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1 INTRODUCTION

Since scientific introduction of piezoelectric materials as an important element of intelligent and
smart systems, numerous researches have been devoted to analysis of these materials in different
configurations and geometries. Application of piezoelectric materials in various environments with
opposite conditions has forced researchers to introduce new group of materials with variable
properties along the directions of coordinate system. These materials were known as functionally
graded materials (FGMs). The first idea for producing this group of materials was their applica-
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tion in environments with high temperature gradient and their forming ability. FGMs are made
of a mixture with arbitrary composition of two different materials, and volume fraction of each
material changes continuously and gradually at the entire volume of the material. A brief review
on the literature indicates that cylinder, plate and sphere have been mostly used for mentioned
analyses.

Woo and Meguid (2001) investigated the nonlinear analysis of FG plates and shallow shells
under transverse mechanical loads and temperature field. Von Karman theory for large deflection
analysis has been employed for solution. They proposed an analytical solution for the coupled
large deflection analysis of mentioned structures. A spherical shell made of homogenous materials
subjected to mechanical and electrical loads has been studied by Chen et al. (2002). Liu et al.
(2002) developed an analytical model for free vibration analysis of a cylindrical shell under me-
chanical and electrical loads using Mindlin’s theory. Distribution of electric potential has been
modeled by a sinusoidal function along the thickness direction. Piezoelectric analysis of a cylindri-
cal shell was performed by Peng-Fei and Andrew (2004). They used the theory of elasticity for
evaluating the behavior of piezoelectric structure. Exact analysis of a cylinder made of functional-
ly graded piezoelectric materials (FGPMs) under bending was studied by Lee and Lu (2005). It
was supposed that the material properties changes continuously and gradually along the radial
coordinate system based on a power function distribution.

Dai et al. (2007) analyzed electro-magneto-elastic behavior of functionally graded piezoelectric
(FGP) cylindrical and spherical pressure vessels. All mechanical, electrical and magnetic proper-
ties were assumed variable along the radial coordinate system based on a power function.

Electro-magneto-elastic analysis of an orthotropic cylinder has been performed by Babaei and
Chen (2008). The cylinder was assumed infinitely long and consequently, an one dimensional
analysis has been presented. The cylinder has been polarized and magnetized radially. The effect
of centrifugal load also was studied on the electro-magneto-elastic responses of the problem. Two
dimensional theory of elasticity has been employed in order to investigate the thermo-elastic be-
havior of a FG cylinder under thermal and mechanical loads by Jabbari et al. (2009). Sarfaraz
Khabbaz et al. (2009) investigated the nonlinear analysis of FG plates under pressure based on
the higher-order shear deformation theory. The effect of the thickness and non-homogeneous in-
dex was investigated on the distribution of the displacements and stresses. It was supposed that
cylinder has been constrained with simply supported boundary conditions.

Khoshgoftar et al. (2009) presented the thermo-elastic analysis of a FGP cylindrical pressure
vessel. It was supposed that all thermal, mechanical and electrical properties obey a power func-
tion along the radial direction of the cylinder. This analysis was performed using the plane elas-
ticity theory.

Electro-magneto-thermo-elastic behaviors of a FGP hollow cylinder under a uniform magnetic
field and subjected to thermo-electro-mechanical loads was investigated by Dai et al. (2010). All
mechanical, electric, magnetic and thermal properties were considered variable as a power func-
tion along the thickness direction. They presented benefits of material nonhomogeneity for design
optimization of electro mechanical structures and systems. Sheng and Wang (2010) presented
thermo-elastic vibration and buckling characteristics of a FGP cylindrical shell. Description of
deformation has been performed by first order shear deformation theory and a quadratic function
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has been used for distribution of electric potential along the thickness. The Hamilton’s principle
and Maxwell’s equation were considered for solving the problem. The critical values of axial load,
temperature and voltage were investigated for different boundary conditions. Arefi and Rahimi
(2011) studied thermo-piezo-magneto-elastic analysis of a functionally graded piezomagnetic cyl-
inder.

As mentioned in literature review, most researches about piezoelectric materials have been lim-
ited to three famous structures (cylindrical, spherical and plate). The author thinks that it is
necessary to develope a complete formulation to exactly predict the piezo-magneto-elastic behav-
ior of an arbitrary structure made of functionally graded material (FGM) under mechanical loads
and electric and magnetic fields.

Although some researches have been presented to study the behavior of a shell of revolution,
this study tries to present a complete set of partial differential equations for piezo-magneto-elastic
analysis of a functionally graded piezo-magnetic thick shell of revolution with variable thickness
and curvature. Some incompleteness and incomprehensive relations in previous researches can be
resolved in this study. Some of these works can be presented.

Three dimensional formulation of elasticity for elastic analysis of a thick shell of revolution
with arbitrary thickness and curvature made of isotropic and homogenous materials has been
studied by Kang (2007). This work was performed using the tensor formulation in curvilinear
coordinate system. The assumed limitations in the mentioned work can be improved for more
general applications in the present study.

Arciniega and Reddy (2007) suggested the finite element formulation for nonlinear analysis of
a shell structure based on the tensor analysis. Curvilinear coordinate system with higher order
elements were employed for this purpose. The thickness strain was considered and therefore, a
three dimensional analysis was employed. It was assumed that shear stresses and strains did not
have any effect on the normal strains and stresses, respectively. Some appropriate and useful rela-
tions about tensor analysis and piezoelectric structures were presented in literature (Arciniega
and Reddy 2007, Carrera and Brischetto 2007, Ray and Reddy 2005, Santos et al., 2008).

It will be understood that there are not considered any limitation on the constitutive equations
nor on the direction of functionalities of the used material in the present research. This work is
performed using tensor analysis and an orthogonal curvilinear coordinate system for a completely
general thick shell of revolution (variable thickness and curvature). Using energy method and
minimization of the functional of the system using Fuler equation, governing partial differential
equations of the system can be derived. The outcome of this study can be used for a complete
anisotropic structure. The present formulation can be validated with results of cylinders made of
functionally graded piezoelectric or functionally graded piezomagnetic materials.

2 FORMULATION
2.1 Fundamental geometric relations of used curvilinear coordinate system

For analysis of an arbitrary thick shell of revolution, a curvilinear coordinate system is employed.
Figure 1 shows this curvilinear coordinate system. Two curvilinear and Cartesian coordinate sys-

tems are presented in this figure. For derivation of fundamental geometric relations, let us to
Latin American Journal of Solids and Structures 11 (2014) 2073-2098
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define the appropriate relation between curvilinear and Cartesian coordinate systems. The com-
ponents of curvilinear coordinate system include (y,z,6), which are meridian, normal and cir-

cumferential components, respectively.

The appropriate transformation from (q,,q,,q;) =(,z,0) to (X,X,,X,), is expressed as fol-
lows (Kang, 2007):

X =p Sinl/]COSQ;1 +0, sinwsinﬁgz +(y—zcosz/));3 (1)

—

where, €, is unit vectors along the axis of Cartesian coordinate system, o0, =, +Z and g, is

the normal distance of mid-plane from the vertical axis. The mentioned parameters of the shell
can be observed in Figure 1.

Using Eq. (1), the first important base vector (covariant base vector, g.) can be defined. Co-

variant base vector (gi) along every component of curvilinear coordinate system can be obtained

by using partial derivative of the position vector with respect to the mentioned component of
curvilinear coordinate system using Eq. (2) (Kang 2007, Arciniega and Reddy 2007):

71

ox . - . .7 -
g =X =@= (o, smip),w cosbler +(p, smz/})’w sinfea +(y—zcoszp)jwes

g, = Xﬂz = % = p, . sinycos fer + P, sinysin fe - cos 1,023 (2)

g, = X’q} = % =-p, sinlpsin6;1 -pP, Siﬂt/JCOS@Ez

For completion of derivation of covariant base vector, three undefined expressions including

(p,siny) w,(}/—ZCOSl/))wand O, . appeared in Eq. (2) must be evaluated. For this case, we

have following geometric relations:

dr = dscosy,dy = dssiny,ds = p,dy,r = ;+zsin1p = (pw +z)siny = p, siny

dr ds dy ds . .
—=—CosY = p,Ccosy,— =—siny = p, sin
dy  dy Y =p,cosy dy _ dy Y =p,smy

3)

where, 0, is radius of curvature, r is the radius of mid-plane of curve and r is the radius of an

arbitrary point with orthogonal distance (z) from the mid-plane.
Now, the undefined expressions can be evaluated as follows:

. ar
(p,siny) = 0’_1,0 =P, Co8Y +zcosy = p,cosy,p, =1

(y=zcosy) = p,siny+zsiny =p,siny
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where 0, = 0, +z . The above geometric relations simplify the evaluation of the covariant base

vector as follows:

g =4 = (zi =p, cosw0050;1 +0, COSI/JSinH;z +p0, sinw;‘3
Toy
[0 G - a7 -
& =4,= e =sinycosBfei +sinysinber —cosyes (5)
z

g =X;= % — —rsinfer + rcosfes

After evaluation of covariant base vector, other important base vector (Contra variant base vec-

tor, gi) can be defined.

g'=g"g, (6)

where, g"are metric tensors. The covariant and contra variant metric tensors g;-g" and the

relation between them are expressed as (Arciniega and Reddy 2007):
=&, & =88,

which, gives Contra variant base vector gi as follows:

, - 1 , p
2,=8,-& &, g'\=Ng".&"=—g"=2"2, (7)
&y

1 - Lo
g' =—1[cosycosBei +cosysinber +sinyes]
2

g2 =sinycosber +sinysinfer — cosyes (8)

gt = l[—Sin0;1 + congz]
7

Substitution of Eq. (5) into Eq. (7) gives three components of covariant and contra-variant met-
ric tensors as follows (Kang 2007, Arciniega and Reddy 2007):

1
)

7

1
2 2
§1=8-8 =P &n=88 =1 83 =838 =7>8" =&y =1 ' 833 =

2

(9)
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Figure 1: the schematic figure of a thick shell of revolution with assumed curvilinear coordinate system.

The other important step in derivation of basic geometric relations is evaluation of derivatives of
a vector with respect to components of coordinate system. The covariant and contra-variant de-

rivatives of a vector (v f and v’/ ) can be presented by defining the Christoffel symbols of first and

second kind (Ffl.j and I' ;) (Kang 2007):

_ _ S 7 =y — S
V/‘/ =V, Vfl“y, v, =vi-v r, (10)
The Christoffel symbols are derived as:
# e
Ir.=¢".g,,
1 7
I"11= Poy ’rif _’F;3= ———Cosy
(11)
2 2 2

_ b, Pyy

2 2 : 3 3
I=-p,, I ==rsiny,I'| = 7COS1/J,F23=

2

In this step, the strain-displacement relation can be expressed as (Kang 2007):

] (12)

1
v, ==lv,

AV
) Jo 7

Where,)/l]. are tensor components of strain. Using the appropriate transformation relation between

the physical (€, ) and tensor (¥, ) components (¥, =+g" \g! €;), we have the physical strain
components as (Kang 2007):
Latin American Journal of Solids and Structures 11 (2014) 2073-2098
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(uw+uz) (u6ﬂ+uzs1nw+uwcosz/))

81/}1,0 = ’8196’ = r ’gzz = uz,z

(u -u_ ) (u  —-u,cosy) u
= 1 _ Y z,Y — 1 P,0 0 _ 0,y 13
Vi, — e, J— o (13
1 (u,,—u,siny)
829 A[ r +u6,z]

The final step in derivation of basic equations is evaluation of divergence of the scalar fields. If ¢

is electric potential and P is magnetic potential, therefore, E,H electric and magnetic fields can
be obtained as follows (Khoshgoftar et al. 2009, Santos et al. 2008):

E=-Vg, H=-Vd (14)

Divergence of a scalar filed such as electric potential (@) may be evaluated by using the metric

tensor for obtaining electric field (E) as follows (Santos et al. 2008):

Ei=—€¢=—gia—¢=—\/§a_¢

aq' aq' 15)
15
S L L T S A
v paw
The same equations can be obtained for derivation of magnetic field (H ) as follows:
< 0P 9P 9P
H =-VO— Hw -— H = , H, = (16)

poy oz’ ' 1o

2.2 Constitutive equations for piezo-magneto-elastic formulation

The piezo-magneto-elastic behavior of a thick shell of revolution made of functionally graded pie-
zomagnetic materials can be presented in this section. Three constitutive equations that are nec-
essary for identification of the behavior of the piezomagnetic structures are expressed in vector
form (Khoshgoftar et al. 2009, Santos et al. 2008):

o=Ce-eE-dH

D=ce+nyE+gH (17)

B=de+gE+ uH

where, 0 and & are stress and strain tensors of order two, E and D are electric field and elec-
tric displacement tensors of order one, H and B are magnetic field and magnetic displacement
components of order one and C,e and 7 are elastic stiffness, piezoelectric and dielectric tensors
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of order four, three and two, respectively. d,g and ¢ are piezo magnetic, electromagnetic and

magnetic coefficient tensors, respectively. The constitutive and piezoelectric relations are defined
in terms of physical components (Santos et al. 2008):

O = Cijkl €~ Ci Ek - dijk Hk
D, = Ciik € +771kEk +gika s
Bi = dijk gjk + gikEk + Mika

Imposing the symmetric condition for stress and strain tensors Cit = Cuaig = Cira = Cyure» reduces

the relation in the extended form as follows (Arciniega and Reddy, 2007):
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-

G1W = Cnngw + CHZZSZZ + Cussgge + 2C1112€1pz + 2C1113€we + zcnzagzg - eme - equZ
_emEg - d”‘HW - dnsz - d1|3H9
0,= szngw, + CZZZZEZZ + szzsggg + 2C221281/}Z + 2C22138wg + 2C2223826 - ezzle - ezzzEZ
_ezzzEe - dzlew - dzzsz - d223H9
Ogp = Cssngw, + szgzz + szggg + 2C33125wz + 2C33138w9 + 2C3323€Zg - eslew - esszEZ
_6333Eg - dsale - d332Hz - d333Hg
Gu;z = Clzngww + szé‘zz + C1233899 + 2C12125¢Z + 2C12138¢9 + 2C1223€zg - elZIEw - elZZEZ
_6123E9 - dlZIqu - dlzzHZ - dlstg
Owg = Cl}llgqnp + Cl322822 + C1333899 + 2C13l281pz + 2C13138w9 + 2C13238Ze - eme - el32Ez
_6133E9 - del/l - d]ssz - d133H9
O, = Czsugw, + C2322£ZZ + C2333£99 + 2C2312£¢Z + 2C2313£¢g + 2C232382H - eszw - ez}zEZ
_emEg - dzsle - dzzsz - dzssHe

(19)

Dw =€, +CnE, +C &y +2e“25w2 + 26113%6 +2e,,€,,+ ’71le +n,E +n,E,

+g,H, +g,H, +g H,

D, = €€, FCmE, T€,Eh + 26212%2 + Zemgw +2e,,€, 'H721Ew +n,E +n,E,

+g21Hlp + g22Hz + g23H9

D =e. e +e

o =€, TC€mE,, +C ¢ +2e,,E +2e,,¢E "'23323529+7731E¢+7732EZ+’733E9

33390 312%z 3130
+g31Hlp+g32Hz+g33H3
Bw=d e, +d e +d,¢e,+2d e +2d, . +2d

1Ty 122 133706 1127 yz 13790 123

£,+g,E +g,E +g.E,
+M11H1/) + AuleZ + AMISHe

B, =d +d,,e_+d,,.¢ +2d5¢z+2d £ +2dm£w+g21Ew+g22EZ+g23E9

222 233706 213790

leglpw
+M2]Hlp + ALLZZHZ + A"LZSH@

B,=d, +d,,e, +d;e,+2d,,¢ +2d313£w6+2d323828+g31Ew+g32EZ+gS3E6

31y 322%; 333%g9 312%yz

~+M31Hw +u,H +u H,

The energy method can be employed in order to obtain functional of the system and derivation of

governing differential equations. Total energy of the system includes potential and kinetic ener-

gies. Potential energy is decomposed into mechanical, electrical and magnetic energies that can be

defined per unit volume of the structure as follows (Ray and Reddy, 2005):

w = V0,6, -DE,-BH,]-fy (20)
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where, fl(l =1,7,0) are the component of body force per unit volume. The kinetic energy is
defined as (Ray and Reddy, 2005):

2

2 2
Uk =%)L(I/J,Z,0)[uw+ U+ Uo] (21)

where, A(y,z,0) is density of material. By substituting the total non-zero components of

Oj» &5 D. and E., we arrive to the potential energy per unit volume of the structure as:

ap = %[Owgww +0,E, *Oplpy + 20 £yt 20 0 ¥20,4€, = DWE’/’ -D.E,-D,
_BZ/JHU/ - BZHZ - BgHg] - fwuzp - fzuz - f€u9 (22)

Total energy of the system is obtained by subtraction of the potential energy from the kinetic
energy (Ray and Reddy, 2005):

u=Ux—Up (23)

By definition of unit volume of the structure dV =(p,dy)(rd@)dz = p,rdyydfdz and consider-

ing Eqgs. (21, 22 and 23), the total energy and the energy functional of the system can be consti-
tuted as follows:

U=[[[prudpdzdd= [ [ [F(u ,u,,u,.¢,)dydzdd —>F(u ,u,,u,.6,t)=p,ru (24)
0z vy 0 zy

The obtained functional of the system (Eqs. (24)) can be substituted in the Euler’s equations in
order to derive the final governing differential equations of the system as follows:

[ oF __(

u, o ou, ayj ou,, oz uw 96 du,
aF 0 9

" —5% )_ﬁ(—a zw)__(—“)_ﬁ(a ZH)
F 9 9 (25)
] ——( )——( )
u, ot ou oy ou,, 9z ou 00 " ou,,
oF 9 oF .
@‘E(a)—w(%)——(—)—ﬁ(%)

a

az‘a(a?)‘w(—w >‘—(—)‘£<a?>

where, F(uw,uz,ug,q),(l),t) = p,ru is defined as the functional of the system. By performing the
appropriate operations and simplifications, we will have the final energy functional as:
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F(u,,u,,u,,¢,t)= p2r1_1
2
= %ﬂpzr[uw +u,

2
+4C,;6,,” +2C, €

2

2
. 1 2 2 2 2 2
+Ues ]_Epzr[clmgw +C2222€zz +C3333€gg +4C121281/jz +4C13138y/¢9

oy T 2C 36096, +2C 0 655€, +4€,,(C106,, +Chn€ +CrnéLy)

+4‘5‘ZZ (Can Ep T Cos Epo Cons 52(;) + 455(; (Cisna &yt Cins Epo t Cins ng)

+8C1136,0¢6,, +8C 16,46, +8C 16,406, —2¢, E

woyz o -2¢,6,E, - 2¢5,6,E, -2¢,,E ¢,

(4 61.01//

-2e,,E,¢,, —2¢,E ¢, -2¢,,E,6, -2¢,E ¢, -2¢,E €, -4E (e,,¢,,

+€,36,) +€iE,y)
—4E,(€,,€,, + €13,y + €13 8,9) —4E, (€56, + 536, +€338,5) =1, E, > =0, B, = E (26)
‘2’712E2Ew - 27713E9Ew -2n,EE,
-2d,,H,¢,, -2d,,H ¢, -2d,;,Hyey, -2H, (d €, +dsy 64 +2d,5 6, +2d 506, +2d 55, €,)
-2H,(d, ¢, +d;,64 +2d,,¢,, +2d,5,¢,, +2d,,€,,)
-2H,(d,;¢,, +dn€,, +2d 56, +2d 556, +2d 5 €,)
—2g“HwEw -2g,HE -2g,.H,E,
-2H,(g.E, +g.E,)-2H,(g,E, +8:,E,) -2H,(g:E, +g»E))
—u,H,” - w1, - H,? =20, HH -2u,HH, -2u,HH, 1+ pr(f u, +fu, +fu,)
Substituting Eq. (26) into Eq. (25) gives five field equations of an arbitrary thick shell of revolu-
tion for a general nonhomogenous piezomagnetic material as follows:

Au

Py yy
+A4,u

+A2uzﬂ +A3uﬁﬁg +A4¢2W +A5¢{ZZ +A6¢w +A7d>W +A8<I>’ZZ +A9<I>’gﬁ +A,u
+Au

z.yy

+Au

Oy Y,zz

0,zz

+A14u://,z96 +A15”z,0ﬁ +A16uz,zl// +A17”5,0.p +A1su +A19”

Y.zy V.0
z.6p +A21u€,zt/} +A22”9,9z +A23”1,o,9z +A24uzﬂz +A25¢,zw +A26¢,92p +A27¢,02 +A28q),zz,u

+A29q),01p +A30q),ez +A31uy;,y) +A32”z,z +A33”a,9 +A34”w,z +A35uz,1// +A36“

+A,u (27-1)
y.0 + A37” 0.

+A38uz,9 +A39u9,z +A4o¢,¢ +A41¢,z +A42¢,H +A43¢,¢ +A44¢,z +A45¢,5 +A46u1/1 +A47uz

+A i, + Ol = Aoty

Bluz/r,ww +Byu, . +Bu,, +B4¢,w +Bp.. +Bpy +B7q),w +B;® . +B® ,, + B, +Bu

zyy Oy

+Bl2uz//,zz +B iy, +B . g +B15un//,6¢9 +BlG”1/},zz// +B17uz,zz// +Bls“9,mp +B19uz//,ﬁz// +B20uz,t91// +leu9,z./;
+Bot gy + By, g + By, o + By, +ByPy, + By, +By® ., +B,®@,, +B @, +Bu,,

27-2
+Byu,  +Bu,, +Bs4”¢,z +B35uz,1// +B36uw,z9 +BS7“H,1// +Bu, ,+ By, +B4O¢,y) +B,0. ( )

+B42¢,9 +B43(D,¢ +B,P. +B45(D,H +B46uz// +Bu, + B, +p,0f . =B u:
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Cu

+C . +Cl3uz//,zz +C14un//,66 +C g, gy +C

+C2uz,zz +C3u9,59 +C4¢,W +C5¢,zz +C6¢,aﬁ +C7(I),W +qu),zz +C9(D,€H +C\u

+C17uz,z1// +C18“n9,5./; +C g

+Cu

yyy Oy Yy

w0y vy +C20”z,5./; +C21”.9,z1p
+C o, g +Cotty g, +Cou, o +Cos0., +Co0y, +C iy +C @ +C, @, +C, @, +Cau,, , (27-3)

+Cu, . +C33“ﬁ,9 +C34”w,6 +C35”e,w +Cu, ,+Ciuy,, +C38uz//,z +C39uz,1// +C40¢,w +C9. +C 0,

+C @, +C @, +C @ ) +Coqu, +Cpu. +C oy + py1f, =Cy uo

Dlu;/;,z//z//
+D,,

+D,u

+ D2u + D3u5’,95 + D4¢’1/,1/; + D5¢,zz + D6¢,5¢9 + D7q)

+Dju,,, + D14uw,az9 +Dj5u, 4 +Djgu

+ ng{zz + D9<I>ﬂﬁ +Du

+ Dl7uHW +Dju

7,72 K77 zyy

+D,u
+D

pay *Digly g, (27-4)
+ D22uﬁ,f}z + D23u1p,t92 + D24uz,ﬂz + D25¢,zz// + D26¢,6‘zp + D27¢,f)z + DZX(D,zzp

uﬁ,wz/) Y,7z z,2Y

7,60y 21uH,ZI,U

+D29q),f)zp +Dy @, + D31uw,w +Dyu,, +Dyu,, + D34uz,¢ + D35uz//,z + D}suzp,a + D37uﬁ‘z,u
+Dyu, , + D39u6,z + D40¢,zp +D, ¢, + D4z¢,y + D43(D,¢ + D44q),z + D45q),9 + D46uzp +Dgu, +Dyu, =0

Eu

+E,,u

v T Eyu,,, +Eju, 0+ E4¢,w +Ep,, +Epy + E7d>’W +E®@,, +E® ,, + Elouzw + E“ugw

7,77

+Eju,,, +E U, 0 +Ejsu, 4 +Equ,,, +Ejjug,, +Egu, , +Egu, 5, +Eyu

.0y 2,0y
+Eyu,,, +Epuy,, +Epu, , +Eu , +Eyo, +Ep, +Eng, +E®  +E, @, +E, @,

Y,zz Z,2Y

Y,zy

(27-5)

+Eju,, +Epu,  +Eju,,+Eju,  +Eju,  +Eju, ,+Eju, +Egu  +Eju, +E 9,

Yy Y.z
+E ¢, +Enp, +E®@, +E, @, +E, P, +Eu, +E u, +E u, =0

where, 4;,B;,C;,D;,E; are variable coefficients presented in the Appendices 1-5. Eqs.27-1, 27-2,

27-3, 27-4 and 27-5 are the complete set of partial differential equations, which describes the time
dependent piezo-magneto-elastic behavior of a functionally graded piezomagnetic thick shell of

revolution.

3 RESULTS AND DISCUSSION

This section presents two applied problems of functionally graded materials. These problems are
solved using the obtained differential equations (Eqgs. (27-1), (27-2), (27-3), (27-4) and (27-5))

with some assumptions.
3.1. Reduction of obtained equations for a functionally graded
piezoelectric cylindrical shell

For validation of the obtained differential equations and applying them for well-known applied
problems, it is convenient to investigate the relation between mechanical and electrical compo-
nents in a rotationally symmetric functionally graded piezoelectric cylinder with stable conditions
(Khoshgoftar et al., 2009).

Due to symmetric assumption (% =0) and disregarding of any axial mechanical and electrical
d

loads (ai=0), only the mnonzero components of displacement is radial displacement
Y
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u, =u,(r)= 0, which is only a function of radial coordinate. Based on the above assumptions, the
electric potential is a function of radial coordinate ¢ =¢@(r).

By applying the above simplifications, within the numerous coefficients, only six coefficients
remain non-zero through the analysis procedure. They include Cyyy5,C5333,C0033,€200,€33p and

1y, . Considering the above assumptions and then the geometric relations for a cylindrical shell,
(y =%,p2,pg —>®©,0,+2=1,0, = const,f = Arwz,%r = AZ), we will have strain-
displacement and electric potential-electric field relations as follows:

E__ 99 (28)

I ur
—,E,
r or

E =& =1 =—’g(}5=

The corresponding components of stress and electric displacement may be obtained using the
above relation and the variable distribution of material properties as follows:

o, = C2222 (r)gﬁ + C2233 (I‘)E% —Cy (I‘)Er

Ogg = C2233 (r)grr + C3333 (I‘)é‘% — € (I‘)Er (29)
Dr =Cm (r)gn +Cy3, (r)ggg +77 (r)Er

The variable material properties can be considered as a power function along the thickness direc-
tion of the cylinder (Khoshgoftar et al., 2009; Rahimi et al., 2011):

szzz (I') = C2222 orlaczm (I') = C2233or1: C3333 (1‘) = (:333301’1 (30)

1 1 1 1
Com (r) =Cuol €3, (I‘) =Canol 1 (I‘) =1nol )]'(r) = }‘or
By applying the mentioned assumptions in this section, only Egs. (27-2) and (27-4) remain non-
vanished. The coefficients of two non-vanishing differential equations are evaluated as follows:

B, =(Conpyr) =Coyr' "' s,

By=enpr=eny'"p,

By =(=1Cin = 0,C s SNy + (1C ) ), +(C o 0,7) , +C it +C o 0, SINY + (0,C 1) )

=(Coufpor), = Coagt’ po1), = (I +1),r'C s

B, =(-p,sinye,, + (empzr)’z )= (—pzemorl + (emorlpzr)g )= rlpz((l +1)e s, —€50p)
0L s

1111 1112

By =(- SiIIZI/I -C,5 siny — +(

r ) b

1
,02C 3323

3333()

. PoC s
)5 Siny) = (—%

)y +Cuny, siny +C o, cosy +(Cnr), +(Conp,), siny

33]2’1/}

+C 1, + ( sin* g + (Cowgr' 0,), sing) = '™ 0,(=C oy +1C 1)
0 of 02), ) 0 0

In order to attain to appropriate results and better comparison with the literature, it is better to

divide all the sentences by pzrl _l.Therefore, the first differential equation can be composed as:

FComt, o +€omgt @, + (L A+ DIC o, +7 ([ + Dy —€1320)@, +(=C g +IC s, + A’ =0 (31)
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The second equation must be evaluated using Eq. (27-4). The appropriate coefficients can be then
calculated as:

1+1
Dz = 1€,y = 0,C0

D, =-p,rn,, = —,02r1+177220
Dzs = ((pzrezzz ),z + 0,€:5 Sim/’) = ((Iozrezzzorl),r + pzezzzorl) = pzrl((l + l)ezzzo + e3320)
D35 = _((,02”722 )Z) = _((pzrnzzorl),r) = _(1 + l)nzzor]:D3s = (/026332 ),Z Sim// = (pzezszor]),r = 1p2r17163320

Therefore, second equation can be composed as follows:

Com orzur,n —Mx 0r2¢,rr + I‘((l + 1)ezzzo + ea3zo)ur,r - (1 + 1)7722 0r¢,r + 16332 o = 0 (32)

It is observed that the present general multi-field formulation can predict exactly the behavior of
a functionally graded cylinder. The obtained simplified equations indicate that the present formu-
lation using the curvilinear coordinate system and Hamilton’s principle for arbitrary nonhomoge-
neity and variable thickness and curvature is identical with that of the literature that has been
derived using the plane elasticity theory [10]. This case study justifies the capability and necessity
of the present study in derivation of the governing differential equations of the curvilinear coordi-
nate system for piezoelectric structures with arbitrary geometry and material properties.

3.2. Reduction of obtained equations for a functionally graded piezomagnetic
cylindrical shell

The relation between mechanical and magnetic components in a symmetric functionally graded
piezomagnetic cylinder with stable conditions can be derived using the tensor analysis and com-
pared with reference (Arefi et al., 2011).

After applying previously mentioned assumptions in Sec 3.1, and considering magnetic poten-
tial instead of electric potential @ = ®(r), within the numerous coefficients, only six coefficients

remain non-zero through the analysis procedure. They include Cj557,C3333,C9233,d200,d33, and

Uy, - The corresponding components of stress and magnetic displacement may be obtained using:

o, = C2222 (r)gn’ + C2233 (r)gﬁﬁ - d222 (r)Hr

Ogy = C2233 (r)gn + C3333 (r)ggg - d332 (I‘)Hr (33)
Br = dzzz (r)gn + d332 (1‘)899 + Uy, (I‘)Hr

where OijagklaH « are components of stress, strains and magnetic field, respectively.

The variable material properties can be considered as a power function along the thickness direc-
tion of the cylinder (Arefi et al., 2011):

ijk » My are stiffness and piezomagnetic and magnetic coefficients, respectively.
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C2222 (I') = szzzorla C2233 (I‘) = C2233 orlac3333 (I‘) = C3333orl
(34)

dzzz (I‘) = dzzzorlad332 (I‘) = d332 orla Uy (I‘) = ;uzzorl

By applying the mentioned assumptions in this section, only Egs. (27-2) and (27-5) remain non-
vanished. The coefficients of two non-vanishing differential equations are evaluated as follows:
Bu,,+B®, +Byu, +B,®, =0

B, =(Cuwmp,r),By=dmpyr,By, = ((1Co ),1/' + (C2222p2r),z +(/O2szzs),,9)

B, =(-rd,,-p,sinyd ., +(rd,, ),1/; + (dzzzpzr),z +(0,d ),9)

After some simplifications the first differential equation can be composed as:

rzczzzzour,,r +dzzzor2q),,r +(l +1)}’C22220u,’, +l"((l +1)dzzzo _dnzo)q),r +(_Csm() +ZC22330)“, =0 (35)

The second equation must be evaluated using Eq. (27-5). The appropriate coefficients can be then
calculated as:

Eu,  +E® +Ej u +E, P =0

Ez = pzrdzzz :Eg = Oty aE32 = ((rdZZI ),y, + (pzrdzzz ),Z:E44 = _((rfulz),w + (pzrﬂzz ),z + ([Ll23 ,02),9)

Therefore, second equation can be composed as follows:

dpot?u, = oy 0@+ (14 1)d oy + iy, — (14 1) iy ot @, +1d350u, =0 (36)

It can be indicated that the obtained formulation in this paper based on the tensor analysis and
in an orthogonal curvilinear coordinate system is identical with those relations derived in previous
work (Arefi et al., 2011).

4 NUMERICAL RESULTS

In this section, for validation of the obtained differential equations for the simpler geometries and
boundary conditions, the responses of a stationary functionally graded piezoelectric cylinder under
80MPa inner pressure is presented. The inner and outer radii of cylinder is considered 0.6, 1. All
material properties are considered to varying along the radial direction by a power function
(Eq.30). In order to evaluate the responses of the system, Eqgs. (31) and (32) must be concurrently
solved. For convenience, these equations are reconsidered by setting @ =0.

Vzczzzzour,,«, +ezzzor2¢,w +(l +1)VC2222()”,J +I”((l +1)62220 _63320)¢,r +(_C33330 +1C22330)ur =0

2 2
€ngl Uy =Ngh @, +7 (L +Denyg +espo, , —(L +Dnr, +lesyp, =0

(37)

One can detect that these equations are a system of differential equations of order two. Unknown
functions are radial displacement # and electric potential function @. These equations are known

as Cauchy- Euler equations. The solution of the system can be defined by changing the variable

fromr tos as r =e". This change yields two differential equations as follows:
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szzzour,ss + ezzz()¢,ss + lszzzourqS + (lezzz() - 63320)¢,S + (_C33330 + lsz330)ur =0 (38)

€xmogUr,ss _77220¢,35 + (lezzzo + e3320)ums _177220¢,S + 133320ur =0

where, ;r =u, (r= €S)and ;5,

4
%
r E u ci r

@.(r =¢"). Solution of Eq. (38) can be expressed as follows:

a
!

¢= EM (39)
Co4C “01/1. +cmoz -C..
M'=
! € + (e 720 eszzo)z’,‘

where, ﬂl are the roots of characteristic equation and u_, are constants of integration. Characteris-

tic equation is determianat of coefficient of Eq. (38) as defined as follows:

[chzzzzo + chzzzzo + D(_C33330 + lszszo)];r + [Dzezzzo + D(lezzzo - 33320)]& =0 (40)
[D € t D(lezzzo + e3320) + lemo] _[D Mg + Dl77220]¢ 0

d
where, D is defined as the derivative with respect to s: (D = d—) By setting D =A, the charac-
s

teristic equation can be defined as follows:
/12C22220 + /Uszzzo + (_C33330 + ZC22330) /1232220 + ;L(lezzzo - esszo) 0 (41)

/1262220 + A(Zezzzo + 63320) + 163320 - (/1277220 + ;Llnzzo)

Solution of characteristic equation defined in Eq. (41) presents four roots of the problem. Solution
procedure can be completed by employing required boundary condition.

In this section the appropriate electrical and mechanical boundary conditions are determined.
The four boundary conditions can be written as:

o,(r=a)=-80MPa o, (r=b)=0

pir=a)=0 Pr=b)=0 )

After employing boundary conditions of the system, numerical results can be presented. Figures
2, 3 show the radial distribution of radial displacement and electric potential along the thickness

direction for different values of non homogenous index.
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Figure 2: The radial distribution of radial displacement for a functionally graded piezoelectric cylinder.
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Figure 3: The radial distribution of electric potential for a functionally graded piezoelectric cylinder.

5 CONCLUSION

1. Based on the tensor analysis and using an orthogonal curvilinear coordinate system, a complete
set of linear partial differential equations for piezo-magneto-elastic behavior of a functionally
graded piezomagnetic shell of revolution with variable thickness and curvature has been derived.
These formulations can be applied for studying a general shell and can be reduced for analysis of
simpler geometries such as cylinders and spheres.

2. The governing differential equations have been derived with considering no limitation on the
constitutive equations. It was assumed that all strain, electric and magnetic fields have direct and
explicit effect on the all stresses, electric and magnetic displacements. This is a comprehensive
model for studying an arbitrary structure made of completely anisotropic functionally graded

piezomagnetic materials.
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3. The derived governing differential equations have been reduced for studying the behaviors of

functionally graded piezoelectric and piezomagnetic cylinders. These reductions have been vali-
dated with literatures (Khoshgoftar et al., 2009, Arefi et al., 2011).

Nomenclature

A,,B,C,(i=1.49),D,,E (i=1.48)

Cijkl

Ciik
F(u,,u,,u,,$,P,t)

g;

[S—

ds
Si > Sij

uz/}auzauﬁ

(=N

The coefficients of partial time dependent
differential equation of system

Elastic stiffness coefficient
Physical components of electric displacement

Piezomagnetic coefficient

Vector and components of electric field, re-
spectively.

Piezoelectric coefficient
Functional of the system
Covariant base vector
Contra-variant base vector
Covariant metric vector

Contra-variant metric vector

Vector and components of magnetic field,
respectively.

Nonhomogenous index
Radius of revolution for any arbitrary point
Radius of revolution of mid plane

Differential distance in meridian direction

A symbolic tensor of order one and two, re-
spectively.

Orthogonal components of displacement in
orthogonal coordinate system

Total energy per unit volume of the structure

Potential energy per unit volume of the struc-
ture

Kinetic energy per unit volume of the struc-
ture
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2091

Uy ,Uz,Up

dv

q;5 X;

Py
12
£

ijk >~ ij

Velocity components in curvilinear coordinate

system

Unit volume of the structure

Position vector of an arbitrary point

Component of position vector in Cartesian

coordinate system
Vertical distance of mid-plane

Second component in curvilinear coordinate
system that describes normal distance of an
arbitrary point from mid-plane

Poisson ratio

First component in curvilinear coordinate
system that describes the angle between nor-
mal to mid-plane and vertical axis (axis of
revolution)

Third component in curvilinear coordinate
system that describes circumferential direction
and it’s angle

Distance between mid-plane and axis of revo-

lution along normal to mid-plane.

Meridian radius of curvature

=p, +z

=PptZ

Christoffel symbols of first and second kind
Tensor component of strain
Physical component of strain
Electric potential

Magnetic potential

Physical components of stress tensor
Dielectric coefficient

Magnetic coefficients

Del operator

Describes the magnitude of a component
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Appendix 1
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r Ps P5 r r
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Appendix 2

rClllZ p2C3323 reHZ p26323 rdll’
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Appendix 4
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