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Abstract 
This paper dealt with free vibration analysis of thick double 
curved composite sandwich panels with simply supported or fully 
clamped boundary conditions based on a new improved higher 
order sandwich panel theory. The formulation used the first order 
shear deformation theory for composite face sheets and polynomial 
description for the displacement field in the core layer which was 
based on the displacement field of Frostig's second model. The 
fully dynamic effects of the core layer and face sheets were also 
considered in this study. Using the Hamilton's principle, the gov-
erning equations were derived. Moreover, effects of some im-
portant parameters like that of boundary conditions, thickness 
ratio of the core to panel, radii curvatures and composite lay-up 
sequences were investigated on free vibration response of the pan-
el. The results were validated by those published in the literature 
and with the FE results obtained by ABAQUS software. It was 
shown that thicker panels with a thicker core provided greater 
resistance to resonant vibrations. Also, effect of increasing the core 
thickness in general was significant decreased fundamental natural 
frequency values. 
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1 INTRODUCTION 

Structural efficiency is an important attribute for aircraft structures. A higher order theory ap-
proach, used by Kant and Patil (1991), replaced sandwich structure with an equivalent higher order 
shear deformable structure, which lacked the ability to determine local buckling modes and imper-
fection effects on the overall behavior. Using the three-dimensional elasticity equations, Bhimaraddi 
(1993) studied the static response of orthotropic doubly curved shallow shells. He assumed that the 
ratio of the shell thickness to its middle surface radius is negligible as compared to unity. The high-
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er order sandwich panel theory was developed by Frostig et al. (1994, 2004), who considered two 
types of computational models in order to express governing equations of the core layer. The second 
model assumed a polynomial description of the displacement fields in the core that was based on 
displacement fields of the first model. Their theory did not impose any restrictions on distribution 
of the deformation through thickness of the core. Singh (1999) studied free vibration of the open 
deep sandwich shells made of thin layers and a moderately thick core. Rayleigh–Ritz method was 
also used to obtain natural frequencies. The improved higher order sandwich plate theory 
(IHSAPT), applying the first-order shear deformation theory for the face sheets, was introduced by 
Malekzadeh et al. (2005, 2006). 
 
 
NOTATIONS 

, ,t c bdV dV dV  Volume element of the top face sheet, the core and the bottom face sheet, respec-
tively 

( , , )i
nI i t b c=  The moments of inertia of the top and bottom face sheets and the core 

c
zM  

Normal bending moments per unit length of the edge of the core 

, , ,
i i i i
xy yx xx yyM M M M  Bending and shear moments per unit length of the edge (i=t,b) 

* *

, , ,

, , ,

c c c c
nxx nxy nyy nyx
c c c c
nxz nyz nxz nyz

M M M M

M M M M  

Shear and bending moments per unit length of the edge of the core, (n=1,2,3) 

, ,
i i i
xxj yyj xyjN N N  The in-plane external loads in the longitudinal and transverse direction, respec-

tively (i = t, b), (j=1,2) 

, , ,
i i i i
xy yx xx yyN N N N  In-plane and shear forces per unit length of the edge (i=t,b) 

* *, , ,
c c c c
xz yz xz yzN N N N  Shear forces per unit length of the edge of the core 

, ,
i i i
xxj yyj xyjN N N

 
In plane resultant forces due to pre stresses (j=t,b) 

ijQ  The reduced stiffnesses referred to the principal material coordinates 

ijQ  Transformed reduced stiffnesses 

,  ix iyR R
 

Curvature radii of the top face sheet, bottom face sheet and core in x-z and y-z 
planes (i=t,b,c) 

, ,k k ku v w  Unknowns of the in-plane displacements of the core (k=0,1,2,3) 

, ,c c cu v w  Displacement components of the core 

u0
i , v0

i , w0
i   Displacement components of the face sheets, (i = t, b) 

u
c , v

c
, w

c  
Acceleration components of the core 

u
0 j

, v
0 j

, w
0 j  

Acceleration components of the face sheets, (j= t, b) 

 zt , zb ,zc Normal coordinates in the mid-plane of the top and the bottom face sheets and 
the core 
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GREEK LETTERS 

t,b,c  Material densities of the face sheets and the core 

 ii
j  Normal stress in the face sheets, (i=x,y), j=(t,b) 

 ii
c  Normal stress in the core, (i=x,y,z) 

 xy
j , xz

j , yz
j  Shear stress in the face sheets, j=(t,b) 

 xy
c , xz

c , yz
c  Shear stresses in the core 

0xx
i ,0xy

i ,0 yy
i ,0xz

i ,0 xz
i  The mid-plane strain components, (i=t,b) 

zz
c ,xx

c ,yy
c

 
Normal strains components of the core layer 

 xz
c , yz

c , xy
c

 
Shear strains components of the core layer 

x
i ,y

i

 
Rotation of the normal section of midsurface of the top face sheet and bottom face 
sheet along x and y, respectively(i=t,b) 

 
Zenkour (2005a, b) presented a comprehensive bending, buckling and free vibration analysis of 
simply supported functionally graded (FG) ceramic–metal sandwich plates. The sandwich plate face 
sheets were assumed to be isotropic material. Two-constituent material distribution through thick-
ness was assumed to vary according to a power law distribution. Garg et al. (2006) investigated free 
vibration analysis of simply supported composite and sandwich doubly curved shells. Their formula-
tion included Sander's theory based on equivalent single layer approach. Free vibration of FG ma-
terial sandwich rectangular plates with simply supported and clamped edges was studied by Li et 
al. (2008). The governing equations based on the three-dimensional linear theory of elasticity were 
derived and also they considered two common types of FG sandwich plates, namely sandwich plate 
with FG face sheets and homogeneous core and sandwich plate with homogeneous face sheets and 
FG core.  

Experimental and analytical investigations of bending and free vibration response of layered FG 
beams were carried out by Kapuria et al. (2008), who demonstrated capability of the zigzag theory 
in modeling mechanics of such beams. Rahmani et al. (2009) studied free vibration analysis of open 
single curved composite sandwich panel with a flexible core using a higher order sandwich panel 
theory. Their formulation used classical shell theory for the face sheets and an elasticity theory for 
the core layer. Cetkovic and Vuksanovic (2009) investigated global and local responses of laminated 
and sandwich structures using Reddy's theory, finite element solution and based on equivalent sin-
gle layer approach. Biglari and Jafari (2010a) presented a simple three layer theory in order to 
study vibration and static analysis of open single curved sandwich structures. In their model, they 
used Donell's theory for the face sheets and considered inconsistent linear stress variation in the 
core layer. They (2010b) also studied the free vibrations of doubly curved sandwich shell with flexi-
ble core based on a refined general-purpose sandwich panel theory. In their theory, the in-plane 
stresses of the core were neglected.  

Free vibration analysis of thick orthotropic plates was performed by Ghugal et al. (2011) using a 
trigonometric shear deformation theory. In their theory, the zero shear stress conditions on the top 
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and bottom surfaces of the plates were satisfied. Rahmani et al. (2012) studied the free vibration 
and buckling analyses of circular cylindrical composite sandwich shells subjected to external loads 
based on the Love–Kirchhoff assumptions for the face sheets. In their theory, the in-plane stresses of 
the core and the out of stresses of the face sheets were neglected. Mochida et al. (2012) studied free 
vibration response of doubly curved shallow shells using approximate Galerkin method. Classical 
theory of elasticity and von-Karman’s non-linear deformation theory were used by Rafieipour et al. 
(2013) to investigate free vibration analyses of laminated composite plates.  

Using developed four-node quadrilateral element and the zigzag theory, Yasin and Kapuria 
(2013) studied the static and free vibration analysis of singly- and doubly-curved composite and 
sandwich shallow shells. In their theory, the transverse normal stresses were neglected. Ghavanloo 
and Fazelzadeh (2013) examined free vibration analysis of simply supported doubly curved shallow 
shells. Their formulation was based on Novozhilov's linear shallow shell theory. Using Donell’s non-
linear shallow shell theory and Kirchhoff’s hypothesis, Awrejcewicz et al. (2013) studied free vibra-
tion analysis of doubly curved orthotropic shallow shells. Viola et al. (2013) used a 2D higher order 
shear deformation theory with nine parameters in order to analyze free vibration analysis of the 
thick laminated doubly curved shells and panels. Their main assumptions were based on small de-
flections and negligible normal stress and strain. A high-order model for the analysis of circular 
cylindrical composite sandwich shells subjected to low-velocity impact loads was presented by Kha-
lili et al. (2014). In their theory, the impact behavior of the cylindrical composite sandwich shells 
was described by a high-order sandwich shell theory. Malekzadeh et al. (2014) applied the first-
order shear deformation theory to study effects of some geometrical, physical and material parame-
ters on response of the composite plates embedded with shape memory alloy (SMA) wires. 
 This study investigated free vibration analysis of double curved thick composite sandwich panels 
using a new improved higher order double curved sandwich panel theory and the second computa-
tional model of Frostig (2004). In this work, analytical solution of the displacement field of the core 
was presented in terms of the polynomials with unknown coefficients according to the second com-
putational model of Frostig (2004). Furthermore, the formulation included accurate stress-resultant 
equations for composite sandwich structures, in which the terms (1 / )c xcz R+ and (1 / )c ycz R+

were imported in equations and exactly integrated. These coefficients could be very important in 
the structural analysis of thick double curved composite sandwich structures. Simply supported and 
fully clamped boundary conditions were considered. In order to assure accuracy of the present for-
mulations, convergence of the results was examined in details.  
 
 
2 THEORETICAL FORMULATION  

2.1 Basic Assumptions  

Consider a double curved thick composite sandwich panel which is composed of two composite lam-
inated face sheets and a flexible core layer. Thickness of the top face sheet, bottom face sheet and 
core is ht, hb and hc, respectively. The sandwich panel is supposed to have length a, width b and 
total thickness h, as shown in Figure 1. Orthogonal curvilinear coordinates ( , , ,  , ,i i ix y z i t b c= ) are 
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also shown in Figure 1 where t and b refer to the top and bottom face sheets of the panel, respec-
tively. Curvature radii of the top face sheet, bottom face sheet and core in x-z and y-z planes are 

,  ,  tx bx cxR R R and ,  ,  ,ty by cyR R R respectively. The assumptions used in the present analysis were 

based on small deformations of linearly elastic materials.  

 

 
Figure 1: A double curved sandwich panel with laminated face sheets 

and orthogonal curvilinear coordinates.

 
 

2.2 Mathematical Formulation  

Mathematical formulation consists of deriving the governing field equations of motion along appro-
priate boundary conditions of the face sheets and core. They are derived using the Hamilton's prin-
ciple (Frostig 2004). 
 Using the first shear deformation theory, displacements u, v and w of the face sheets along the x, 
y (longitudinal) and z (thickness) axes are expressed through the following relations (Reddy 2003): 
 
 

0

0

0

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )     ;    ( = , )

( , , , ) ( , , )  

i i

i i

i

i i x

i i y

i

u x z y t u x y t z x y t

v x z y t v x y t z x y t i t b

w x z y t w x y t

y

y

= +

= +

=

 
  

(1) 

 

where iz is vertical coordinate of the each face sheet (i = t, b), measured upward from the mid-plane 

of each face sheet. Kinematic equations of the face sheets are as follows: 
 
 

( )
0 0 0

0 0

, 0, 2 ,

2 , 2 ; ,

i i i i i i i i i i i
xx xx i xx yy yy i yy zz xy xy xy i xy
i i i i i i
xz xz xz yz yz yz

z z z

i t b

e e k e e k e g e e k

g e e g e e

= + = + = = = +

= = = = =
 (2) 
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where: 
 

0 0 0 0
0 0

0 0 0 0 0 0
0 0 0

, ,

, ,

, ,

i i i i
i i
xx yy

xi yi

i i i i i i
i i i i i
xy xz x yz y

xi yi

i ii i
y yi i ix x

xx yy xy

u w v w

x R y R

v u w u w v

x y x R y R

x y x y

 

    

  
  

 
   
 

   
       
   

  
   

     

(3)

For the thick core layer, displacement fields are based on the second Frostig's model (2004) as fol-
lows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3
0 1 2 3

2 3
0 1 2 3

2
0 1 2

, , , (1 ) , , , , , , , , ,

, , , (1 ) , , , , , , , , ,

, , , , , , , , , .

c c c c
c c c c

xc

c c c c
c c c c

yc
c c c

c c c

z
u x y z t u x y t z u x y t z u x y t z u x y t

R
z

v x y z t v x y t z v x y t z v x y t z v x y t
R

w x y z t w x y t z w x y t z w x y t

= + + + +

= + + + +

= + +

  (4) 

 

Based on small deformations, kinematic relations of the core layer are as follows: 
 

1

(1 )

1

(1 )

1 1
2

(1 ) (1 )

1
2

(1 )

1
2

(1 )

c
c c

xx
xc xc

c
c c

yy
yc yc

c c
c c

xy xy
xc yc

c c
c c c

xz xz
xc xc

c c
c c c

yz yz
yc yc

u w

z R x R

v w

z R y R

v u

z R x z R y

w u u

z R x R z

w v v

z R y R z





 

 

 

 
    

 
     

 
  

   

  
       

  
        

(5) 

 

Assuming perfect bonding between the top and bottom face sheet–core interfaces, compatibility 
conditions are as shown below: 
 

   

   

 

0

0

0

1
1

2 1 ;
21

1
2

0 ;
2

ki i
c ci i x

c
ct

ki i
c ci i y

c
i cb

c ci

u z z u h h
For i t k z

v z z v h
h

For i b k z
w z z w





             
       

              

(6)

 

Using Equations (4) and (6) and some simplifications, compatibility conditions can be written as 
follows: 
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0
0 0 1

0 0 0
2 32 3

0
0 0 1

0 0 0
2 32 3

0 0 0 0
1 2

4
4( ) 2( ) 4

2( ) 4
, ,

4
4( ) 2( ) 4

2( ) 4
, ,

( ) 2( )
,

c
t b t b c c

t x b x ct b t b c
c ct x b x xc

c c
c

t b t b c c
t y b y ct b t b c

t y b y ycc c

c c
t b t b

c c

c

h u
u u h h h u

u u h h u R
u u

h h

h v
v v h h h v

v v h h v R
v v

h h

w w w w
w w

h

y y
y y

y y
y y

- - + - -
+ - + -

= =

- - + - -
+ - + -

= =

- +
= = 0

2

4
.
c

c

w

h

-

 
(7) 

 

It can be seen in Equation (7) that the number of unknowns in the core layer is reduced to five. 
These unknowns are 0 1 0 1, , ,c c c cu u v v and 0

cw . Therefore, generally, all unknowns for a double curved 

composite sandwich panel are fifteen as follows: 
 

{ }0 0 0 0 0 0 0 1 0 1 0, , , , , , , , , , , , , ,t t t t t b b b b b c c c c c
x y x yu v w u v w u u v v wy y y y

 
 

The governing equations are derived using the Hamilton's principle which requires that: 
  

0 0

[ ] 0
t t

Ldt K U dt       (8) 

 

where Kd and Ud denote variation of kinetic energy and strain energy, respectively. Also, t is time 
duration between times 1t and 2t , and d denotes variation operator.  

 The first variation of kinetic energy (assuming homogeneous conditions for displacement and 
velocity with respect to time coordinate) can be written as follows: 
 

 (9) 

 

where 
 

(1 )(1 ) , , ( , )c c
c c c i i i

xc yc

z z
dA dx dy dA dx dy i t b

R R
= + + = =  

 

and (  ◌۟◌۟◌۟  ◌۟◌۟◌۟ ) denotes the second derivative in time. The first variation of internal potential en-
ergy of the sandwich panel is as follows: 
 

 

 
,

i

c

i i i i i i t i i i
xx xx yy yy xy xy xz xz yz yz i

i t b V

c c c c c c c c c c c c
xx xx yy yy zz zz xy xy xz xz yz yz c

V

U dV

dV

          

           



 
      

 

     

 


(10) 
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where: 

(1 )(1 ) , ; ( , )c c
c c c c c c i i i i i i

xc yc

z z
dV dAdz dx dy dz dV dAdz dx dy dz i t b

R R
= = + + = = =  

 
Using the Hamilton's principle (Equations (8)-(10)) and the kinematic relations (Equations (1)-(7)), 
equations of motion are obtained as follows: 
 

Q
xz
t

R
tx

 2

hc
2

M
2xx ,x
c  4

hc
3

M
3xx ,x
c  2

hc
2

M
2 yx , y
c  4

hc
3

M
3 yx , y
c  2

Rtx hc
2

M
2xz
c  4

Rtx hc
3

M
3xz
c 

4

h
c
2

M
1xz
*c  12

h
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3

M
2xz
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0
t 

4I
4
c

h
c
4


16I
5
c

h
c
5


16I
6
c

h
c
6




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h
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16I
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4
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(11)
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In Equations (11)-(25), ( )0,  1, ,6c

n nI = ¼ are moments of inertia for the core layer, as indicated 

below: 
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Stress resultants per unit length for the core layer are defined as demonstrated below: 
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Due to the radii of curvature are much larger than the thickness of the face sheets, in this paper 
1+z/R for the face sheets can be approximated to 1. Therefore, stress resultants per unit length for 
the face sheets can be defined as follows: 
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Where sk is the shear correction factor. 

 
Constitutive equations for in-plane stress resultants based on the first order shear deformation lam-
inate theory are defined as (Reddy, 2003): 
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where ijA , ijB and ijD are extensional, bending-extensional coupling and bending stiffnesses, respec-

tively.  
 
3  ANALYTICAL SOLUTION 

Displacement fields based on the double Fourier series for a double curved composite sandwich pan-
el with simply supported boundary condition at the top and bottom face sheets are assumed to be 
in the following form( , )j t b= : 
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(30)

 

 

where m
m

a

p
a =  and n

n

b

p
b = .  

When all edges are clamped, functions cos( )mxa and cos( )nyb in the above series expansions must be 

replaced with sin( )mxa and sin( )mya , respectively. 

 In Equation (30), 0
j
mnU , 0

j
mnV  , 0

j
mnW , j

xmnY , j
ymnY , c

kmnU , c
kmnV  and c

lmnW are the Fourier coefficients 

and m and n are half wave numbers along x and y directions, respectively. By substituting stress 
resultants (Equation (27)), compatibility conditions (Equation (7)) and displacement field (Equa-
tion (30)) in the governing equations (Equations (11)-(25)), applying the Galerkin method and col-
lecting coefficients, the eigenvalue equation is obtained as follows: 
 

[ ]{ } {0}mnK M cl- =     (31)
 

where 
 

0 0 0 0 0 0 0 0 1 1 0{ } { , , , , , , , , , , , , , , }t b t b t b t b t b c c c c c T
mn mn mn mn mn mn xmn xmn ymn ymn mn mn mn mn mnc U U V V W W U V U V Wy y y y=

 
where 2

mn mnl w=  and {c} is displacement vector for all the values of m and n. Also [K] and [M] are 

stiffness and mass matrices, respectively. The above eigenvalue equation can be solved for various 
eigenvalues and associated eigenvectors.  
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4  VALIDATION OF THE RESULTS  

In order to validate the present method and demonstrate its capability, the results obtained from 
the present theory were compared with recent theoretical and numerical results found in the litera-
ture. Also, the results were compared with those obtained from finite element ABAQUS software. 
 
Example 1: Free vibration analysis of a flat composite sandwich panel with SSSS B.C.  
 
In this example, a flat sandwich panel with laminated face sheets, PVC foam core and simply sup-
ported boundary conditions (SSSS) was considered. The lay-up sequences for face sheets were 
[0/90/0] and the sandwich panel was symmetric about the mid-plane. Mechanical properties of the 
face sheets and foam core are given in Table 1.  
 

PVC foam core Laminate face sheets 

1 2 3

12 13 23
3

E E E 0.10363 GPa,

G G G 0.05 GPa, 

0.32, 130 Kg / m .n r

= = =

= = =

= =

1 2 3

12 13 23
3

12 13 23

E 24.51 GPa, E E 7.77 GPa,

G G 3.34 GPa, G 1.34GPa,

0.078, 0.49, 1800 Kg / m .n n n r

= = =
= = =

= = = =

 

 

Table 1: Material properties of the composite sandwich panel (Meunier et al., 1999). 
 

In 
Table 2, the results obtained from the present theory (IHSAPT) were compared with those ob-
tained from the first model of Frostig, the higher order equivalent single layer theory (HSDT-ESL) 
and FE modeling in ANSYS code. The results were presented for the first four dimensionless natu-

ral frequencies ( 2 1/2( / ) /ca E hw w r= ) of a square sandwich panel with / 0.1h a = and

/ 0.88ch h = . The maximum difference between the present theory and the higher order equivalent 

single layer theory (FSDT-ESL) was 9.45 percent. Due to core flexibility in the current theory, the 
obtained natural frequencies from current theory were lower than the natural frequencies obtained 
from the FSDT-ESL. Also, the present results were in good agreement with those obtained from 
finite element ANSYS software and the first higher order Frostig's theory. In Table 3, dimensionless 
natural frequencies of sandwich panel are presented with the material properties given in Table 1 
and lay-up sequences [45/-45/45] for the face sheets.  
 

 

Mode 
No. 

 

Present 
model 

1st  model 
of Frostig 
(Rahmani 

et al., 2009)

Error 
difference 

(%) 

ANSYS 
(Rahmani 

et al., 2009)

Error 
difference 

(%) 

HSDT-ESL 
(Meunier 

et al., 1999) 

Error 
difference 

(%) 

1 14.37 14.27 0.7 14.74 2.57 15.28 6. 33 

2 26.53 26.31 0.8 26.83 1.13 28.69 8.14 

3 27.17 27.04 0.4 27.53 1.32 30.01 9.45 

4 35.24 34.95 0.82 35.60 1.02 38.86 9.27 
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Table 2: Comparing dimensionless natural frequencies of a flat composite sandwich panel. 

As can be seen in Table 3, the results of the present theory were in good agreement with those of 
IHSAPT (Malekzadeh et al. 2005). Considering of different displacement fields for the core layers, 
there was the discrepancy between the results. In the present theory, displacement field for the core 
was assumed to be a polynomial with unknown coefficients. But, Nayak et al. (2002) and Malekza-
deh et al. (2005) used equivalent single layer Reddy's theory and 3D elasticity theory for the core, 
respectively. 
 
 
 
 
 
 
 
 
 

Table 3: Comparing dimensionless natural frequencies of a flat 
composite sandwich panel [45/-45/45/core/45/-45/45]. 

 
Example 2: Free vibration analysis of an open single curved composite sandwich 
panel with SSSS B.C.  
 

In this example, free vibration analysis of an open single curved composite sandwich panel with 
foam core was investigated. Lay-up sequences for face sheets were [0/90]. Mechanical properties of 
the face sheets and core are given in Table 4.  
 

Foam core Laminate face sheets 

1 2 3

12 13 23
3

E E E 6.89MPa,

G G G 3.45MPa,

0.32,  94.195Kg / m .n r

= = =
= = =

= =

 1 2 3

12 13 13
3

12 13 23

E 131 GPa,  E E 10.34GPa,

G G 6.895GPa, G 6.205GPa,

0.22, 0.49,  1627 Kg / m .n n n r

= = =

= = =

= = = =

 

 

Table 4: Material properties of the single curved composite sandwich panel (Armenakas et al. 1969). 

 
In the Table 5 dimensionless first natural frequency for thin( / 0.01)h b =  and thick( / 0.1)h b =  

sandwich panels with three different ratios of radius to width ( /R b ) were presented. In this table, 
results of the present theory (IHSAPT) were compared with those obtained from the first Frostig's 
model, first order shear deformation theory, higher order equivalent single layer theory and FE 
modeling in ANSYS code. As can be seen in Table 5, the current results were in good agreement 
with FE modeling in ANSYS code. Table 5 also shows that results of different theories for the thin 
sandwich panel were in better agreement with each other than those for the thick sandwich panel. 
 

 
Mode 
No. 

Dimensionless natural frequency 

Present 
model 

IHSAPT 
(Malekzadeh 
et al., 2005) 

Error difference 
(%) 

FE model 
(Nayak et al., 2002) 

Error difference 
(%) 

1 15.37 15.53 1.04 16.09 4.68 
2 27.17 27.36 1.94 28.93 6.47 
3 27.17 27.36 0. 6 28.93 6.47 
4 36.19 36.93 2.04 38.76 7.1 
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Table 5: Comparing dimensionless fundamental natural frequency 
of an open single curved sandwich panel (a/b=1). 

 
 
Example 3: Free vibration analysis of a flat composite sandwich panel with CCCC B.C.  
 

Now, free vibration analysis of a sandwich panel with laminated face sheets and fully clamp bound-
ary conditions (CCCC B.C.) is studied. There has been few research on free vibration of sandwich 
structures with CCCC B.C.. Therefore, in order to validate the current results, the sandwich struc-
tures were modeled in ABAQUS. This example used mechanical properties, given in Table 1.  
 At first, convergence of the first five dimensionless natural frequencies was investigated (Table 
6). It can be seen from this table that the natural frequencies converged after about 13×13 expres-
sions (m=n=13). Table 6 also shows that the lowest convergence rate of the natural frequencies 
occurred in the first mode shape. 
 

Convergence Mode sequence number 

m=n (1,1) (1,2) (2,1) (2,2) (1,3) 

3 20.41 39.21 42.24 54.17 82.50 

5 19.29 31.64 32.44 41.41 45.73 

7 18.82 30.34 31.01 39.51 44.12 

11 18.39 29.36 29.96 38.14 42.85 

13 18.28 29.12 29.71 37.81 42.53 

15 18.20 28.95 29.54 37.59 42.29 
 

Table 6: Convergence of dimensionless natural frequencies 

( 2 1/2( / ) /ca E hw w r= , a=b , a/h=10, hc/h=0.88, [0/90/0/core/0/90/0]). 

 
R/b 

 
h/b 

Dimensionless natural frequency 

P
resen

t m
od

el 

F
rostig’s 1st m

odel 
(R

ahm
ani et al., 

2009) 

E
rror 

difference(%
) 

A
N

SY
S (R

ahm
ani 

et al., 2009) 

E
rror 

difference(%
) 

H
SD

T
-E

SL
 

(A
rm

enakas et al., 
1969) 

E
rror 

difference(%
) 

F
SD

T
-E

SL
 

(A
rm

enakas et al., 
1969) 

E
rror 

difference(%
) 

1 
0.01 66.82 63.27 5.31 64.62 3.29 64.64 3.26 64.80 3.02 

0.1 6.77 5.65 16.54 6.46 4.58 7.71 13.88 14.16 109.15 

2 
0.01 34.95 33.87 3.09 34.50 1.29 35.90 2.72 36.21 3.06 

0.1 3.75 2.96 21.07 3.71 1.07 5.82 55.2 14.026 274.93 

3 
0.01 24.96 24.17 3.17 24.81 0.60 26.69 6.93 27.12 8.65 

0.1 2.85 2.19 23.15 2.83 0.70 5.37 88.42 14.00 391.22 
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In Table 7, the current results were compared with the presented FE model by ABAQUS code and 
the higher order equivalent single layer theory (HSDT-ESL) presented by Nayak et al. (2002). As 
can be seen in Table 7, the results of the present method were in very good agreement with those of 
FE model in ABAQUS; but, there was little difference between the current results and those of the 
HSDT-ESL.  It is because the HSDT-ESL model did not consider flexibility of the core layer. 
 

  

 
Mode No. 

(m,n) 

Dimensionless natural frequency[0/90/0/core/0/90/0] 

Present 
model 

ABAQUS Error difference 
(%) 

(HSDT-ESL)  
(Nayak et al., 2002) 

Error difference 
(%) 

(1,1) 18.20 17.87 -1.85 20.01 -9.94 

(1,2) 28.95 28.32 -2.22 32.23 -11.32 

(2,1) 29.54 28.92 -2.17 33.34 -12.86 

(2,2) 37.59 36.78 -2.15 42.27 -12.45 

(1,3) 42.29 41.36 -2.19 48.16 -13.88 
 

Table 7: Comparing dimensionless natural frequency of a flat composite sandwich panel. 

 
 
Example 4: Free vibration analysis of a composite sandwich cylindrical panel with SSSS B.C.  
 

In this example, free vibration analysis of a composite sandwich cylindrical panel with SSSS B.C. is 
investigated. Lay-up sequences for face sheets are [0/90/0]. Mechanical properties of the face sheets 
and core are given in Table 8.  
 

Foam core Laminate face sheets 

1 2 3

12 13 23
3

E E E 6.89MPa,

G G G 6.89MPa,

0,  97Kg / m .n r

= = =

= = =

= =

 
1 2 3

12 13 13
3

12 13 23

E 131 GPa,  E E 10.34GPa,

G G 6.895GPa, G 6.205GPa,

0.22, 0.49,  1627 Kg / m .n n n r

= = =

= = =

= = = =

 

 

Table 8: Material properties of a composite sandwich cylindrical panel. 
 

In  
Table 9 the dimensionless first natural frequency of sandwich panels with two different ratios of 
radius to width are presented. In this table, results of the present theory (IHSAPT) are compared 
with the three layer theory presented by Rahmani et al. (2012) and with the three dimensional elas-
ticity solutions given in Yasin and Kapuria (2012). As can be seen in  
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Table 9, the present and Rahmani et al. (2012) results show better agreement than Yasin and Kap-
uria (2012) ones. Because the present paper and Rahmani et al. (2012) used the high order sand-
wich panel theory, while Yasin and Kapuria (2012) used the zig-zag theory.  
 
 
 

R/a Present model Rahmani et al. (2012) Yasin and Kapuria (2012) 

2 3.1236 2.9646 3.5593 

5 1.8923 1.7859 2.2664 
 

 

Table 9: Comparing dimensionless natural frequency of the composite sandwich cylindrical panel. 
 
 

5 RESULTS 

According to the above examples, all formulations of free vibration analysis were validated. Now, 
some examples are considered and the obtained results are presented and discussed.   
 
Example 1: Free vibration analysis of a double curved composite sandwich panel with SSSS and CCCC B.Cs. 
 

In this example, free vibration analysis of a double curved composite sandwich panel with SSSS and 
CCCC B.Cs. was investigated. Mechanical and geometrical properties of the sandwich structure are 
given in Table 10. Lay-up sequences of the top and bottom face sheets were [0/90/0] and the sand-
wich panel was symmetric about mid-plane. 
 In Table 11, the dimensionless natural frequencies of the double curved composite sandwich pan-
el for the first four mode shapes with both boundary conditions are presented.  
 
 

3
1 2 3 12 13 23E E E 0.10363 GPa, G G  G 0.05 GPa, 0.32, 130 Kg / m .n r= = = = = = = =  Foam core 

1 2 3 12 13 
3

23 12 13 23

E 24.51 GPa, E E 7.77 GPa, G G 3.34 GPa,

G 1.34GPa, 0.078,  0.49, 1800 kg / m .n n n r

= = = = =

= = = = =
 Composite face 

sheets 

1 2/ 0.88, 10 , 3 , .c c ch h a h R R a a b= = = = = Geometric  

 

Table 10: Mechanical and geometrical properties of a double curved composite sandwich panel. 
 
 

 

Mode No. 
(m,n) 

2 1/2( / ) /ca E hw w r=  

SSSS B.C. CCCC B.C. 

(1,1) 16.6813 21.7969 

(1,2) 27.8385 30.5294 

(2,1) 28.6530 31.1720 
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(2,2) 36.2091 38.7066 
 

Table 11: Dimensionless natural frequencies of a double curved composite sandwich panel. 
 

 

(a) SSSS B.C. (b) CCCC B.C. 

Figure 2: Mode shapes of the face sheets at the first natural frequency 

for a double curved composite sandwich panel with SSSS and CCCC B.Cs. 

 

As expected, the natural frequencies of the double curved sandwich structures with CCCC B.C. 
were higher than those with SSSS B.C.. As shown in Table 11, the first dimensionless natural fre-
quency for both boundary conditions occurred in mode shape (m,n)=(1,1). In Figure 2 mode shapes 
of the face sheets are presented at the first natural frequency for the double curved composite 
sandwich panel with both boundary conditions. 
 
Example 2: Effects of geometrical parameters and types of boundary conditions on the free vibration analysis of 
a double curved composite sandwich panel 
 

In this example, effects of various parameters on free vibration response of a double curved compo-
site sandwich panel with SSSS and CCCC B.Cs. were investigated. Properties of the sandwich 
structure are given in Table 10. Lay-up sequences of the face sheets were [0/90/0] and the sandwich 
panel was symmetric about the mid-plane. 
 First, effects of hc/h (core to panel thickness ratio) and R1/R2 (ratio of radii of curvatures) ratios 
on the first dimensionless natural frequency were studied. It is clear that core to panel thickness 
ratio and ratio of radii of curvatures had a significant effect on free vibration and dynamic analysis 
of the sandwich panels. In  
Figure 3(a)-(b), effects of hc/h and R1/R2 ratios on the first natural frequency (for both boundary 
conditions) are shown, respectively. In these figures, length (a) and width (b) of sandwich panel 
were constant and did not change by thickness of the panel. 
 It can been seen in  
Figure 3(a) that, with increasing core to panel thickness ratio for both boundary conditions, the 
first dimensionless natural frequency decreased. With increasing hc/h ratio, the first natural fre-
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quency decreased, too. Also, the difference between natural frequencies for SSSS and CCCC B.Cs. 
at hc/h=0.1 was higher than that at hc/h=0.9. In general, with increasing thickness of the core, 
natural frequencies increased because increasing in the thickness of the core increased stiffness of the 
sandwich panel.  
Figure 3(b) shows that, with increasing R1/R2 ratio for both boundary conditions until approxi-
mately R1/R2 =3, the first natural frequency decreased and converged to a constant value. This 
behavior occurred due to with increasing R1/R2 ratio, geometry of double curve panel converged in 
the cylindrical single curve panel. In addition, selection of SSSS B.C. for a double curved composite 
sandwich panel decreased the first dimensionless natural frequency of the panel, as can be seen in  
Figure 3(b).  
 

  

(a) Core to panel thickness ratio (b) Radii of curvatures ratio 
 

Figure 3: Effects of R1/R2 and hc/h ratios on the first dimensionless natural frequency 
of a double curved composite sandwich panel with both boundary conditions. 

 
 

Now, effects of fiber angle, i.e. lay-up sequence and type of boundary condition, on the first natural 
frequency are investigated. In Figure 4 (a)-(b), variations of the first natural frequency with fiber 
angle for a sandwich panel with SSSS and CCCC B.Cs. are presented, respectively. 
 

  
(a) SSSS B.C.  (b) CCCC B.C.  

Figure 4: Effect of composite lay-up sequence on the first dimensionless natural frequency 
of a double curved composite sandwich panel with a. SSSS B.C. and b. CCCC B.C. 
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As can be seen in Figure 4(a), maximum first natural frequency for SSSS B.C. occurred in fiber 
angle 45˚while Figure 4(b) shows that maximum first natural frequency for CCCC B.C. approxi-
mately occurred in fiber angle 55˚. In addition, natural frequency of a double curved composite 
panel with CCCC B.C. for all fiber angles was more than that with SSSS B.C.. 

 

  
(a) First shape mode  (b) Second shape mode  

 

Figure 5: Normalized displacements of the face sheets for a double curved composite sandwich 
panel with SSSS and CCCC B.Cs. corresponding to the first and second mode shapes. 

 

The normalized modal displacements corresponding to the first and second natural frequencies for a 
sandwich panel with SSSS and CCCC B.Cs. are shown in  
Figure 5, where amplitudes of the vibration in this figure are normalized. As is obvious in  
Figure 5(a), normalized displacements of the top face sheet was higher than those of the bottom 
face sheet for both boundary conditions. In this figure, the dot lines belong to CCCC B.C.. In the 
first mode shape, the top and bottom face sheets moved vertically in the same direction for SSSS 
and CCCC B.Cs. while  
Figure 5(b) shows that the top and bottom face sheets in the second mode shape with SSSS B.C. 
moved in the opposite direction those with CCCC B.C.. 
 

6  CONCLUSION 

In this work, free vibration analysis of double curved composite sandwich panels with simply sup-
port and fully clamped boundary conditions was studied. The analysis was very general and valid 
for any type of core, any type of face sheets as well as the cases in which the conditions at the 
upper face sheet were different from those at the lower one along the same edge. Thickness of the 
upper face sheet might be different from that of the lower face sheet. Transverse shear and rotary 
inertia effects of face sheets were taken into consideration. Therefore, the upper and lower face 
sheets could be thick or thin, independent from each other.  

The numerical study revealed that soft-core sandwich panels exhibited a complex behavior and 
vibration patterns of the sandwich panels were more complex than those of the homogeneous 
panels. The thicker panels with a thicker core provided greater resistance to resonant vibrations. 
The effect of types of boundary conditions, core to panel thickness ratio, ratio of radii curvature 
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and fiber angle on dynamic response of double curved composite sandwich panels was also stud-
ied. 
The results revealed that: 

1. The present theory for free vibration analysis of double curved thick sandwich panels was 
more accurate than other theories. 

2. By increasing the core to panel thickness ratio, the first natural frequency of double curved 

composite sandwich panels for SS and CC B.Cs. linearly decreased. 

3. By increasing the radii of curvatures ratio until approximately R1/R2 =3, the first natural 

frequency of double curved composite sandwich panels for SS and CC B.Cs. decreased and af-

ter that converged to a constant value.. 

4. Maximum first natural frequency for SSSS B.C. occurred in fiber angle 45˚while maximum first 

natural frequency for CCCC B.C. approximately occurred in fiber angle 55˚. 
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