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Abstract 

In recent years, new, intelligent and efficient sampling techniques 

for Monte Carlo simulation have been developed. However, when 

such new techniques are introduced, they are compared to one or 

two existing techniques, and their performance is evaluated over 

two or three problems. A literature survey shows that bench-

mark studies, comparing the performance of several techniques 

over several problems, are rarely found. This article presents a 

benchmark study, comparing Simple or Crude Monte Carlo with 

four modern sampling techniques: Importance Sampling Monte 

Carlo, Asymptotic Sampling, Enhanced Sampling and Subset 

Simulation; which are studied over six problems. Moreover, these 

techniques are combined with three schemes for generating the 

underlying samples: Simple Sampling, Latin Hypercube Sampling 

and Antithetic Variates Sampling. Hence, a total of fifteen sam-

pling strategy combinations are explored herein. Due to space 

constrains, results are presented for only three of the six prob-

lems studied; conclusions, however, cover all problems studied. 

Results show that Importance Sampling using design points is 

extremely efficient for evaluating small failure probabilities; 

however, finding the design point can be an issue for some prob-

lems. Subset Simulation presented very good performance for all 

problems studied herein. Although similar, Enhanced Sampling 

performed better than Asymptotic Sampling for the problems 

considered: this is explained by the fact that in Enhanced Sam-

pling the same set of samples is used for all support points; 

hence a larger number of support points can be employed with-

out increasing the computational cost. Finally, the performance 

of all the above techniques was improved when combined with 

Latin Hypercube Sampling, in comparison to Simple or Antithet-

ic Variates sampling.  
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1 INTRODUCTION 

Since the early beginnings in the sixties and seventies, structural reliability analysis has reached a 

mature stage encompassing solid theoretical developments and increasing practical applications. 

Structural reliability methods have permeated the engineering profession, finding applications in 

code calibration, structural optimization, life extension of existing structures, life-cycle management 

of infrastructure risks and costs, and so on. During the past 30 years, significant advances were 

obtained in terms of transformation methods (FORM, SORM), as well as in terms of simulation 

techniques. Transformation methods were found to be efficient in the solution of problems of mod-

erate dimensions and moderate non-linearity. Simulation techniques (Metropolis and Ulam, 1949; 

Metropolis et al., 1953; Robert and Casella, 2011) have always allowed the solution of highly non-

linear high-dimensional problems, although computational cost used to be a serious limitation. This 

is especially true when failure probabilities are small and limit state functions are given numerically 

(e.g., finite element models) (Beck and Rosa, 2006).  With the recent and exponential advance of 

computational processing power, Monte Carlo simulation using intelligent sampling techniques is 

becoming increasingly more viable.  

 Several intelligent sampling techniques for Monte Carlo simulation have been proposed in recent 

years (Au and Beck, 2001; Au, 2005; Au et al., 2007; Bucher, 2009; Sichani et al., 2011a; Sichani et 

al., 2011b; Sichani et al., 2014; Naess et al., 2009; Naess et al., 2012). However, when such tech-

niques are introduced, they are generally compared with one or two existing techniques, and their 

performance is evaluated over two or three problems. It is difficult to find in the published litera-

ture benchmark studies where several sampling techniques are compared for a larger number of 

problems (Au et al., 2007; Engelund and Rackwitz, 1993; Schuëller and Prandlwarter, 2007). This 

article presents a benchmark study, comparing Simple or Crude Monte Carlo with four modern 

sampling techniques: Importance Sampling Monte Carlo, Asymptotic Sampling, Enhanced Sampling 

and Subset Simulation over six problems. Moreover, these techniques are combined with three 

schemes for generating the underlying samples: Simple Sampling, Latin Hypercube Sampling and 

Antithetic Variates Sampling. Hence, a total of fifteen sampling strategy combinations are explored 

herein. Due to space constrains, results are presented for only three of the six problems studied. The 

conclusions, however, cover the six problems studied.  

 The remainder of the article is organized as follows. The structural reliability problem is formu-

lated in Section 1. The basic techniques for generating the underlying samples are presented in Sec-

tion 2. The intelligent sampling techniques for failure probability evaluation are presented in Sec-

tion 3. Problems are studied in Section 4, and Concluding Remarks are presented in Section 5. 

 

2 FORMULATION 

2.1 Reliability problem 

Let { }1 2, ,..., mX X X=X  be a random variable vector describing uncertainties in loads, material 

strengths, geometry, and models affecting the behavior of a given structure. A limit state equation 

( )g X  is written such as to divide the failure and survival domains (Madsen et al., 1986; Melchers, 

1999): 
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The failure probability is given by: 

 

 ( )
f

f fP P f d
Ω

 = ∈ Ω =  ∫ X
X x x   (2) 

 

where ( )f
X
x  is the probability density function of random vector X . The biggest challenge in solv-

ing the simple multi-dimensional integral in equation (2) is that the integration domain is generally 

not known in closed form, but it is given as the solution of a numerical (e.g., finite element) model. 

Monte Carlo simulation solves the problem stated in equation (2) by generating samples of random 

variable vector X , according to distribution function ( )f
X
x , and evaluating weather each sample 

belongs to the failure or survival  domains. 

 

2.2 Crude Monte Carlo Simulation 

One straightforward way of performing the integration in equation (2) is by introducing an indica-

tor function [ ]I x , such that 1I   = x  if 
f∈ Ωx  and [ ] 0I =x  if s∈ Ωx . Hence, the integration can 

be performed over the whole sample space: 

 

 ( )fP I f d E I
Ω
     = ≡     ∫ X
x x x x   (3) 

 

 In equation (3), one recognizes that the right-hand term is the expected value ( [ ].E ) of the indi-

cator function. This expected value can be estimated from a sample of size n  by: 

 

 
1

1
n

f
ff j

j

n
E P P I I

n n=

    = = = =    ∑x x   (4) 

 

where fn  is the number of samples which belong to the failure domain and n  is the total number 

of samples. The variance of fP  is given by: 

 

 ( )2
1

1

1

n

f fj
j

Var P I P
n =

   = −     − ∑ x   (5) 

 

 In Crude Monte Carlo simulation, sample vector 
jx  can be generated using the Simple Sam-

pling, Antithetic Variates Sampling or Latin Hypercube Sampling, as detailed in the sequence. 

 

3 BASIC SAMPLING TECHNIQUES 

In this paper three basic sampling techniques are investigated: Simple Sampling, Latin Hypercube 

Sampling and Antithetic Variates Sampling. These basic sampling schemes are not specific for the 
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solution of structural reliability problems: they can be employed in the numerical solution of inte-

grals (like equation (2)), in the spatial distribution of points in a given domain (for surrogate mod-

eling, for instance), and so on. These techniques are further combined with specific techniques for 

solving structural reliability problem via Monte Carlo simulation, as described in Section 3.  

 

3.1 Simple Sampling 

The use of Monte Carlo simulation in solving general problems involving random variables (and/or 

stochastic processes) requires the generation of samples from random variable vector X . The most 

straightforward way of generating samples of a vector of random variables is by an inversion of 

their cumulative distribution function ( )F
X
x :  

I. Generate a random vector of components ( ) { }1 m jv× =v , 1,...,j m= , uniformly distributed 

between 0 and 1; 

II. Use the inverse of the cumulative distribution function, such that { } ( ){ }1
j jx F v−=

X
, 

1,...,j m= . 

 When components of vector X  are correlated, the correlation structure can be imposed by pre-

multiplication by the Cholesky-decomposition of the correlation matrix. Details are given in Madsen 

et al. (1986) and Melchers (1999). 

 

3.2 Antithetic Variate Sampling 

In Simple Sampling, a set of random numbers ( ) { }1 1 2, ,...,
t

n j j nju u u× =u  is employed to obtain n  

samples of random variable X j . In Antithetic Variate sampling, the idea is to divide the total 

number of samples by two, and to obtain two vectors { }1 2 /2, ,...,
t

nu u u=u  and 

=u { }1 2 /21 ,1 ,...,1
t

nu u u− − − . Now consider that any random quantity P  (including the failure 

probability, f
P ) can be obtained by combining two unbiased estimators a

f
P  and b

f
P , such that: 

 

 
2

a b
f fc

f

P P
P

+
=   (6) 

 

 The variance of this estimator is: 

 

 ( )1
2 ,

4
c a b a b
f f f f f

Var P Var P Var P Cov P P       = + + ⋅                 (7) 

 

Thus, by making ( )a
f

P f= u  and ( )b
f

P f= u , a negative correlation is imposed, ,a b
f fCov P P 

    be-

comes negative, hence the variance of c
f

P  is reduced in comparison to the variances of a
f

P  or b
f

P . 

The Antithetic Variates technique, when applied by itself, may not lead to significant improvement; 

when applied in combination with other techniques, more significant improvements can be achieved. 

 

3.3 Latin Hypercube Sampling 

The Latin Hypercube Sampling (LHS) was introduced by McKay et al. (1979). The idea of Latin 

Hypercube Sampling is to divide the random variable domain in stripes, where each stripe is sam-
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pled only once (McKay et al., 1979; Olsson et al., 2003), such as in Figure 1. This procedure guar-

antees a sparse but homogeneous cover of the sampling space. 

 

 

Figure 1: Latin Hypercube Sampling. 

 

To obtain the Latin Hypercube, let m  be the number of random variables and n  the number of 

samples. A matrix ( )P n m×  is created, where each column is a random permutation of 1,...,n . A ma-

trix ( )R n m×  is created, whose elements are uniform random numbers between 0 and 1. Then, matrix 

S  is obtained as (Olsson et al., 2003): 
 

 ( )S P R
1

n
= −   (8) 

 

The samples are obtained from S  such that: 
 

 ( )1

j
ij ijX

x F s−=   (9) 

 

where 1

jX
F−  is the inverse cumulative distribution function of random variable 

jX . 

 In order to reduce memory consumption, equation (8) can be “solved” is scalar fashion. The fol-

lowing algorithm is adopted: 

 

1. Start the loop for random variable j : 

2. Generate the first column of matrix P , as a random permutationn  of 1,...,n ; 

3. Start the loop for the number of simulations i ; 

4. Generate a single uniform random number between 0 and 1; thus, it is not necessary to cre-

ate matrix R ; 

5. Compute a number s, and use equation (9) to compute the element 
ijx . Thus, matrix S  al-

so does not need to be computed; 

6. Repeat step 4 until i n= ; 

7. Repeat step 2 until j m= . 
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 For illustration purposes, Figure 2 shows histograms obtained by Simple Sampling (Figure 2a), 

Antithetic Variates Sampling (Figure 2b) and Latin Hypercube Sampling (Figure 2c), for a random 

variable X  with normal distribution, with mean equal to 0.0 and standard deviation equal to 0.15. 

Three thousand samples were used to compute these histograms. One observes the smoother distri-

butions obtained by means of Latin Hypercube Sampling. 

 
a) Simple Sampling b) Antithetic Sampling c) Latin Hypercube Sampling 

   

Figure 2: Histograms obtained for 3000 samples of a single random variable X~N(0, 0.15). 

 

4 INTELLIGENT SAMPLING TECHNIQUES 

4.1 Importance Sampling Monte Carlo 

Importance Sampling Monte Carlo centered on design points is a powerful technique to reduce the 

variance in problems involving small and very small failure probabilities. The drawback is that it 

needs prior location the design points. Design points can be located using well-known techniques of 

the First Order Reliability Method, or FORM (Madsen et al., 1986; Melchers, 1999). However, find-

ing the design point can be a challenge for highly non-linear problems. 

 Recall the fundamental Monte Carlo simulation equation (equation 3). If numerator and denom-

inator of this expression are multiplied by a conveniently chosen sampling function ( )X
xh , the re-

sult is unaltered: 

 

 
( )
( )

( )
( )
( )f

f f
P I h d E I

h hΩ

 
    = ≡    
  

∫ X X

X

X X

x x
x x x x

x x
  (10) 

 

The expected value, in the right-hand side of equation (10), can be estimated by sampling using: 

 

 
( )
( )1

1
n

i
f i

i i

f
P I I

n h=

   = =   ∑ X

X

x
x x

x
  (11) 

 

By properly choosing the sampling function ( )h
X
x , one can increase the number of “successes”, 

or the number of sampled points falling in the failure domain. This is normally accomplished by 

centering the sampling function ( )h
X
x  in the design point. In other words, the sampling function is 

usually the joint probability density function ( )f
X
x , but with the mean replaced by the design 
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point coordinates ( )*x . However, observe that in comparison to equation (4), each sampled point 

falling in the failure domain ( )1iI   = x  is associated to a sampling weight ( ) ( ) 1i if h
X X
x x ≪ . 

For structures or components with multiple failure modes associated as a series system, the sam-

pling function can be constructed by a weighted sum of functions ( )ih X x , centered at the thi  design 

point, such that: 
 

 ( ) ( )
1

nls

i i
i

h p h
=

=∑X X
x x   (12) 

 

where nls  is the number of limit states and ip  is the weight related to the limit state i . For a se-

ries system, where failure in any mode characterizes system failure, ip  is obtained as: 
 

 
( )

( )
1

i

i nls

i
i

p
β

β
=

Φ −
=

Φ −∑
  (13) 

 

For parallel system, similar expressions are given in (Melchers, 1999). 

The application of Importance Sampling Monte Carlo in combination with Simple Sampling or 

Antitethic Variates Sampling is straightforward. When applying Importance Sampling in combina-

tion with Latin Hypercube Sampling, there is a possibility that most samples be generated on one 

side of the limit state. This can be avoided by adopting a transformation proposed by Olsson et al. 

(2003). This transformation rotates the Latin Hypercube, on the standard normal space, according 

the orientation of the design point. This procedure is presented in Figure 3. Further details are giv-

en in Olsson et al. (2003). 

 

 
Figure 3: Original and rotated Latin Hypercube, adapted from Olsson et al. (2003). 

 

4.2 Asymptotic Sampling 

The Asymptotic Sampling technique (Bucher, 2009; Sichani et al., 2011a; Sichani et al., 2011b; 

Sichani et al., 2014) was developed based on the asymptotic behavior of failure probabilities as the 
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standard deviation of the random variables tends to zero. One advantage over Importance Sampling 

is that it does not require previous knowledge of the design point. 

Asymptotic Sampling is based on choosing factors 1f < ,  related to the standard deviations of 

the random variables as: 

 

 f i
i

f

σ
σ =   (14) 

 

where iσ  is the standard deviation of random variable i  and f
iσ  is the modified standard deviation 

for the same random variable. For small values of 1f < , larger standard deviations, hence also 

larger failure probabilities are obtained. For each pre-selected value of f  a Monte Carlo Simulation 

is performed, in order to obtain the reliability index ( )fβ . Following Bucher (2009), the asymptot-

ic behavior of β  with respect to f  can be described by a curve:  

 

 CA B f
f

β
= + ⋅   (15) 

 

Where A , B  and C  are constants to be determined by nonlinear regression (e.g. least squares 

method), using ( ),f fβ  as support points. After finding the regression coefficients, the reliability 

index for the original problem is estimated by making 1f =  in equation (13), such that 

A Bβ = + . Finally, the probability of failure is obtained as ( )fP β= Φ − , where ( ).Φ  is the 

standard normal cumulative distribution function. The Monte Carlo simulations for different values 

of β  (support points) can be obtained by Simple Sampling, Latin Hypercube Sampling or Antithet-

ic Variates Sampling. 

The parameters influencing the performance of Asymptotic Sampling are the number of support 

points and the range of f  values considered. In this paper, these parameters are not studied: they 

are fixed at values providing satisfactory responses: 5 support points are employed with f  varying 

from 0.4 to 0.7 or from 0.5 to 0.8, depending on the problem. 

 

4.3 Enhanced Sampling 

The Enhanced Sampling technique was proposed by Naess et al. (2009, 2012) and is based on ex-

ploring the regularity of the tails of the PDF’s. It aims at estimating small or very small failure 

probabilities for systems. The original limit state function ( )1 2, , ..., mM g x x x=  is used to construct 

a set of parametric functions ( )M λ , with 0 1λ≤ ≤ , such that: 

 

 ( ) ( )1 MM Mλ λ µ= − − ⋅   (16) 

 

where Mµ  is the mean value of M . Thus, it is assumed that the behavior of failure probabilities 

with respect to λ  can be represented as: 

 

 ( ) ( )exp
c

fP q a bλ λ
 ≈ ⋅ − − 
 

   with 1λ →  (17) 
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Using a set of support points ( ), fPλ λ 
  , the parameters in equation 15 can be found by nonline-

ar regression. The probability of failure for the original problem is estimated for 1λ = . One large 

advantage over Asymptotic Sampling is that, from one single Monte Carlo simulation run, the 

whole range of parametric functions ( )M λ  can be evaluated. Hence, a large number of support 

points can be used, with no penalty in terms of computational cost. 

For systems, each limit state or component ( )1 2, , ...,j j mM g x x x= , with 1,...,j nls= , must be 

evaluated. Thus, a parametric set of equations is obtained, such as: 

 

 ( ) ( )1
jj j MM Mλ λ µ= − − ⋅   (18) 

 

Therefore, for a series system the probability of failure is obtained as: 

 

 ( ){ }
1

0
nls

f j
j

P P M λ
=

 
 = ≤ 
  
∪   (19) 

 

For a parallel system, the probability of failure is obtained as: 

 

 ( ){ }
1

0
nls

f j
j

P P M λ
=

 
 = ≤ 
  
∩   (20) 

 

and for a series system with parallel subsystems, the probability of failure is given by: 

 

 ( ){ }
1

0

j

l

f i
j i C

P P M λ
= ∈

 
 = ≤ 
  
∪ ∩   (21) 

 

where 
jC  is a subset of 1,...,nls , for 1,...,j l= . 

The parameters of Enhanced Sampling are the number of support points ( ), fPλ λ 
   and the val-

ues of λ  for which failure probabilities are evaluated. Within this paper, these values are kept fixed: 

100 support points are used, with λ  varying from 0.4 to 0.9. 

 

4.4 Subset Simulation 

The Subset Simulation technique was proposed by Au and Beck (2001) aiming to estimate small 

and very small probabilities of failure in structural reliability. The basic idea of this technique is to 

decompose the failure event, with very small probability, into a sequence of conditionals events with 

larger probabilities of occurrence. For the later, small sample Monte Carlo simulation should be 

sufficient. Since Simple Sampling is not a good option to generate conditional samples, the Markov 

Chain Monte Carlo and the modified Metropolis-Hastings algorithms are used.    

The estimation of conditional probabilities in Subset Simulation depends on the choice of the in-

termediates events. Consider the failure event E . The probability of failure associated to it is given 

by: 
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 ( ) ( )
f

fP E P f d I f d
Ω Ω

    = ∈ Ω =     ∫ ∫X X
X x x = x x x   (22) 

 

Considering a decreasing sequence of events iE , such as 1 2 ... mE E E E⊃ ⊃ ⊃ = , thus: 
 

 
1

k

k i
i

E E
=

= ∩ ,   1,...,k m=  (23) 

 

Hence, the probability of failure is evaluated as: 

 

 1 1
1 2

|
m m

f i i i
i i

P P E P E P E P E E −
= =

 
      = = = ⋅      
  

∏∩   (24) 

 
In equation (22), 1P E    can be evaluated by means of Crude Monte Carlo, using Simple Sam-

pling, Latin Hypercube Sampling or Antithetic Variates Sampling. On the other hand, the condi-

tional probabilities 1|i iP E E −
    are estimated by means of Markov Chains using the Modified Me-

tropolis-Hastings algorithm (Au and Beck, 2001; Au, 2005; Au et al., 2007).  

In Subset Simulation the intermediate events iE  are chosen in an adaptative way. In structural 

reliability the probability of failure is estimated by:  

 

 ( ){ }0f
P P E P g   = = ≤   X   (25) 

 

As the failure event is defined by: 

 

 ( ){ }0E g= ≤X   (26) 

 

The intermediate failure events are defined by: 

 

 ( ){ }i i
E g b= ≤X   (27) 

 

with 1,...,i m= . Hence, the sequence of intermediate events iE  is defined by the set of intermedi-

ate limit states.  

For convenience, the conditional probabilities are established previously, such 

that [ ]1 0|i iP E E P− = . Also, the number of samples SSn  (e.g. SSn  = 500) at each subset is previous-

ly established. Hence, sets of samples 0,kX , with 1,..., SSk n=  are obtained. The limit state func-

tions are evaluated for 0,kX , resulting in vector ( )0, 0,k kY g X= . Components of vector 0,kY  are ar-

ranged in increasing order, resulting in vector 0,kY + . The intermediate limit of failure 1b  is estab-

lished as the sample 0,kY +  for which 0 SSk P n= , such that { }[ ]
0

1 00, SSP n
P Y b P+ ≤ = . Thus, there are 

0 SSP n  samples on the “failure” domain defined by intermediate limit 1b . From each of these sam-

ples, by means of Markov Chain simulation, ( )01 SSP n−  conditional samples ( )1|0 ,kX  are generated, 

with distribution ( )1. |P E . The limit state function is evaluated for these samples resulting in vec-

tor ( ) ( )( )1|0 , 1|0 ,k kY g X=  and in ordered vector 
( )1|0 ,k

Y + , both related to intermediate limit of failure 2b , 

where 0 SSk P n= . Therefore, 
( ){ }[ ]

0
2 01|0 , SSP n

P Y b P+ ≤ = . Thus, the next intermediate event 2E =  
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{ }2Y b≤  is defined. One can notice that [ ] [ ]2 1 2 1 0| |P E E P Y b Y b P= ≤ ≤ = . The 0 SSP n  condi-

tional samples will be the seeds of the conditional samples for the following level. Repeating the 

process, one generates conditional samples until the final limit mb  is reached, such that 0mb = . 

This process is illustrated in Figure 4. 

 

 
Figure 4: Subset sample generation using Markov Chains. 

 

The random walk is defined by its probability distribution (e.g. uniform) and by the standard 

deviation RW
iσ , which is considered as the product of a value α by the standard deviation of the 

problem, such that RW
i iσ α σ= ⋅ . Parameters of this algorithm are α, the number of samples for 

each subset ( SSn ) and the conditional probability 0P . Different values are used for these parame-

ters for different problems, as detailed in the next Section. In all cases, the random walk is modeled 

by a uniform probability distribution function. 

 

5 COMPARATIVE PERFORMANCE OF SIMULATION STRATEGIES 

In this study, three basic sampling techniques are combined with Crude Monte Carlo and with four 

modern sampling techniques: Importance Sampling Monte Carlo, Asymptotic Sampling, Enhanced 

Sampling and Subset Simulation. Hence, fifteen sampling schemes are investigated with respect to 

their performance in solving six structural reliability problems. Due to space limitations, only re-

sults for the three most relevant problems are presented herein. Conclusions reflect the six problems 

studied.   

The following analysis procedure consists in two steps. The first step is a study of the conver-

gence of the probability of failure and its coefficient of variation for increasing numbers of samples. 

Since the required number of samples for Subset Simulation is much lower than for the other tech-

niques, the convergence study is not performed for Subset Simulation. The second step is a compar-

ison of the results for all techniques, including Subset Simulation, considering a small number of 

samples.  

 For Examples 1 and 2, the limit state functions are analytic; hence processing time is not a rele-

vant issue. Example 3 involves a Finite Element model with physical and geometrical nonlinearities; 

hence processing time is more relevant. 
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5.1 Example 1: non-linear limit state function 

The first example has a nonlinear limit state function, where the random variables are modeled by 

non-Gaussian probability distribution functions. The limit state function is (Melchers and Ahamed, 

2004): 
 

 ( )
2

5 6
1 2 3 4 5 6 1 2 3 4, , , , , 2

8

X X
g X X X X X X X X X X

⋅
= ⋅ ⋅ ⋅ ⋅ −   (28) 

 

where iX , with 1,..., 6i = , are the random variables. The parameters of the probability distribu-

tions are given in Table 1. 

 

Random Variable Distribution Mean St. Dev. 

1X  Weibull (minima) 4.0 0.1 

2X  Log-normal 25.0 2.0 

3X  Gumbel 0.875 0.1 

4X  Uniform 20.0 1.0 

5X  Exponencial 100.0 100.0 

6X  Normal 150.0 10.0 
 

Table 1: Random variables of Example 1 (Melchers and Ahamed, 2004). 

 

The reference probability of failure is obtained using Crude Monte Carlo simulation with Simple 

Sampling and 2×109 samples. The reference probability of failure is 2.777×10-5 (β  = 4.031). This 

example aims to evaluate the performance of the intelligent sampling techniques in a problem with 

nonlinear limit state function involving non-Gaussian distribution functions. 

Figures 5, 6 and 7 show convergence plots for the mean and coefficient of variation (c.o.v) of the 

fP , for Simple Sampling, LHS and Asymptotic Sampling, respectively. Convergence results were 

evaluated for number of samples varying from 1×103 to 1×106. Results are shown for Crude, Im-

portance, Asymptotic and Enhanced Sampling. For Asymptotic Sampling, the parameter f  varies 

from 0.4 to 0.7, with 5 support points in this range. Subset simulation is not included, because 

computations are truly expensive for large numbers of samples. On the other hand, only a few sam-

ples are required to achieve similar results with Subset simulation, as observed in Table 2. 

Two striking results can be observed in Figures 5 to 7. For all basic sampling techniques, the 

c.o.v. for Importance Sampling converges very fast to near zero. This is a very positive result. On 

the other hand, it is observed that the failure probability also converges very fast, but with a bias 

w.r.t. the reference result. This bias, although small and acceptable, is of some concern, and is in-

troduced by the sampling function. It is also observed, in Figures 5 to 7, that for Asymptotic Sam-

pling the c.o.v. convergence is quite unstable, with results oscillating significantly, and convergence 

for 
fP  also shows some bias. Both results are especially true for Simple and Anthytetic Variates 

Sampling, and less so for LHS. In fact, is observed that LHS improves the results for all sampling 

techniques illustrated in Figures 5 to 7. 
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a) Mean b) Coefficient of variation. 

  

Figure 5: Convergence of 
fP (a) and its c.o.v. (b) using Simple Sampling in Example 1. 

 

a) Mean b) Coefficient of variation. 

  

Figure 6: Convergence of 
fP (a) and its c.o.v. (b) using Latin Hypercube Sampling in Example 1. 

 

a) Mean b) Coefficient of variation. 

 

 

Figure 7: Convergence of 
fP (a) and its c.o.v. (b) using Antithetic Sampling in Example 1. 

 

 A quantitative comparison of the performance of all sampling techniques, in solution of Problem 

1, is presented in Table 2. These results are computed for a much smaller number of samples: 2,300. 

In Subset Simulation the following parameters are adopted: SSn  = 500, α  = 1.5, and 0P  = 0.1. 
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One observes in Table 2 that Crude Monte Carlo and Asymptotic Sampling do not lead to any 

results for such a small number of samples. Importance Sampling leads to the smallest c.o.v.s, but 

with deviations of around 18 to 30% from the reference result. Enhanced Sampling works, but devi-

ations and c.o.v.s are rather large. For such a small number of samples, Subset Simulation provides 

the best results, with acceptable c.o.v.s and deviations varying from around 5 to 60%. These devia-

tions could be further reduced by a marginal increase in the number of samples.  

 

Estimation Technique 
fP   c.o.v. Deviation (%) 

Simple Sampling  

 

Crude Monte Carlo -- -- -- 

Importance Sampling 1.973×10-5 0.0551 28.9521 

Asymptotic Sampling -- -- -- 

Enhanced Sampling 1.152×10-4 0.5941 314.8362 

Subset Simulation 2.640×10-5 0.4741 4.9334 

Latin Hypercube 

Sampling  

 

Crude Monte Carlo -- -- -- 

Importance Sampling 1.947×10-5 0.0587 29.8884 

Asymptotic Sampling -- -- -- 

Enhanced Sampling 5.129×10-7 144.2610 98.153 

Subset Simulation 1.670×10-5 0.5101 39.8632 

Antithetic Vari-

ates Sampling 

 

Crude Monte Carlo -- -- -- 

Importance Sampling 2.258×10-5 0.0661 18.6892 

Asymptotic Sampling -- -- -- 

Enhanced Sampling 1.369×10-5 4.1940 50.7022 

Subset Simulation 1.078×10-5 0.5559 61.1811 
 

Table 2: Comparison of results for 2,300 samples in Example 1. 

 

5.2 Example 2: Hiper-estatic structural system (truss)  

In order to investigate the performance of the intelligent sampling techniques in a structural system 

problem, an hiper-estatic truss is studied. Service failure is characterized by failure of any compo-

nent (bar) of the truss, which can be due to buckling (compressed bars) or to yielding (tensile bars). 

System failure, characterized by failure of a second bar (any), given failure of the hiper-estatic bar 

(any), is not considered in this study (Verzenhassi, 2008).  The truss and its dimensions are shown 

in Figure 8. The geometrical properties of truss bars are shown in Table 3. Table 4 shows the ran-

dom variables considered. 

Six limit state functions are employed to solve the problem: four functions related to elastic 

buckling of bars 1, 2, 3 and 6: 
 

 ( ) ( )
2

2
, , , i i

i i i i i

i

E I
g E L V H aV b H

L

π
= + + ,   with 1,2, 3, 6i =  (29) 
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and two functions related to the yielding of bars 4 and 5: 

 

 ( ) ( ), , ,
i ii i y i y i i

g A f V H A f aV b H= ⋅ − + ,   with 4,5i =  (30) 

 

where iE  is the Young’s modulus, iI  is the moment of inertia of the U-shaped steel section, iL  is 

bar length, iA  is the transversal section area, 
iy

f  is the steel yielding stress, V  is the vertical load, 

H  is the horizontal load, ia  is the fraction of the vertical load acting at each bar, ib  is the fraction 

of the horizontal load acting at each bar. The random variables are described in Table 4. A correla-

tion of 0.1 between V  and H  is considered. 

 

 

Figure 8: Hiper-static truss studied in Example 2. 

 

Bar U Shape A  (cm2) I  (cm4) 

1 U 50x25x2.00 1.87 1.13 

2 U 50x25x2.00 1.87 1.13 

3 U 50x25x2.00 1.87 1.13 

4 U 50x25x2.00 1.87 1.13 

5 U 50x25x2.00 1.87 1.13 

6 U 75x40x1.20 1.81 2.97 

 
Table 3: Geometrical properties of the truss bars of Example 2 (Verzenhassi, 2008). 

 

Random Variable Distribution mean c.o.v 

E
i
 (MN/cm²) Lognormal 20.5 0.05 

iy
f  (kN/cm²) Lognormal 25 0.05 

V  (kN) Lognormal 10 0.2 

H  (kN) Lognormal 10 0.3 

 
Table 4: Random variables of Example 2. 
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The reference probability of failure is obtained from a Crude Monte Carlo simulation with 2×109 

samples using Simple Sampling: 
fP  = 1.139×10-4 ( β  = 3.686). 

Figures 9, 10 and 11 show the convergence plots for the mean and coefficient of variation (c.o.v) 

of the 
fP , for Simple Sampling, LHS and Asymptotic Sampling, respectively. Convergence results 

were evaluated for number of samples varying from 1×103 to 1×105. Results are shown for Crude, 

Asymptotic and Enhanced Sampling. For Asymptotic Sampling, the parameter f  varies from 0.5 to 

0.8, with 5 support points. Importance Sampling is not included because the sampling function is 

composed following equation (12). Hence, the convergence plot could not be obtained. Results for 

Importance Sampling and for Subset simulation are shown in Table 5, for a fixed (and smaller) 

number of samples. 

One can notice in Figures 9, 10 and 11 that Enhanced Sampling performs very well, comparing 

to Crude Monte Carlo and to Asymptotic Sampling, w.r.t. convergence of the 
fP  and of its coeffi-

cient of variation. The use of LHS (Figure 10) is advantageous for the studied techniques, since 

faster and smoother convergence is observed.  

 

a) Mean b) Coefficient of variation. 

 

 

Figure 9: Convergence of 
fP (a) and its c.o.v. (b) using Simple Sampling in Example 2. 

 

a) Mean b) Coefficient of variation. 

 

 

Figure 10: Convergence of 
fP (a) and its c.o.v. (b) using Latin Hypercube Sampling in Example 2. 
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a) Mean b) Coefficient of variation. 

 

 

Figure 11: Convergence of 
fP (a) and its c.o.v. (b) using Antithetic Sampling in Example 2. 

 

The comparison of all intelligent sampling techniques is presented in Table 5, computed for a 

smaller number of samples: 3,700.  For Subset Simulation, the following parameters are adopted: 

SSn  = 1,000; α  = 1.5; and 0P  = 0.1. 

 

Estimation Technique 
fP   c.o.v. Deviation (%) 

Simple Sampling  

 

Crude Monte Carlo -- -- -- 

Importance Sampling 1.201×10-4 0.0287 5.4434 

Asymptotic Sampling 2.382×10-3 1.2903 1991.3082 

Enhanced Sampling 6.209×10-4 0.1657 445.1273 

Subset Simulation 1.590×10-4 0.3221 39.5961 

Latin Hypercube 

Sampling  

 

Crude Monte Carlo -- -- -- 

Importance Sampling 1.111×10-4 0.0260 2.4583 

Asymptotic Sampling 3.879×10-4 10.4964 240.5619 

Enhanced Sampling 6.830×10-5 1.6205 40.0351 

Subset Simulation 1.188×10-4 0.3406 4.3020 

Antithetic Vari-

ates Sampling 

 

Crude Monte Carlo -- -- -- 

Importance Sampling 1.171×10-4 0.0292 2.8095 

Asymptotic Sampling 1.229×10-3 3.1715 979.0167 

Enhanced Sampling 3.846×10-4 0.2525 237.6646 

Subset Simulation 1.280×10-4 0.3205 12.3793 

 

Table 5. Comparison of results for 3,700 samples in Example 2. 

 

In Table 5, one observes that Crude Monte Carlo does not lead to any results for such a small 

number of samples. Importance Sampling presents a very good performance in comparison with the 



641          K.R.M dos Santos and A.T. Beck / A benchmark study on intelligent sampling techniques in Monte Carlo simulation 

 

Latin American Journal of Solids and Structures 12 (2015) 624-648 

 

other techniques, with very small c.o.v.s and small and acceptable deviations from the reference 
fP . 

Subset Simulation also presents an acceptable performance, with small c.o.v.s and larger, but still 

acceptable deviations from the reference result. The use of Latin Hypercube Sampling is beneficial 

for all techniques, for this problem. 

 

5.3 Example 3: non-linear steel frame tower  

An optimized plane steel frame transmission line tower (Figure 12) is analyzed by finite elements. 

The problem is based on Gomes and Beck (2013), where structural optimization considering ex-

pected consequences of failure was addressed. The mechanical problem is modeled by beam ele-

ments with three nodes, with three degrees of freedom per node. The frame is composed by L-

shaped steel beams. The Finite Element Method with positional formulation (Coda and Greco, 

2004; Greco et al., 2006) is adopted to solve the geometrical non-linear problem.  Moreover, the 

material is assumed elastic perfectly plastic. 

 

 

Figure 12: FE model of the power line tower addressed in Example 3. 

 

 The limit state function is defined based on the load-displacement curve (Figure 13) for top 

nodes 11 and 12. Because several configurations had to be tested in the optimization analysis per-

formed in Gomes and Beck (2013), a robust limit state function was implemented. The same limit 

state function is employed herein: ( ) ( )1, 75 tang Lδ−= ° − ∆ ∆x d  , where δ∆  is the increment in 

mean displacement in centimeters, for nodes 11 and 12; L∆  is the increment in the non-

dimensional load factor; and 75o is the critical angle considered. 
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Figure 13: Load factor × mean displacement diagram for top nodes 11 and 12.  

 

5.3.1 Loading  

The gravity load from aligned cables is considered. The design wind load on cables and structure is 

calculated based on Brazilian code ABNT NBR 6123: Wind loads in buildings. The design wind is 

taken as 0v  = 45m/s. Thus, the characteristic wind load is calculated as 1 2 3 0kv S S S v= , where 1S , 

2S  and 3S  are the topographical ( 1S  = 1), the rugosity ( 2S  = 1.06) and statistical ( 3S  = 1) fac-

tors, yielding kv  = 47.7 m/s. This characteristic wind is taken at a height of 10 meters. The varia-

tion of wind velocity with height follows a parabolic shape, such that ( ) 20.1
k

v z z v= ⋅ ⋅ , where z  

is height. To model uncertainty in the wind load, an non-dimensional random variable V  is intro-

duced, such that ( ) ( )V z v z V= ⋅ . Thus, the wind pressure is evaluated from wind velocities as 

( ) ( )( )2, 0.613q z V v z V= ⋅ ⋅ , where pressure is given in N/m2, for normal atmospheric conditions (1 

atm) and temperature (15 °C). The wind load acts at each element on the tower. The drag coeffi-

cient is aC  = 2.1, which is the maximum value for prismatic beams with L-shaped sections. Cables 

of 2.52 cm diameter were adopted, with an influence area of 300 m and drag coefficient of aC  = 1.2. 

For these values, one obtains the random force ( )aF V  acting in the horizontal direction on nodes 

11 and 12, such that ( ) 219,279.65
a

F V V≅ ⋅ . 

Random variables considered in this problem are the Young’s modulus (E ) and the non-

dimensional wind variable (V ). The random variables are described in Table 6. 

 

Random Variable Distribution Mean c.o.v 

V   Gumbel 0.95 0.13 

E (GPa)  Lognormal 207 0.03 

 

Table 6: Random variables of Example 3 (Gomes and Beck, 2013). 

 

5.3.2 Results  

In Gomes and Beck (2013), probability of failure is evaluated by FORM, and values ,f FORMP  = 

1.088×10-4 ( β  = 3.6976) are obtained for the tower configuration in Figure 12. In this paper, sever-
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al Monte Carlo Simulation techniques are adopted for evaluating this failure probability. FORM is 

very efficient, and efficiency is fundamental for solving the structural optimization problem. Howev-

er, FORM provides only approximate results for problems with non-linear limit state functions.  

 The reference probability of failure is evaluated by Crude and by Importance Sampling Monte 

Carlo simulation, using Simple Sampling, Latin Hypercube Sampling and Antithetic Variates Sam-

pling. 1×105 samples are employed for each solution. Results are given in Table 7, where one ob-

serves that Crude Monte Carlo with LHS and Importance Sampling Monte Carlo present probabili-

ties of failure very close to the result obtained by FORM. This shows that, in spite of the non-

linearity of the limit state function, FORM provides accurate results. For the remainder of the 

analysis, the average value of 
fP  = 1.096×10-4 is used as a reference.  

 

Estimation Technique fP  c.o.v. 
Processing 

Time 

Deviation from 

average (%) 

Crude Monte 

Carlo 

Simple Sampling 1.400×10-4 0.2672 11 h e 2 min 27.74 

Latin Hypercube Sampling 1.10×10-4 0.3015 10 h e 17 min 0.36 

Antithetic Variates Sampling 1.50×10-4 0.2582 11 h e 1 min 36.86 

Importance 

Sampling 

Monte Carlo 

Simple Sampling 1.099×10-4 0.0038 13 h e 36 min 0.27 

Latin Hypercube Sampling 1.089×10-4 0.0038 13 h e 41 min 0.64 

Antithetic Variates Sampling 1.096×10-4 0.0038 13 h e 43 min 0.00 

 

Table 7: Comparison of Crude Monte Carlo and Importance Sampling, using 105 samples. 

 

Figures 14, 15 and 16 show the convergence plots for the mean and coefficient of variation 

(c.o.v) of the Pf, for Simple Sampling, LHS and Asymptotic Sampling, respectively. Convergence 

results were evaluated for number of samples varying from 1×103 to 1×105. Results are shown for 

Crude, Importance, Asymptotic and Enhanced Sampling. In Asymptotic Sampling, parameter f  

varies from 0.5 to 0.8, with 5 support points.  

 

a) Mean b) Coefficient of variation. 

  

Figure 14: Convergence of 
fP (a) and its c.o.v. (b) using Simple Sampling in Example 3. 
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a) Mean b) Coefficient of variation. 

 

 

Figure 15: Convergence of 
fP (a) and its c.o.v. (b) using Latin Hypercube Sampling in Example 3. 

 
a) Mean b) Coefficient of variation. 

  

Figure 16: Convergence of 
fP (a) and its c.o.v. (b) using Antithetic Sampling in Example 3. 

 

In Figs. 14 to 16, one observes that convergence of Importance Sampling, for this problem, is 

very fast and accurate, for all basic sampling techniques. Also, it can be clearly seen that LHS im-

proves the results for all sampling techniques, reducing oscillations during convergence.  The con-

vergence behavior of Asymptotic Sampling is very unstable, both for the c.o.v. and the 
fP ; hence 

this technique does not perform very well for this problem. Enhanced Sampling works much better, 

providing results similar to Crude sampling for this number of samples.  

 A quantitative comparison of the performance of all sampling techniques, in solution of Problem 

3, is presented in Table 8. These results are computed for 14,800 samples. In Subset Simulation the 

following parameters are adopted: SSn  = 4000, α  = 1.5, 0P  = 0.1. 

One observes in Table 8 that Importance Sampling and Subset simulation out-perform the other 

methods in terms of small c.o.v. and small deviation from the reference solution. Asymptotic and 

Enhanced sampling show a similar and average performance. Latin Hipercube Sampling improves 

the results for most methods, especially for Subset Simulation.  

 

5.3.3 Processing Time 

The processing time to compute the results in Table 8 (14,800 samples) are given in Table 9. One 

observes that processing times are similar for all techniques, except for Importance Sampling: this 
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technique takes a little longer to compute the weights for each sample, following equation (11). 

Processing times are very similar for the basic sampling techniques. By comparing results of Table 9 

with results of Table 7, one observes the massive gain in processing time that is obtained using the 

intelligent sampling techniques addressed herein. Computing times are much smaller, but the quali-

ty of the solutions (small deviation and c.o.v.) are similar.  

 

Estimation Technique 
fP   c.o.v. Deviation (%) 

Simple Sampling  

 

Crude Monte Carlo 2.703×10-4 0.4999 146.62 

Importance Sampling 1.090×10-4 0.0099 0.55 

Asymptotic Sampling 2.697×10-4 8.0852 146.08 

Enhanced Sampling 1.327×10-4 0.4103 21.08 

Subset Simulation 1.960×10-4 0.1970 78.83 

Latin Hypercube 

Sampling  

 

Crude Monte Carlo 6.757×10-5 -- 38.35 

Importance Sampling 1.091×10-4 0.0100 0.46 

Asymptotic Sampling 8.300×10-5 1.5114 24.27 

Enhanced Sampling 1.659×10-4 0.3106 51.37 

Subset Simulation 1.110×10-4 0.2046 1.28 

Antithetic Vari-

ates Sampling 

 

Crude Monte Carlo 2.703×10-4 0.4999 146.62 

Importance Sampling 1.086×10-4 0.0100 0.91 

Asymptotic Sampling 1.393×10-4 4.7499 27.10 

Enhanced Sampling 1.650×10-4 0.3941 50.55 

Subset Simulation 1.623×10-4 0.1963 48.08 

 
Table 8: Comparison of results for 14,800 samples in Example 3. 

 

  Simple LHS Anthitetic 

Crude Monte Carlo 1 h and 37 min 1 h and 31 min 1 h and 38 min 

Importance Monte Carlo 2 h 2 h and 2 min 2 h and 2 min 

Asymptotic Sampling 1 h and 16 min 1 h and 15 min 1 h and 14 min 

Enhanced Sampling 1 h and 27 min 1 h and 30 min 1 h and 30 min 

Subset Simulation 1 h and 52 min 1 h and 50 min 1 h and 51 min 
 

Table 9: Processing time for 14,800 samples in Example 3. 

 

5.3.4 Processing Time 

In order to further evaluate the performance of Subset Simulation using smaller numbers of sam-

ples, the following parameters are adopted: SSn  = 2,000; α  = 2; and 0P  = 0.1. Results are present-

ed in Table 10. 
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Technique 
Number of 

Samples 
fP  c.o.v. Deviation (%) 

Processing 

time (min) 

Simple Sampling 9,200 9.539×10-5 0.2461 12.97 58 

LHS 7,400 1.055×10-4 0.2446 3.74 43 

Asymptotic Sampling 7,400 1.065×10-4 0.2463 2.83 44 
 

Table 10: Comparison of results using Subset Simulation for Example 3. 

 

 Results presented in Table 10 show that Subset Simulation is an effective tool for estimating 

small probabilities of failure in problems involving numerical evaluation of limit state functions. The 

original solution via Crude Monte Carlo took approximately 11 hours to compute a probability of 

failure with coefficient of variation of 0.27 and relative deviations of: 28.68% (Simple Sampling), 

1.1% (Latin Hypercube Sampling) and 37.87% (Antithetic Variates Sampling). In comparison, Sub-

set Simulation took approximately 45 minutes to estimate the same probability of failure with coef-

ficient of variation of 0.25 and deviations around 3.7%. 

 

5 CONCLUDING REMARKS 

This paper presented a benchmark study on intelligent and efficient sampling techniques in Monte 

Carlo Simulation. Crude Monte Carlo simulation was compared to Importance Sampling, Asymp-

totic Sampling, Enhanced Sampling and to Subset Simulation. These five sampling schemes were 

combined with Simple Sampling, Latin Hypercube Sampling and Antithetic Variates Sampling, 

resulting in fifteen sampling strategy combinations. The performance of these strategies was investi-

gated for six problems, but results for only three were presented herein. The conclusions below re-

flect the six problems studied. 

It was observed that use of Latin Hypercube Sampling had a significant and positive influence 

for all sampling techniques with which it was combined. LHS has led to smoother convergence 

curves and more accurate results for most cases studied. Antithetic Variates also produced better 

results than Simple Sampling.  

Importance Sampling using design points was found to be one of the most efficient techniques for 

solving problems with small and very small failure probabilities. Convergence is extremely fast, and 

with a couple of samples one obtains accurate failure probabilities with small sampling error 

(c.o.v.). However, for one of the problems studied, it was observed that the sampling function in-

troduced some bias in the results, making failure probabilities converge to an inexact yet acceptable 

value. Also, it is known that use of Importance Sampling can be a problem for highly non-linear 

problems for which the design point(s) cannot be found. 

Results obtained with Asymptotic Sampling were inaccurate for a number of problems, perhaps 

because a small number of support points were used. The drawback with this scheme is that a new 

set of samples has to be computed for each additional support point; hence there is a string com-

promise between the number of support points and the accuracy with which failure probabilities 

can be estimated for each support point.  

Although similar to Asymptotic Sampling, the Enhanced Sampling technique presented con-

sistent results for all problems studied. Enhanced sampling has a large advantage over Asymptotic 
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Sampling, because the same set of samples is used for all support points. Hence, there is no compu-

tational penalty for using many support points, and the accuracy of the regression is improved.  

Subset Simulation performed extremely well for all problems studied, resulting in accurate esti-

mates of failure probabilities, with very small sampling errors. This explains why Subset Simulation 

has become so popular among structural reliability researchers, and is being applied extensively in 

the solution of both time invariant and time variant reliability problems.  

Finally, it can be said that Subset Simulation, Enhanced Sampling and Importance Sampling, 

aided by Latin Hypercube sampling, are efficient ways of solving reliability problems, with a much 

smaller number of samples than required in Crude Monte Carlo Simulation. 
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