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Abstract 

Despite the availability of large number of empirical and semi-

empirical models, the problem of penetration depth prediction 

for concrete targets has remained inconclusive partly due to the 

complexity of the phenomenon involved and partly because of 

the limitations of the statistical regression employed. Conventio-

nal statistical analysis is now being replaced in many fields by 

the alternative approach of neural networks. Neural networks 

have advantages over statistical models like their data-driven 

nature, model-free form of predictions, and tolerance to data 

errors. The objective of this study is to reanalyze the data for 

the prediction of penetration depth by employing the technique 

of neural networks with a view towards seeing if better predic-

tions are possible. The data used in the analysis pertains to the 

ogive-nose steel projectiles on concrete targets and the neural 

network models result in very low errors and high correlation 

coefficients as compared to the regression based models. 
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1 INTRODUCTION 

Concrete has been widely used over many years by military and civil engineers in the design and 

construction of protective structures to resist impact and explosive loads. Potential missiles in-

clude kinetic munitions, vehicle and aircraft crashes, fragments generated by military and terror-

ist bombing, fragments generated by accidental explosions and other events (e.g. failure of a pres-

surized vessel, failure of a turbine blade or other high-speed rotating machines), flying objects due 

to natural forces (tornados, volcanos, meteoroids), etc. These missiles vary broadly in their sizes 

and shapes, impact velocities, hardness, rigidities, impact attitude (i.e. obliquity, yaw, tumbling, 

etc.) and produce a wide spectrum of damage in the target (Li et al., 2005). 

In the past 60 years, a large amount of laboratory tests had been conducted in various coun-

tries (Kennedy, 1976; Sliter 1980; Williams, 1994; Corbett et al., 1996). Based on these available 
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test data, empirical formulae have been proposed to predict the penetration depth on concrete 

target. Empirical formulae on penetration depth, perforation limit and scabbing limit in a thick 

concrete target had been reviewed by Kennedy (1976), which covered most of the test data in the 

US and European till 1970s. Comparison between various empirical formulae and published test 

data was conducted by Williams (1994). Among the most commonly used formulae are the Pettry 

formula, the Army Corps of Engineers formula (ACE), Ballistic Research Laboratory formula 

(BRL) and the National Defence Research Committee (NDRC) formula. 

In this study, by using the projectile and target parameters, proposed a dimensionless empiri-

cal formula to predict the rigid projectile penetration depth of concrete target. It is shown that 

these dimensionless formula is capable of representing test data on penetration depth in a broad 

range of impact velocity as long as the projectile deformation is negligible, which covers the ap-

plicable range of empirical formulae. 

 

2 AVAILABLE FORMULA FOR LOCAL CONCRETE DAMAGE PREDICTION 

The most commonly formula used to predict various components of local impact effects of hard 

missile on concrete structure in USA was modified Petry formula. It is the oldest of available 

empirical formulae, and developed originally in 1910. According to Petry the penetration depth x 

(inches) can be predicted as (Kennedy, 1976): 

 

 
2

1012 log 1
215000p p
V

x K A   (1) 

 

This equation was derived from the equation of motion which states that the component of 

drag-resisting force depends upon square of the impacted velocity, and the instantaneous resisting 

force is constant. In above equation, pA  represents the missile section pressure (psi). pK  is concre-

te penetrability coefficient, it depends upon the strength of concrete and on the degree of reinfor-

cement. It equals to 0.00426 for normal reinforced cement concrete, 0.00284 for special reinforced 

cement concrete (front and rear face reinforcement are laced together with special ties), and 

0.00799 for massive plain cement concrete. 

Before 1943, The Ordnance Department of the US Army and Ballistic Research Laboratory 

(BRL) done many experimental works on local impact effects of hard missile on concrete structu-

re, based on those results Army Corp of Engineers developed the ACE formula (Kennedy, 1976; 

Chelapati et al., 1972; ACE 1946): 
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For the calculation of penetration depth (x ) of concrete impacted by hard missile, Ballistic 

Research laboratory (BRL) was suggested a formula in 1941 (Beth, 1941; Chelapati et al., 1972), 

and its modified expression was given by Kennedy (1976); Adeli et al. (1985): 
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Modified National Defense Research Committee (NDRC) Formula: In 1946, the National De-

fense Research Committee (NDRC) proposed the following formula for predicting the penetration 

depth (Kennedy, 1976; NDRC 1946; Kennedy, 1966): 
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K  is the concrete penetration factor and is given as a function of concrete strength cf  as follows: 
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N  is the missile nose shape factor. 1.0 For average bullet nose (spherical end), 0.84 for blunt 

nosed bodies and 1.14 for very sharp nose. All the above empirical formula applied only for non-

reinforced structures impacted by solid missile. 

Ammann and Whitney (A&W) formula was proposed to predict penetration of concrete target 

against the impact of explosively generated small fragments at relatively higher velocities. Accor-

ding to Kennedy (Kennedy, 1976) this formula can predict penetration of explosively generated 

small fragments traveling at over 1000 ft/sec. 
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In this formula *N  is the nose shape function same as defined in NDRC formula. 

 

Where in the above equations: 

d  is the diameter of the missile in inches 

W  is the weight of the missile in pounds 

cf  is the compressive strength of concrete in Psi 

And V  missile velocity in 2ft/sec  

 

 Haldar – Hamieh (Halder and Hamieh, 1984) suggested the use of an impact factor aI , defined 

by: 
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where aI  is impact factor and it is a dimensionless term, *N  is the nose shape factor defined in 

the modified NDRC formula. For penetration depth (x ): 
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Li and Chen (Li and Chen, 2003) further develop Forrestal et al. (1994) model and proposed 

semi – empirical or semi – analytical formulae for the penetration depth ( x ). The formulae are in 

dimensional homogenous form, and defines nose shape factor analytically. 
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where N , I , and *N  are the impact function and the geometry function and nose shape factor 

respectively. S is an empirical function of fc (MPa) and is given by: 
 

 0.572 cS f   (16) 

 

The above equations are applicable for x d  ≥ 0.5, and reduced the results obtained by Forres-

tal et al. (1996) for an ogive – nose projectile. Forrestal et al. (1994, 1996) and Frew et al. (1998) 

suggested that if x d  ≥ 5.0 than k  = 2.0, this statement is strengthened by the instrumented 

experiments in (Forrestal et al. 2003), and with penetration experiments with wide range of pro-

jectile diameter (Frew et al. 2000) And Li and Chen (2003) recommended x d  < 5.0, for small – 

to – medium penetration depths: 
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where h  is the length of nose of the projectile and d is the diameter of the projectile. 
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3 EXPERIMENTAL DATA 

The data used in the analysis is taken from Frew et al. (1998); Forrestal et al. (1994); Forrestal 

et al. (1996); Forrestal et al. (2003) which makes a total of 70 data points. The data consists of 

four parameters viz. projectile diameter (d ), projectile velocity (V ), compressive strength of con-

crete ( cf ), projectiles weight (W ). The range of these parameters for the data is given in Table 1. 

 

S. NO. Parameter Range 

Basic Parameters 

1 Projectile diameter,d  (mm) 12.9 - 76.2 

2 Projectile velocity, V  (m/s) 139.3 - 1225 

3 Projectile weight (N) 0.63 - 129 

4 compressive strength of concrete cf  (MPa) 13.5 - 62.8 

Non-Dimensional Parameters 

1 2 3
cMV Sf d  1.66 – 164.06 

 

Table 1: Range of parameters for the data of experimental details of projectiles and concrete targets (70 data 

points). 

 

4 PROPOSED MODEL 

The empirical model used for the prediction of penetration depth in concrete target is: 
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Where, 1C , 2C , 3C  are the model parameters, M  is projectiles mass and S  is an empirical fun-

ction of fc (MPa) and is given by (Forrestal et al., 1996): 
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Parameters 1C  to 3C , have been determined by regression analysis for data involving (a) projec-

tiles with CRH=3 to 4.25 and (b) projectiles with CRH= 6. Thus giving tow regression models: 
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Where (CRH) is caliber-radius-head of the projectiles. 

The performance of various regression models presented above has been compared in Table 2 

with the help of mean percentage error. It is observed from this table that the mean error of Pro-

posed model is lower than other models. 

 

Number 

of data 

Mean Percentage Error % 

BRL ACE NDRC Li&Chen A&W Pettry Halder Eqs. (20)-(21) 

70 16.3 28.2 31.7 12.6 12 99.2 56 10.3 

 

Table 2: Mean percentage error for different models. 

 

5 NEURAL NETWORK MODEL 

The manner in which the data are presented for training is the most important aspect of the neu-

ral network method. Often this can be done in more than one way, the best configuration being 

determined by trial-and-error. It can also be beneficial to examine the input/output patterns or 

data sets that the network finds difficult to learn. This enables a comparison of the performance 

of the neural network model for these different combinations of data. In order to map the causal 

relationship related to the penetration depth, two separate input-output schemes (called Model – 

A1 and Model – A2) were employed, where the first took the input of raw causal parameters whi-

le the second utilized their non-dimensional groupings. This was done in order to see if the use of 

the grouped variables produced better results? The Model – A1 thus takes the input in the form 

of causative factors namely,W ,V , d , and cf  yields the output, the penetration depth, x , while 

Model – A2 employs the input of grouped dimensionless variables namely, 2 3
cMV Sf d , and 

yields the corresponding dimensionless output x d . Thus, the two models are: 

 

 Model – A1:   , , , cx f W V d f   (22) 

 Model – A2:   
2

3
c

x MV
f

d Sf d
  (23) 

 

The input and output variables involved in the above two models were first normalized within 

the range 0 to 1 as follows: 
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N

x x
x

x x
  (24) 

 

Where Nx  is the normalized value of x; maxx  and minx  are the maximum and minimum values of 

variable, x. This normalization allowed the network to be trained better. 

The current study used the data considered above (70 data points) for the prediction of pene-

tration depth. The training of the above two models was done using 67% of the data (46 data 

points) selected randomly. Validation and testing of the proposed models was made with the help 
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of the remaining 33% of observations (24 data points), which were not involved in the derivation 

of the model. 

Three neuron models namely, tansig, logsig and purelin, have been used in the architecture of 

the network with the back-propagation algorithm. In the back-propagation algorithm, the feed-

forward (FFBP) and cascade-forward (CFBP) type network was considered. Each input is weigh-

ted with an appropriate weight and the sum of the weighted inputs and the bias forms the input 

to the transfer function. The neurons employed use the following differentiable transfer function 

to generate their output: 

 

Log-Sigmoid Transfer Function:   
1

1 ij i j
j ij i j w x
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y f w x
e

  (25) 

Linear Transfer Function:           j ij i j ij i j
i i
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Tan-Sigmoid Transfer Function:  
2
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i
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  (27) 

  

The weight, w, and biases, , of these equations are determined in such a way as to minimize the 

energy function. The Sigmoid transfer functions generate outputs between 0 and 1 or -1 and +1 

as the neuron's net input goes from negative to positive infinity depending upon the use of log or 

tan sigmoid. When the last layer of a multilayer network has sigmoid neurons (log or tan), then 

the outputs of the network are limited to a small range, whereas, the output of linear output neu-

rons can take on any value. 

Further, in order to see if advanced training schemes provide better learning than the basic 

back propagation, a radial basis function (RBF) network was also used which though requires 

more neurons but it is sometimes more efficient. The Radial basis transfer function is given by: 

 

 
2

ij i jw x
j ij i j

i

y f w x e   (28) 

 

The optimal architecture was determined by varying the number of hidden neurons. The op-

timal configuration was based upon minimizing the difference between the neural network predic-

ted value and the desired output. In general, as the number of neurons in the layer is increased, 

the prediction capability of the network increases in beginning and then becomes stationary. 

The performance of all neural network model configurations was based on the Mean Percent 

Error (MPE), Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE), Correlation 

Coefficient (CC), and Coefficient of Determination, 2R , of the linear regression line between the 

predicted values from the neural network model and the desired outputs. 

The training of the neural network models was stopped when either the acceptable level of 

error was achieved or when the number of iterations exceeded a prescribed maximum. The neural 

network model configuration that minimized the MAE and RMSE and optimized the 2R  was 

selected as the optimum and the whole analysis was repeated several times. 
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6 SENSITIVITY ANALYSIS 

Sensitivity tests were conducted to determine the relative significance of each of the independent 

parameters (input neurons) on the penetration depth (output) in both of the models given by 

Eqs. (22) and (23). In the sensitivity analysis, each input neuron was in turn eliminated from the 

model and its influence on prediction of penetration depth was evaluated in terms of the MPE, 

MAD, RMSE, CC and 2R  criteria. The network architecture of the problem considered in the 

present sensitivity analysis consists of one hidden layer with thirteen neurons for model-A1and 

fourteen neurons for model-A2 and the value of epochs has been taken as 100. 

The comparison of different neural network models, with one of the independent parameters 

removed in each case is presented in Table 3. The influence of the removal of one independent 

parameter at a time has been studied for all four parameters. The results in Table 3 show that for 

Model – A1, the velocity of projectile, V, and compressive strength of concrete, cf  , are the two 

most significant parameters for the prediction of penetration depth. The variables in the order of 

decreasing level of sensitivity for Model – A1 are: V, cf , d  and W . 

 

2R CC RMSE MAD MPE Input variables 

0.992 0.996 5.01 5.1 -0.34 All Eq.(22) 

0.2 0.610 52.4 55.5 -11.7 VNo 

0.97 0.980 8.3 5.0 -0.26 No W 

0.98 0.988 5.4 5.1 0.51 dNo 

0.95 0.970 12.4 8.7 2.4 cfNo 

 

Table 3: Sensitivity analysis for Model –A1 with Feed Forward Back Propagation. 

Note: MPE = Mean Percent Error; MAD = Mean Absolute Deviation; RMSE = Root Mean Square Error; CC = 

Correlation Coefficient; 2R = Coefficient of Determination. 

 

Input MPE MAD RMSE CC 2R  

Eq.(23) 3.25 9.6 3.5 0.988 0.978 

 

Table 4: analysis results for Model–A2 with ANN. 

 

7 NUMERICAL RESULTS 

As dictated by the use of Gaussian function all patterns were normalized within range of 0.0 to 

1.0 before their use. Similarly all weights and bias values were initialized to random numbers. 

While the numbers of input and output nodes are fixed, the hidden nodes in the case of FFBP 

were subjected to trials and the one producing the most accurate results (in terms of the Correla-

tion Coefficient) was selected. The optimization of the training procedure automatically fixes the 

hidden nodes in the case of the CFBP. The training of these networks was stopped after reaching 

the minimum mean square error between the network yield and true output over all the training 

patterns. For the RBF network various values of spread between 0 and 1 were tried out and the 

one of 0.01 resulting in the best performance on both training and testing data was selected. 
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The information on number of nodes required to achieve minimum error taken in the case of 

each training scheme used (i.e. FFBP, CFBP, and RBF) is shown in Table 5 for Model –A1 and 

A2. As a matter of general information, which is not of real significance in this study, it can be 

seen that the cascade correlation algorithm, designed for efficient training, trained the network 

with fewer epochs than the FFBP network, but the RBF network was trained in a significantly 

less number of epochs, indicating its training efficiency.  

 

Model Algorithm Network Configuration Learning Rate Momentum Function 

I H O 0.5 0.7 

Model – A1 

FFBP 4 13 1 0.5 0.7 

CFBP 4 15 1 0.5 0.7 

RBF 4 60 1 0.5 0.7 

Model - A2 

FFBP 1 14 1 0.5 0.7 

CFBP 1 17 1 0.5 0.7 

RBF 1 55 1 0.5 0.7 
 

Table 5: Network Architecture. 

Note: I, H, O indicate number of input, hidden, and output nodes, respectively; FFBP = Feed-Forward Back 

Propagation; CFBP = Cascade-Forward Back Propagation; and RBF = Radial Basis Function. 

 

The network architecture of the two models, given by Eqs. (22)-(23), is given in Figs. 1-2 res-

pectively for BP/RBF training scheme. The error estimation parameters (MPE, MAD, RMSE, 

CC and 2R ), on the basis of which the performance of a model is assessed, are already given in 

Tables 3-4. 

 

 
Figure 1: Model—A1: use of raw variables. 

 

The training and validation of the two models is shown in Figs. 3-4. The trained values of 

connecting weights and bias for the two models are given in Tables 6-7 obtained from FFBP trai-

ning scheme. 
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Figure 2: Model—A2: use of grouped variables 

 

 
Figure 3: Epochs versus squared error of raw variables by back propagation. 

 

 
Figure 4: Epochs versus squared error of grouped variables by back propagation. 
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No. of neuron 
Input weights 

Output 

weights Input biases 

a b c d r 

1 -1.83 -2.107 -0.41 1.1 1.6991 2.4981 

2 1.83 1.17 0.83 0.9 -1.9403 -0.7743 

3 -0.34 1.78 2.17 -0.3 0.0503 1.6994 

4 -1.73 0.49 -1.39 -1.6 -0.71 0.3887 

5 1.18 2.26 -0.66 -0.04 -0.852 -0.9643 

6 -0.69 -0.97 -2.45 0.66 -0.438 0.3199 

7 0.56 -1.06 -1.81 1.05 -0.3551 0.3068 

8 2.48 1.61 0.89 1.52 1.6615 0.1549 

9 -0.89 -1.48 -1.395 1.084 0.4994 -1.0383 

10 1.25 -1.39 0.9 -1.09 0.4744 0.5866 

11 -4 -1.41 0.084 -0.888 -1.0161 -0.168 

12 1.859 0.2271 -2.37 4.16 0.4721 1.5101 

13 0.298 0.968 0.073 1.92 0.0715 -3.0808 
 

Table 6: Connection weights and biases (Refer to Figure 1). 

(Output bias= -1.6). 

 

No. of 

neuron 

Input weights Output weights Input 

biases a r 

1 20.015 -1.444 -19.197 

2 -19.5954 -1.2504 16.8313 

3 -19.1899 0.0419 14.1144 

4 -20.1306 -0.0974 9.3933 

5 19.4844 -0.0327 -7.9381 

6 -20.0332 -0.0863 4.517 

7 -19.7706 -0.1156 2.1064 

8 -19.4814 -0.1696 -2.9871 

9 19.8566 -0.0404 3.2438 

10 -19.6182 -0.12 -7.6026 

11 18.8785 0.255 12.0185 

12 -19.8142 0.137 -13.210 

13 -19.6967 -0.0704 -16.386 

14 -19.5918 -0.0855 -19.587 
 

Table 7: Connection weights and biases (Refer to Figure 2). 

(Output bias= -0.52). 

 

The percentage error in the prediction of penetration depth for different data sets is plotted in 

Figs. 5-6 for the two models. The predicted value of penetration depth has been plotted against 

its observed value in Figs. 7-8 for the two models. Though the results of non-normalized data are 

not presented but it has been observed that the normalization considerably improved the training 

of the model. 
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Figure 5: Percentage error for Model-A1. 

 

 
Figure 6: Percentage error for Model—A2. 

 

The examination of Tables 3-4 and Figs. 7-8 show that when it comes to overall accuracy of 

predicting penetration depth, all error criteria viewed together point out that the simple feed 

forward network trained using the common BP algorithm is either as good as or even slightly 

better than more sophisticated networks. 

It also shows that the use of grouped variables as input (Model – A2) may be less beneficial 

than that of the raw variables (Model – A1), provided an appropriate training scheme is chosen, 

where perhaps grouping of variables had resulted in evening out their scale effects. The most sui-

table network, FFBP Model – A1, has the highest CC = 0.996 and 2R  = 0.992; and lowest MPE 

= –0.34, MAD = 5.1, and RMSE = 5.01. All the ANN models featured small RMSE during trai-

ning; however, the value was slightly higher during validation. The models showed consistently 

good correlation throughout the training and testing. 

In the end therefore the network configuration (FFBP Model—A1) along with corresponding 

weight and bias matrix given in Table 6 is recommended for general use in order to predict the 

penetration depth. 

The value of MAD in the prediction of penetration depth by regression model given in Table 2 

(10.3% for all data) may be compared with the performance of neural network model—A1 whe-

rein the MAD value is only 5.1%. The histogram of percentage error in the prediction of penetra-
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tion depth by regression and the two neural network models is shown in Fig. 9. This clearly indi-

cates the supremacy of the neural network model over the regression model and the one available 

in literature. Further, the neural networks have advantages over statistical models like their data-

driven nature, model-free form of predictions, ability to implicitly detect complex nonlinear rela-

tionships between dependent and independent variables, ability to detect all possible interactions 

between predictor variables and tolerance to data errors. 

The predictions should be preferably used within the range of the experimental data because 

of the possibility of intervention of new phenomena when used beyond the range. 

 

 
Figure 7: Observed versus predicted  (mm)x  for Model—A1. 

 

 
Figure 8: Observed versus predicted x d  for Model—A2. 
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Figure 9: Histogram of percentage error in different models. 

 

8 CONCLUSIONS 

A regression based empirical model has been developed based upon the data available in literatu-

re for the prediction of penetration depth in concrete target by ogive-nose steel projectiles. The 

proposed regression model is more accurate predictor of penetration depth than the other availa-

ble in literature. 

Predictions based on the use of raw dimensioned data (V ,W , cf  and d ) in the development of 

neural networks were better than those based on the grouped dimensionless forms of the data, 
2 3

cMV Sf d . The neural network with one hidden layer was selected as the optimum network to 

predict penetration depth. The network configuration of Model – A1 with FFBP is recommended 

for general use in order to predict the of penetration depth in concrete target by ogive-nose steel 

projectiles. 

The neural network model is far better than the regression based models – proposed as well as 

the other available in literature for the prediction of the penetration depth in concrete target by 

ogive-nose steel projectiles. 
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