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Abstract 
In the present work, the model of vibration of gold nano- beam 
induced by laser pulse heating is developed in the context of 
two-temperature generalized thermoelasticity and non-Fourier 
heat conduction. The analytic solution has been derived in the 
Laplace transform domain. The inverse Laplace transform has 
been calculated numerically and the numerical results have 
been presented graphically in two and three dimensions figures 
with some comparisons to stand on the effects of the two-
temperature parameter and the laser pulse parameters on all 
the studying fields and which one of that parameters plays a 
vital role in the damping of the energy which has been generat-
ed inside the beam. 
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1 INTRODUCTION 

With the rapid development of imaging technology, the perspectives of biomedical research have 
turned from subcellular structures in micro-scale (chromosomes, organelles, cytoskeleton, etc.) to 
biomolecules in nano-scale (nucleic acids, proteins, etc.). Studies on how bio macro molecules as-
semble, coordinate, transmit signals, and execute function are very meaningful and important, be-
cause they can facilitate the research on nano-biointeractions and promote the progress in biological 
detection, diagnosis and treatment techniques Wang et al. (2013).  
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 Gold Nano-Beams based nano-carriers have great potential in biomedical fields, such as biologi-
cal monitoring, imaging, thermotherapy and multifunctional nano-complex diagnose, and all these 
bring ideas and hopes to the development of biomedicine. In connection with structure, property 
and bio-effects of Gold Nano-Beams, developing real-time, sensitive, high through put detection, 
and analysis methods could be the important consults to rational design of Gold Nano-Beams based 
nano-carriers. Ultimately, through surface modification and functionalization, it could improve tar-
geting of Gold Nano-Beams, reduce immune response and other negative effects, these Gold Nano-
Beams-based multifunctional nano-carriers will play crucial role in future biocatalysis, disease diag-
nosis, imaging and therapy Wang et al. (2013). 
 Many works and articles have been made recently to investigate the elastic properties of 
nanostructured materials by atomistic simulations. Diao et. al. (2004) studied the effect of free sur-
faces on the structure and elastic properties of gold nanowires by atomistic simulations. Although 
the atomistic simulation is a terrific way to calculate the elastic constants of nanostructured mate-
rials, it is only applicable to homogeneous nanostructured materials, for example, nanoplates, nano-
beams and nanowires with a limited number of atoms. Moreover, it is difficult to obtain the elastic 
properties of the heterogeneous nanostructured materials using atomistic simulations. For these and 
other reasons, it is prudent to seek a more practical approach. One such approach would be to ex-
tend the classical theory of elasticity down to the nanoscale by including in it the hitherto neglected 
surface/interface effect. For this, it is necessary first to cast the latter within the framework of con-
tinuum elasticity. 
 Nano-mechanical beams have attracted considerable attention recently due to their many signifi-
cant technological applications. Accurate analysis of various effects on the characteristics of beams, 
such as resonant frequencies and quality factors, is crucial for designing high-performance compo-
nents. Many authors have studied the vibration and heat transfer process of beams. Kidawa (2003) 
has studied the problem of transverse vibrations of a beam induced by a mobile heat source. The 
analytical solution to the problem was obtained using the Green’s functions method. However, Kid-
awa did not consider the thermoelastic coupling effect. Boley (1972) analyzed the vibrations of a 
simply supported rectangular beam subjected to a suddenly applied heat input distributed along its 
span. Manolis and Beskos (1980) examined the thermally induced vibration of structures consisting 
of beams, exposed to rapid surface heating. They have also studied the effects of damping and axial 
loads on the structural response. Al-Huniti et. al. (2001) investigated the thermal induced displace-
ments and stresses of a rod using the Laplace transformation technique. Ai Kah Soh et al. (2008) 
studied the vibration of micro/nanoscale beams induced by ultra-short-pulsed laser by considering 
the thermoelastic coupling term. Sun et. al. (2008, 2006) constructed a model of thermoelastic 
damping in micro-beams, and Fang et. al. (2006) got the analysis of the frequency spectrum of la-
ser, induced vibration of microbeams. Eringen (1983) reduced Integro-partial differential equations 
of the linear theory of nonlocal elasticity to singular partial differential equations for a special class 
of physically admissible kernels. Civalek and Akgöz (2010) presented free vibration analysis of mi-
crotubules (MTs) based on the Euler-Bernoulli beam theory. Liew et al. (2008) simulated the flex-
ural wave propagation in a single-walled carbon nanotube (SWCNT) by using molecular dynamics 
(MD) based on a second-generation reactive empirical bond order (REBO) potential. Civalek and 
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Demir (2011) formulated the equations of motion and bending of Euler-Bernoulli beam using the 
nonlocal elasticity theory for cantilever microtubules (MTs). 
 Youssef and Elsibai (2010) investigated the vibration of gold nano- beam induced by many types 
of thermal loading. Youssef (2006) investigated two-temperature generalized thermoelasticity theory 
together with a general uniqueness theorem and solved many applications in the context of this 
theory with Al-Lehaibi (2007), Harby (2007) and Bassiouny (2008). 
In this work, the model of vibration of gold nano- beam induced by laser pulse heating will be de-
veloped in the context of two-temperature generalized thermoelasticity and non-Fourier heat con-
duction. The analytic solution will be derived in the Laplace transform domain. The inverse Laplace 
transform will be calculated numerically and the numerical results will be presented graphically in 
two and three dimensions figures with some comparisons to stand on the effects of the two-
temperature parameter and the laser pulse parameters on all the studying fields and which one of 
that parameters plays a vital role in the damping of the energy which will be generated inside the 
beam. 
 
 

2 FORMULATION OF THE PROBLEM 

Since beams with rectangular cross-sections are easy to fabricate, such cross-sections are commonly 
adopted in the design of NEMS beams. Consider small flexural deflections of a thin elastic beam of 

length  0 x   , width 
b b

b y
2 2

    
 

and thickness
h h

h z
2 2

    
 

, for which the x, y and 

z axes are defined along the longitudinal, width and thickness directions of the beam, respectively. 
In equilibrium, the beam is unstrained, unstressed, without damping mechanism, and the tempera-
ture is T0 everywhere, Soh et al. (2008), Sun et al. (2006), Youssef and Elsibai (2010). 
 In the present study, the usual Euler–Bernoulli assumption is adopted, i.e., any plane cross-
section, initially perpendicular to the axis of the beam remains plane and perpendicular to the neu-
tral surface during bending. Thus, the displacements u , v, w  are given by 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. 
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     w x, t

u z , v 0 , w x, y, z, t w x, t
x


   


.  (1) 

Hence, the differential equation of thermally induced lateral vibration of the beam may be ex-
pressed in the form: 

  
24 2

T
T4 2 2

Mw A w
0

x EI t x

  
  

  
, (2) 

 

where E is Young’s modulus, I [= bh3/12] the inertial moment about x-axis,    the density of the 

beam, T  the coefficient of linear thermal expansion,  w x, t  the lateral deflection, x the dis-

tance along the length of the beam, A hb is the cross section area and t the time and TM is the 

thermal moment, which is defined as: 
 

  
h / 2

T 3
h / 2

12
M z dz

h 

  , (3) 

 

where 0T T    is the dynamical temperature increment of the resonator, in which T(x, z, t) is 

the temperature distribution and T0 the environmental temperature. 
The Laser  

    p

t

t0
2
p

I
I t t e ,

t

 
 
 
 

 (4) 

 

where pt  is a characteristic time of the laser-pulse, 0I  is the laser intensity (the total energy car-

ried by a laser pulse per unit cross-section of laser beam) Sun et al. (2006).       
The heat source 
 

      p

tz h / 2 z h / 2
t0

2
p

I1 R 1 R
Q z, t e I t e t e ,

t

            
                   

 (5) 

 

where  is the absorption depth of heating energy and R is the surface reflectivity. 
According to Youssef model of two-temperature thermoelasticity, the non-Fourier heat conduction 
equation has the following form: 
 

 p

tz h / 22 2 2
t0 0

o o2 2 2 2
p

C T I1 R
e e 1 t e ,

x z t t k k t t

     
                                            

 (6) 

 

where C  is the specific heat at constant volume, 0 the thermal relaxation time, k the thermal 

conductivity, TE

1 2


 

 
in which   is Poisson’s ratio,  is the conductive temperature increment 

it satisfies the following relation Youssef (2008):   
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2 2

2 2
,

x z

    
      

 (7) 

 

where   is non negative parameter (two-temperature parameter). 

The volumetric strain takes the form 
 

  
u v w

e
x y z

  
  
  

 (8) 

 

Since there is no heat flow across the upper and lower surfaces of the beam, then, 
 

   0
z z

 
 

 
 at z h / 2   (9) 

 

For a very thin beam and assuming the temperature varies in terms of a  sin pz function along the 

thickness direction, where p / h  , gives: 
 

       1x, z, t x, t sin pz    (10) 

and  

       1x, z, t x, t sin pz     (11) 

which gives       

   
2

21
1 1 12

p
x

  
        

 (12) 

Hence, equation (2) gives  
 

   
h / 224 2

T 1
4 2 3 2

h / 2

12w A w
zsin pz dz 0

x EI t h x 

    
  

     (13) 

 

and equation (6) gives 
 

  

     

p

2 2 2
2 01

1 o 12 2 2

tz h / 2
t0

o2
p

C T w
sin pz p sin pz sin pz z

x t t k k x

I1 R
e 1 t e

t t



    

       
             

                 

 (14) 

 

After doing the integrations, equation (13) takes the form 
 

  
24 2

T 1
4 2 2 2

24w A w
0

x EI t h x

    
  

   
 (15) 
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In equation (14), we multiply the both sides by z and integrating with respect to z from
h h

to
2 2

 , 

then we obtain 
 

  
  p

t22 2 2
t2 01

1 o 1 0 o2 2 2

T h w
p T t e

x t t 24k x

        
                   (16) 

where 
   p o 0 1/ a

2
p p 0

t 1 R h IC
, , 2a 1 e 2a 1 , a

k t 2 t T h


                

 

Now, for simplicity we will use the following non-dimensional variables, Youssef (2008): 
 

    2 21 1
o o p o o p 1 1 o

o o

1 1 E
x , w , c x, w, , t , , t c t, , t , , , , c

p p E T T

                               
 (17) 

 

Then, we have 
 

  
24 2

1
1 24 2 2

w w
A A 0

x t x

  
  

  
 (18) 

 

    p

t2 2 2
t1

3 1 o 1 4 o2 2 2

w
A A t e

x t t x

      
                 

 (19) 

and 

  
2

1
1 1 5 6 12

A A
x

 
    


 (20) 

 

where 
2

2 2t o
1 2 3 4 5 o 6 o2 2

24 T12 h
A , A , A p , A , A c , A c p

h h 24k

  
       

 
 

(We have dropped the prime for convenience) 
 
 
3 FORMULATION THE PROBLEM IN THE LAPLACE TRANSFORM DOMAIN 

We will apply the Laplace transform for equations (18) - (20), which is defined by the following 
formula 

        s t

0

f s L f (t) f t e d t


    

Hence, we obtain the following system 
 

  
24

2 1
1 24 2

dd w
A s w A 0

d x d x


    (21) 
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      
 

2 2
p p o o21

3 1 o 1 4 22 2

p

t t sd d w
A s s A

d x d x t s 1

     
        

  
 (22) 

and 

   
2

1
1 6 1 5 2

d
1 A A

d x


      (23) 

We will consider the function   as follows: 
 

  
2

2

d w

d x
   (24) 

Then, we have 

  
22

2 1
1 22 2

dd
A s w A

d x d x


    (25) 

 

        
 

2
p p o o2 21

3 1 o 1 4 o 22

p

t t sd
A s s A s s

d x t s 1

    
         


  (26) 

and 
  1 1 1 2 3       (27) 

where 
 

  
 

 
 

 
  

   

2
4 5 o 5 p p o o6 3 5

1 2 3 22 2 2
o 5 o 5 o 5 p

A A s s A t t s1 A A A
, ,

1 s s A 1 s s A 1 s s A t s 1

       
     

         
 

 

Hence, we have 

  
2

1
1 1 2 42

d

d x


      (28) 

where 

      2 2
1 3 1 o 2 2 4 oA s s , A s s            

 

      
 

p p o o2
4 3 o 2

p

t t s
s s

t s 1

    
     


 

Hence, we have  
 

  
       

2 2
1 1 1 2 1 1 2 1 4

12
2 2 2 2 2 2 2 2

d A s
w

d x 1 A 1 A 1 A 1 A

       
    

       
 (29) 

 

  
       

22
2 1 2 2 1 2 1 2 1 2 2 1 4

1 12
2 2 2 2 2 2 2 2

A A s A A Ad
A s w

d x 1 A 1 A 1 A 1 A

       
               

 (30) 
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2

3 4 1 5 52

d
w

d x


       (31) 

where 
 

    
2

21 2 2
3 1

2 2

A A s
A s

1 A


  

 
, 

 
1 1 2

4
2 2

A

1 A

 
 

 
, 

 
2 1 2

5
2 2

A

1 A

 
 

 
, 

 
2 1 4

5
2 2

A

1 A

 
 

 
 

 

Finally, we have the system 

  
2

2

d w

d x
   (32) 

 

  
2

1 1 2 42

d

d x

 
     

 
 (33) 

 

and 

  
22 2

1
5 3 42 2 2

dd d

d x d x d x

  
     

 
  (34) 

 

Eliminating 1 from equations (33) and (34), we get 
 

  6 4 2D lD m D n 0        (35) 
 

Eliminating  from equations (33) and (34), we obtain 
 

  6 4 2
1 3 4D lD m D n           (36) 

where 

  
r

r
r

d
D

d x
 , 1 5l =   , 1 5 2 4 3m =       and 1 3n =    

Now, we will consider the first end of the nano-beams x=0 is clamped and has no thermal load, 
which gives 

       1w 0, t 0, t 0, t 0      (37) 
 

After using Laplace transform, the above conditions take the forms 
 

       1w 0,s 0,s 0,s 0      (38) 
 

Considering the other end of the beam x    is clamped and remains at zero increment of temper-

ature as follows: 
 

  1w( , t) ( , t) ( , t) 0       (39) 
 

After using Laplace transform, we have 
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  1w( ,s) ( ,s) ( ,s) 0       (40) 
 

After some simplifications, we get the final solutions in the Laplace transform domain as follows: 
 

    i i

3
x x2

i 1 i i
i 1

a e b e 



      (41) 

 

   i i

3
x x4

1 2 i i
i 11

a e b e 




    

   (42) 

 

  
   i i

23
i 1 x x

i i2
i 1 i

w a e b e 



 
 

  (43) 

 

where i , i 1, 2,3  satisfy the following characteristic equation 
 

  6 4 2l m n = 0       (44) 
 

By using the boundary conditions, we get the following system of linear equations 
 

    
3

2
i 1 i i

i 1

a b 0


     (45-a) 

 

    i i

3
2
i 1 i i

i 1

a e b e 0 



       (45-b) 

 

   
3

4
i i

i 1 1 2

a b



 

   (45-c) 
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3
4

i i
i 1 1 2

a e b e 




 

     (45-d) 

 

  
   

23
i 1

i i2
i 1 i

a b 0


 
 

  (45-e) 

 

  
   i i

23
i 1

i i2
i 1 i

a e b e 0 



 
 

    (45-f) 

 

Solving the above system, we get 

      i i

3
x x2

i i 1
i 1

b e e  



       (46) 

 

    i i

3
x x4

1 2 i
i 11

b e e  




    

    (47) 
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    i i

23
i 1 i x x

2
i 1 i

b
w e e  



 
 

   (48) 

where 

  
  

   1

2 2 2
4 1 1 2 1 3

1 2 2 2 2 2
1 2 1 2 1 3

b
e 1

     

      

 

 

  
  

   2

2 2 2
4 2 1 1 1 3

2 2 2 2 2 2
1 2 1 2 3 2

b
e 1

     

      

 

and  

  
  

   3

2 2 2
4 3 1 1 1 2

3 2 2 2 2 2
1 2 1 3 2 3

b
e 1

     

      

 

 
 
4 THE STRESS AND THE STRAIN-ENERGY  

The stress on the x-axis, according to Hooke’s law is, Fang et al. (2006): 
 

     xx Tx, z, t E e      . (49) 
 

By using the non-dimensional variables in (9), we obtain the stress in the form 
 

  T 0e T     (50) 
 

After using Laplace transform, the above equation takes the form: 
 

  T 0e T     (51) 
 

The stress-strain energy which is generated on the beam is given by 
 

   
3

ij ij
i, j 1

1 1 1
W x,z, t e e z

2 2 2

        (52) 

or, we can write as follows: 

       1 11
W x,z, t z L L

2
            (53) 

 

where  1L  is the inversion of Laplace transform. 
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5 NUMERICAL INVERSION OF THE LAPLACE TRANSFORM 

In order to determine the solutions in the time domain, the Riemann-sum approximation method is 
used to obtain the numerical results. In this method, any function in Laplace domain can be invert-
ed to the time domain as Tzou (1996): 

     
t N

n

n 1

e 1 i n
f (t) f Re 1 f

t 2 t





           
   (54)  

 

where Re is the real part and i is imaginary number unit. For faster convergence, numerous numer-
ical experiments have shown that the value of  satisfies the relation t 4.7   Tzou Tzou (1996). 

 
Numerical Results and Discussion 

Now, we will consider a numerical example for which computational results are given. For this pur-
pose, gold (Au) is taken as the thermoelastic material for which we take the following values of the 
different physical constants Youssef and Elsibai (2010): 
 

 k 318 W / mK ,   6 1
T 14.2 10 K

   , 31930 kg / m  , 
0T 293K ,   C 130 J / kg K  ,  

E 180 GPa ,   0.44  . 
 

 The aspect ratios of the beam are fixed as / h 10 and b / h 1 / 2 , when h is varied, and b 

change accordingly with h. 
 For the nanoscale beam, we will take the range of the beam length    91 100 10 m  . The orig-

inal time t and the ramping time parameter 0t will be considered in the picoseconds 

  121 100 10 sec  and the relaxation time 0 in the range   141 100 10 sec  . 

 The figures were prepared by using the non-dimensional variables which are defined in (9) for 
beam length 1.0 , z h / 6 and t 5.0 . 

 The two-dimensional figures 2-7 and the three-dimensional figures 9-14 show the heat conduction 
distribution, the dynamical heat distribution, the deflection distribution, the stress distribution, the 
strain distribution and the strain-stress energy distribution respectively for the two cases of one and 
two temperature models of thermoelasticity at constant time to stand on the effect of the two tem-
perature parameter effect on all the studied fields. We can see that the two temperature parameter 
has significant effects on the heat conduction distribution, the dynamical heat distribution, the 
stress distribution and the strain-stress energy distribution while it has a week effects on the strain 
and the displacement distribution.  
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Figure 2: The heat conduction distribution. 

 
 

 
 

Figure 3: The dynamical heat distribution. 
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Figure 4: The deflection distribution. 

 
 

 
 

Figure 5: The stress distribution. 
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Figure 6: The strain distribution. 

 
 

 
 

Figure 7: The strain-stress energy distribution. 
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Figure 8: The deflection distribution with different values of length. 

 
 

The two temperature parameter plays a vital role on the damping of the stress-strain energy where 
when this parameter increases that energy decreases. 
 Figure 8 shows the deflection distribution with different values length to stand on the effect of 
the scale of the beam on the deflection, and we found that, the length of the beam has a significant 
effect on its deflection, where the deflection increases when the length of the beam increases. 
The figures 15-20 show the heat conduction distribution, the dynamical heat distribution, the de-
flection distribution, the stress distribution, the strain distribution and the strain-stress energy dis-
tribution respectively with constant value of the two temperature parameter and with different 
values of time to stand on the effect of the time on all the studied fields and we find out that, the 
time has significant effects on all the studied fields. 
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Figure 9: The heat conduction distribution at t = 5.0. 

 

 

 
Figure 10: The dynamical heat distribution at t = 5.0. 
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Figure 11: The deflection distribution at t = 5.0. 

 

 

 
Figure 12: The stress distribution at t = 5.0. 
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Figure 13: The strain distribution at t = 5.0. 
 

 

 
 

Figure 14: The strain-stress energy distribution at t = 5.0. 

x 
a 

e 

W

x 
a 



2478   Hamdy M. Youssef et al. / Vibration of Gold Nano-beam in Context of Two-Temperature Generalized Thermoelasticity Subjected to Laser Pulse 

Latin American Journal of Solids and Structures 11 (2014) 2460-2482 
 

 
 

 
Figure 15: The heat conduction distribution at a = 0.4. 

 

 
 

Figure 16: The dynamical heat distribution at a = 0.4. 
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Figure 17: The deflection distribution at a = 0.4. 

 
 

 
 

Figure 18: The stress distribution at a = 0.4. 

 

x t 

w 

x t 

σ 



2480   Hamdy M. Youssef et al. / Vibration of Gold Nano-beam in Context of Two-Temperature Generalized Thermoelasticity Subjected to Laser Pulse 

Latin American Journal of Solids and Structures 11 (2014) 2460-2482 
 

 

 
Figure 19: The strain distribution at a = 0.4. 

 

 

 
 

Figure 20: The strain-stress energy distribution at a = 0.4. 
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6 CONCLUSION 

The two-temperature parameter has significant effects on the heat conduction temperature, the 
dynamical temperature, the stress and the stress-strain energy. 
Increasing the value of the two-temperature parameter causes decreasing on the values of the stress 
strain energy which gives more damping of that energy. 
The values of the time have significant effects on all the studied fields.  
The length of the beam has a significant effect on its deflection. 
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