width

Table 6 shows the variation of plate reliability with length and width of the laminated plate.
Reliability increases significantly with increase in plate width while it remains almost constant
with increase in the length of plate. This is due to the fact that the effect of width is more
pronounced in buckling strength as compared to the length. This can also be observed in Figs.
2 and 3.

Table 6: Effect of geometrical properties for antisymmetric angle ply laminate.

Variable parameter Aspect ratio β

Length of plate (a)

1.0 2.03
1.5 2.17
2.0 2.03
2.5 2.09
3.0 2.03

Width of plate (b)

1.0 0.58
1.5 2.72
2.0 3.82
2.5 4.69
3.0 5.26

3.3.6 Effect of aspect ratio

The effect of aspect ratio on the reliability of composite laminated plate in terms of reliability
index values is shown in Fig. 8. There is no significant change in the reliability of plate with
increase of aspect ratio. This is so because with the change of aspect ratio, modes shape also
changes which cause consequentially no change in critical buckling load and hence no subsequent
change in the reliability index value.

3.3.7 Effect of longitudinal modulus

Sensitivity diagram (Figs. 2 and 3) show that the longitudinal modulus is a resistance variable
and therefore an increase in its magnitude will improve the reliability. The same expected
trend is also seen in Figs. 9 and 10. The figures show that there is a continuous increase in
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 Figure 8: Effect of aspect ratio on reliability index for graphite epoxy.

the reliability with longitudinal modulus value. This is due to the fact that buckling strength
directly increases with longitudinal elastic modulus.
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Figure 9: Effect of longitudinal modulus on reliability index for graphite epoxy.
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Figure 10: Effect of longitudinal modulus on reliability index for carbon epoxy.

3.3.8 Effect of transverse modulus

Transverse modulus is also a resistance variable (Figs. 2 and 3), so its increase will improve the
reliability of the composite laminate. Figs. 11 and 12 exhibits this trend for both the cross ply
and angle ply laminate for the graphite and carbon epoxy respectively. In terms of magnitude,
20% increase in the transverse modulus results in only 3% increase in its reliability index. This
shows that its effect is not much significant as compared to the longitudinal modulus. This is
so because buckling strength is not much affected by the magnitude of transverse modulus of
elasticity.

3.3.9 Effect of shear modulus

Figs 13 and 14 show the effect of shear modulus on reliability index. Trend shows that there is no
significant improvement in the reliability of composite plate with increase in the shear modulus
of elasticity. This is so because the buckling strength is not much influenced by the change in
shear modulus, and therefore, there is no subsequent change in reliability index. Moreover, it
can be noted that the effect of shear modulus is slightly more for the antisymmetric cross ply
laminates than their corresponding angle ply laminated plates.
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 Figure 11: Effect of transverse modulus on reliability index for graphite epoxy.
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Figure 12: Effect of transverse modulus on reliability index for carbon epoxy.
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Figure 13: Effect of shear modulus on reliability index for graphite epoxy.
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 Figure 14: Effect of shear modulus on reliability index for carbon epoxy.
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3.3.10 Effect of uncertainty

Figs. 15 to 17 show that as the uncertainty, measured in terms of coefficient of correlation (COV),
increases there is a corresponding continuous decrease in the reliability index magnitude. This
indicates that it is not only the mean value that affects the reliability of composite laminate but
also the uncertainty plays a significant role in it.

An increase in the uncertainty in thickness results in significant decrease in the plate reliabil-
ity (Fig. 15) while the plate reliability is not much affected with an increase in the uncertainty
in length and width of the plate (Fig. 17). Fig. 16 shows the expected trend of a continuous
decrease in the reliability index with increase in the uncertainty in longitudinal modulus.
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 Figure 15: Effect of uncertainty in thickness on reliability index for graphite epoxy.
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Figure 16: Effect of uncertainty in longitudinal modulus on reliability index for graphite epoxy.
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 Figure 17: Effect of uncertainty in length and width on reliability index for graphite epoxy.

4 Conclusions

Based on the results obtained from the present numerical study, following conclusions may be
drawn:

• Angle ply laminated plates, in general, are more reliable as compared to the same cross
ply laminated composite plates.

• Correlation among various random variables may be neglected provided that the magnitude
of correlation is of the same order as assumed in the present study.

• The number of layers in a composite laminated plate should be kept more than four for
all design purposes. For desired reliability, preferable range for number of layers is four to
eight.

• Fiber angle should be kept between θ = 30◦ to θ = 60◦ for antisymmetric angle ply
laminated plates as at the extreme values of θ, reliability of composite plate decreases
significantly.

• Thickness of laminated plate favors the reliability of composite plate very much.

• There is no significant change in the reliability of plate if its length is altered; however,
there is a considerable change in the reliability against buckling if width of the laminated
plate is changed.

• The longitudinal modulus of composites is more influencing to the plate reliability than
other engineering properties of composite material.
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• Effect of shear modulus is more pronounced for the cross ply laminated plates than for the
angle ply laminated plates.

• It is not only the mean value that affects the reliability of plate but also the uncertainty
plays a significant role. In general an increase in the uncertainty of any random variable,
measured in terms of COV, reduces the reliability of laminated plates against buckling.

• If through some proper care and quality control uncertainties in random variables can be
reduced, reliability of plates can be improved.
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Appendix I: Strain and stress variation in a laminate

Knowledge of the variation of stress and strain through the laminate thickness is essential to
define the extensional and bending stiffness of a laminate. The laminate is presumed to consist
of perfectly bonded laminae. Moreover, the bonds are presumed to be infinitesimally thin as well
as non-shear deformable. That is, the displacements are continuous across lamina boundaries
so that no lamina can slip relative to another. Thus, the laminate acts as a single layer with
very special properties, but nevertheless acts as a single layer of material.

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure A1: Deformation in xz-plane.

Figure A1 shows the deformation of the plate in the X-Z plane. Let u, v, w represent the
displacements along the X-, Y-, Z-direction and u0, v0 the deformation of the laminate middle
surface. The displacement along the X-axis of any point C at a distance z from the X-axis is

u = u0 − βz, (A1)

Where β is the slope of the middle surface in the X-direction, that is,

β =
∂w

∂x
, (A2)

Hence the displacement u at any point z through the laminate thickness is

u = u0 − z
∂w

∂x
, (A3)

Similarly, we have the displacement v along the Y-axis given by

v = v0 − z
∂w

∂y
, (A4)

Using the strain-displacent relation

εx =
∂u

∂x
,
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εy =
∂v

∂y
,

γxy =
∂u

∂y
+

∂v

∂x
, (A5)

we can write the strains in terms of middle surface displacements as

εx =
∂u0

∂x
− z

∂2w

∂x2
,

εy =
∂v0

∂y
− z

∂2w

∂y2
,

γxy =
∂u0

∂y
+

∂v0

∂x
− 2z

∂2w

∂x∂y
, (A6)

Equations (A6) can be rewritten as





εx

εy

γxy



 =





ε0
x

ε0
y

γ0
xy



 + z





kx

ky

kxy



 , (A7)

where 



ε0
x

ε0
y

γ0
xy



 =





∂u0

∂x
∂v0

∂y
∂u0

∂y + ∂v0

∂x





, (A8)





kx

ky

kxy



 = −





∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y





. (A9)

Substituting equation (A7) in the stress-strain relations, we can express the stresses in the
rth layer in terms of the laminate middle surface strains and curvature as





σx

σy

τxy





r

=




Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66




r









ε0
x

ε0
y

γ0
xy



 + z





kx

ky

kxy







 . (A10)

Since the reduced stiffness matrix Q̄ij is different for each lamina, the stress variation through
the laminate thickness need not be linear, even though stress variation through the thickness is
linear.
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Appendix II: Buckling and limit state equations

Classical Laminate Theory, CLT [5] has been used to derive the governing buckling equations
for a plate subjected to inplane load. To derive the governing equations we have considered first
the equilibrium of force and then the equilibrium of moment in a way as discussed below:

The equilibrium equations in terms of the forces (Fig. A2) are

∂Nx

∂x
+

∂Nxy

∂y
= 0, (A11)

∂Nxy

∂x
+

∂Ny

∂y
= 0. (A12)

where Nx, Ny, and Nxy are the internal forces in normal and tangential direction.

 

 

 

 

 

 

 

Figure A2: Forces on a laminated plate.

Again, the equilibrium equation in terms of the moments (Fig. A3) is

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y
= 0, (A13)

where, w is the displacement along z-direction.
The resultant forces Nx, NyNxy and moments Mx,My, Mxy acting on a laminate are obtained

by integration of the stress in each layer or lamina through the laminate thickness. Knowing
the stress in terms of the displacement, we can obtain the stress resultants Nx, Ny, Nxy,Mx,My,

and Mxy. The stress resultants are defined as

Nx =

t
2∫

− t
2

σxdz, Ny =

t
2∫

− t
2

σydz, Nxy =

t
2∫

− t
2

τxydz,
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Figure A3: Shear forces and moments acting on plate element.

Mx =

t
2∫

− t
2

σxzdz, My =

t
2∫

− t
2

σyzdz, Mxy =

t
2∫

− t
2

τxyzdz. (A14)

where σx, σy and τxy are normal and shear stress; t is total thickness of the laminated plate; and
z is the distance measured from middle surface (Fig. A4).

 

 

 

 

 

 

 

Fig. 4 Geometry of an N-layered laminate 

 

 

 

 

 

 

 

 

 

  

Figure A4: Geometry of an N -layered laminate.

Actually, Nx, Ny and Nxy are the force per unit length of the cross section of the laminate
as shown in Fig. A2. Similarly, Mx,My, and Mxy are the moment per unit length as shown in
Fig. A3. Thus, the forces and moments for an N -layer laminate can be defined as
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
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r

zdz, (A16)

where, zr and zr−1 are as defined in Fig. A4. Note that z0 = −t/2. Substituting for σx,σy, and
τxy in Eqns. (A15) and (A16) and integrating over the thickness of each layer and adding the
results so obtained for N layers, we can write the stress resultants as


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Nxy
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where

Aij =
N∑

r=1

(
Q̄ij

)
r
(zr − zr−1) ,

Bij =
1
2

N∑

r=1

(
Q̄ij

)
r

(
z2
r − z2

r−1

)
,

Dij =
1
3

N∑

r=1

(
Q̄ij

)
r

(
z3
r − z3

r−1

)
. (A19)

Here, Aij , Bij and Dij are the coefficients of extensional stiffness, coupling stiffness, and
flexural stiffness respectively; ε0

x, ε0
y, ε

0
xy are strain components at middle surface; kx, ky, kxy

are the curvatures (for details refer appendix); and Qij ( i, j = 1,2,6) are elements of the
composite material reduced stiffness matrix that depend on the properties of elastic constants
E1, E2, G12, ν12, ν21 and thickness of the various laminas (layers) that have been stacked to form
the laminate of thickness t. In the present study, we have considered regular laminate in which
each lamina has the same thickness. Details about these elements may be found in any standard
text on composite materials (e.g. [5]).
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In the case of angle-ply laminates where the fibre orientation θ alternates from lamina to
lamina as +θ/− θ/ + θ/− θ, the force and moment resultants are


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Such a laminate is called an antisymmetric angle-ply laminate. In this type of laminate, if
each lamina has the same thickness, it is then called a regular antisymmetric angle-ply laminate.
For such a laminate, Eqns. (A20) and (A21) reduce to
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There is yet another class of laminates. Here the laminae are oriented alternatively at 00

and 900. A laminate of this type is termed as a cross-ply laminate.
Substituting for Nx , Ny, Nxy, Mx, My, Mxy from Eqns. (A22) and (A23), after substituting

for ε0
x, ε0

y, γ
0
xy, kx, ky, kxy from Eqns. (A8) and (A9), we get the governing equations as

A11
∂2u0

∂x2 + (A12 + A66) ∂2v0

∂x∂y + A16(∂2v0

∂x2 + 2 ∂2u0

∂x∂y ) + A26
∂2v0

∂y2 + A66
∂2u0

∂y2

−B11
∂3w
∂x3 − 3B16

∂3w
∂x2∂y

− (B12 + 2B66) ∂3w
∂x∂y2 −B26

∂3w
∂y3 = 0,

(A24)

A16
∂2u0

∂x2 + (A12 + A66) ∂2u0

∂x∂y + A26
∂2u0

∂y2 + A66
∂2v0

∂x2 + 2A26
∂2v0

∂x∂y + A22
∂2v0

∂y2

B16
∂3w
∂x3 − (B12 + 2B66) ∂3w

∂x2∂y
− 3B26

∂3w
∂x∂y2 −B22

∂3w
∂y3 = 0,

(A25)

D11
∂4w
∂x4 + 4D16

∂4w
∂x3∂y

+ (2D12 + 4D66) ∂4w
∂x2∂y2 + 4D26

∂4w
∂x∂y3 + D22

∂4w
∂y4

−B11
∂3u0

∂x3 − 3B16
∂3u0

∂x2∂y
− (B12 + 2B66) ∂3u0

∂x∂y2 −B26
∂3u0

∂y3 −B16
∂3v0

∂x3

− (B12 + 2B66) ∂3v0

∂x∂y2 −B22
∂3v0

∂y3 = −Nx
∂2w
∂x2 −Ny

∂2w
∂y2 − 2Nxy

∂2w
∂x∂y .

(A26)
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For a general laminate, all the above three equations, i.e., Eqns. (A24), (A25) and (A26)
have to be solved simultaneously as they are coupled. In the present study, we shall consider
only simply supported regular antisymmetric laminated plates for reliability assessment. For
such simply supported composite plates, these equations are simplified and their closed-form
solutions can be obtained which can be subsequently employed to obtain limit state functions.

Antisymmetric cross ply laminated plate

Antisymmetric cross-ply laminates have extensional stiffnesses A11, A12, A22 = A11 and A66,
bending-extension coupling stiffnesses B11 and B22 = −B11, and bending stiffnesses D11, D12, D22 =
D11, and D66. Because of this bending-extension coupling, the buckling differential equations
are coupled:

A11
∂2u0

∂x2
+ (A12 + A66)

∂2v0

∂x∂y
+ A66

∂2u0

∂y2
−B11

∂3w

∂x3
= 0 (A27)

(A12 + A66)
∂2u0

∂x∂y
+ A66

∂2v0

∂y2
+ A11

∂2v0

∂y2
+ B11

∂3w

∂y3
= 0 (A28)

D11

(
∂4w

∂x4
+

∂4w

∂y4

)
+ 2 (D12 + 2D66)

∂4w

∂x2∂y2
−B11

(
∂3u0

∂x3
− ∂3v0

∂y3

)
+ Nx

∂2w

∂x2
= 0 (A29)

If a rectangular plate, simply supported on all the four edges, with dimensions a and b is
subjected to axial compressive force along the edge of dimensions b (Fig. A1), we have

x = 0, a w = 0, Mx = B11
∂u0

∂x
−D11

∂2w

∂x2
−D12

∂2w

∂y2
= 0

u0 = 0, Nx = A11
∂u0

∂x
+ A12

∂v

∂y
−B11

∂2w

∂x2
= 0

y = 0, b w = 0, My = −B11
∂v0

∂y
−D12

∂2w

∂x2
−D11

∂2w

∂y2
= 0

v0 = 0, Ny = A12
∂u0

∂x
+ A11

∂v

∂y
+ B11

∂2w

∂y2
= 0 (A30)

Where u, v, w represent the displacements along the X-. Y-, Z- direction and u0, v0 the
deformation of the laminate middle surface.

A solution of the type
u0 = u cos

mπx

a
sin

nπy

b

v0 = v sin
mπx

a
cos

nπy

b

w = w sin
mπx

a
cos

nπy

b
(A31)
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satisfies the above boundary conditions and the governing differential equations exactly if

Nx =
( a

mπ

)2
(

T33 +
2T12T23T13 − T22T

2
13 − T11T

2
23

T11T22 − T 2
12

)
(A32)

where,

T11 = A11

(mπ

a

)2
+ A66

(nπ

b

)2

T12 = (A12 + A66)
(mπ

a

)(nπ

b

)

T13 = −B11

(mπ

a

)3

T22 = A11

(nπ

b

)2
+ A66

(mπ

a

)2

T23 = B11

(nπ

b

)3

T33 = D11

((mπ

a

)4
+

(nπ

b

)4
)

+ 2 (D12 + 2D66)
(mπ

a

)2 (nπ

b

)2
(A33)

Here m and n are number of half sine waves in X- and Y- directions respectively. The lowest
buckling load (critical buckling load) must be found by searching procedure [6, 7] involving
integer values of m and n. To implement this procedure first for a given value of n (e.g. 1),
m was incremented from 1 to 10 (maximum possible value of m) and at every value of m the
Nx, given by Eqn. (A32), was computed. Thereafter, n was incremented to next higher integer
value (e.g. 2) and again for this value of n,m was incremented from 1 to 10 and at every value
of n and m Nx, was computed. This process was repeated until for all possible combinations
of m and n the Nx is known. Having known the all Nx values, the minimum Nx is sorted. This
minimum Nx represents the buckling load for a simply supported laminate subjected to inplane
loading.

Eq. (A32) represents the characteristic equation of buckling load for a simply supported
antisymmetric cross-ply laminate subjected to inplane loading. Therefore, if the applied inplane
load is Pc, then the limit state function g(x) can be expressed by Eq. (1)

Antisymmetric angle ply laminated plate

Antisymmetric angle-ply laminates have extensional stiffnesses A11, A12, A22 and A66, bending-
extension coupling stiffnesses B16 and B26, and bending stiffnesses D11, D12, D22, and D66.
This type of laminate exhibits a different kind of bending-extension coupling than does the
antisymmetric cross-ply laminate. The coupled buckling differential equations are

A11
∂2u0

∂x2
+ (A12 + A66)

∂2v0

∂x∂y
+ A66

∂2u0

∂y2
− 3B16

∂3w

∂x2∂y
−B26

∂3w

∂y3
= 0 (A34)
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(A12 + A66)
∂2u0

∂x∂y
+ A66

∂2v0

∂x2
+ A22

∂2v0

∂y2
−B16

∂3w

∂x3
− 3B26

∂3w

∂x∂y2
= 0 (A35)

D11
∂4w
∂x4 + 2 (D12 + 2D66) ∂4w

∂x2∂y2 + D22
∂4w
∂y4

−B16

(
3 ∂3u0

∂2x∂y
+ ∂3v0

∂x3

)
−B16

(
3 ∂3v0

∂x∂y2 + ∂3u0

∂y3

)
+ Nx

∂2w
∂x2 = 0

(A36)

For simply supported edge boundary conditions, we have

x = 0, a w = 0, Mx = B16

(
∂v0

∂x
+

∂u0

∂y

)
−D11

∂2w

∂x2
−D12

∂2w

∂y2
= 0

u0 = 0, Nxy = A66

(
∂v0

∂x
+

∂u0

∂y

)
−A16

∂2w

∂x2
−B26

∂2w

∂y2
= 0

y = 0, b w = 0, My = B26

(
∂v0

∂x
+

∂u0

∂y

)
−D12

∂2w

∂x2
−D22

∂2w

∂y2
= 0

v0 = 0, Nxy = A66

(
∂v0

∂x
+

∂u0

∂y

)
−B16

∂2w

∂x2
−B26

∂2w

∂y2
= 0 (A37)

A solution of the type
u0 = u sin

mπx

a
cos

nπy

b

v0 = v cos
mπx

a
sin

nπy

b

w = w sin
mπx

a
cos

nπy

b
(A38)

satisfies the above boundary conditions and the governing differential equations exactly if

Nx =
( a

mπ

)2
(

T33 +
2T12T23T13 − T22T

2
13 − T11T

2
23

T11T22 − T 2
12

)
(A39)

where,

T11 = A11

(mπ

a

)2
+ A66

(nπ

b

)2

T12 = (A12 + A66)
(mπ

a

) (nπ

b

)

T13 = −
[
3B16

(mπ

a

)2
+ B26

(nπ

b

)2
] (nπ

b

)

T22 = A22

(nπ

b

)2
+ A66

(mπ

a

)2

T23 = −
[
B16

(mπ

a

)2
+ 3B26

(nπ

b

)2
](mπ

a

)

Latin American Journal of Solids and Structures 4 (2007)



A simple procedure for reliability assessment of composite plates against buckling 297

T33 = D11

(mπ

a

)4
+ 2 (D12 + 2D66)

(mπ

a

)2 (nπ

b

)2
+ D22

(nπ

b

)4
(A40)

Eq. (A39) represents the characteristic equation of buckling load for a simply supported
antisymmetric angle-ply laminate subjected to inplane loading. Therefore, if the applied inplane
load is Pc, then the limit state function g(x) can be expressed by Eq. (3).
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