
477 

 

Abstract 

This paper presents an extension of BATTINI´s formulation to 

two-dimensional analysis of nonlinear dynamical problems.   The 

main interest of the co-rotational approach is to separate rigid 

body motions from pure deformations at the local element level 

through co-rotated framework. Employing co-rotated framework 

to derive both internal and inertial terms is the objective of the 

formulation presented in this study. Numerical examples are pre-

sented to illustrate the ability of the proposed co-rotational formu-

lation.  
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1 INTRODUCTION 

The 4-node plane element is considered as two-dimensional continua. Many contributions are con-

ducted in the literature for developing accurate and competent 4-node plane elements. Most of these 

studies only consider linear formulations (Przemieniecki et al., 1964; Felippa, 2006; Ahmadian and 

Faroughi, 2011).   

 Co-rotational (CR) approach is a simple way to derive non-linear elements at least for problems 

possessing large displacements and rotations, but small strain in local coordinates. The CR appro-

ach was originally introduced by Wempner (1969); Belytschko et al. (1973).  Several authors used 

CR approach to develop efficient beam and plate elements in nonlinear static and dynamic analysis 

of structures (Alsafadie et al., 2010; Battini, 2007; Behdinan et al., 1998; Le et al., 2011; Le et al., 

2013). Recently, Eriksson and Faroughi (2013) developed a triangular space membrane element 

based on CR approach for quasi-static inflation simulation. Felippa and Haugen (2005) provided a 

comprehensive review of the state of the art of CR formulations.  
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 Decomposing the motion of the element into rigid-body and pure deformational parts is the main 

idea behind the co-rotational approach. This goal is attained through a local reference system that 

continuously rotates and translates with the element. The deformational response is expressed at 

the level of a local system, whereas the geometric non-linearity persuaded by the large rigid-body 

motion is incorporated in transformation matrices relating the local and global internal force vectors 

and tangent stiffness matrix (Battini, 2008; Eriksson and Faroughi, 2014). The main advantage of 

the co-rotational approach is the fact that different material models and different geometrical linear 

theory can be easily used in the local deformation when the pure deformation part is assumed to be 

small (Battini, 2008; Eriksson and Faroughi, 2014).  Another interesting feature of the CR approach 

is that the transformation matrices are identical for elements which have the same number of nodes 

and degrees of freedom.  

 In the literature, many applications of 4-node plane in different fields of analysis have been in-

vestigated.  Seki and Atluri (1994) developed a 2D plane element using an assumed stress hybrid 

element. Fores (2006) employed an assumed strain approach for triangular element based on a total 

Lagrangian formulation. Akasha and Mohmed (2012) developed the geometrical nonlinear formula-

tions for a 4-node plane element based on total Lagrangian formulation. On the other hand, many 

researchers have applied the co-rotational (CR) technique as an alternative approach to study the 

geometrical nonlinear analysis of structures. This approach has been extensively used in construc-

tion of beam (Crisfiled, 1990; Battini, 2008; Le et al., 2013), plate (Izzuddien) and shells elements 

(Eriksson et al., 2002; Battini, 2007). The CR technique has been rarely utilized in plane structures 

(Mohammed and Majied, 2014), and Battani (2008) was the first who developed a nonlinear static 

co-rotational 4-node plane element. Regarding the nonlinear dynamic formulation of 2-dimensional 

4-node plane element, to the best of author’s knowledge, there is no complete numerical analyses 

developed using the co-rotational approach.  

 The main target of this paper is to develop a 2D CR nonlinear dynamic formulation for flexible 

plane structures. The concept of CR framework (decompose the motion of element into pure defor-

mation and rigid-body) is adopted to obtain the internal force vector, tangent stiffness matrix and 

inertia force vector and tangent dynamic matrix. With a CR formulation, a linear 4-node plane 

element is used to model the geometrical nonlinear behaviour of plane structures in local coordina-

tes.  

 Regarding the solution of nonlinear dynamic equation of motion, the Newmark method is im-

plemented in this work. A predictor-corrector procedure is used to solve the nonlinear dynamic 

equation of motion. Indeed, to satisfy the nonlinear dynamic equation of motion at each time step, 

a modified Newton-Raphson method is employed (Bathe, 1996).  

 

2 CO-ROTATIONAL FORMULATION 

This section presents the dynamics of the two-dimensional co-rotational formulation for 4-noded 

plane element. To obtain the dynamic nonlinear co-rotational formulation four terms must be defi-

ned. The first one determines angles of rotation between co-rotating frame and global coordinate; 

the second one expresses the relation between local and global variables. The third term is defined 

to attain the internal force vector and tangent stiffness matrix, and lastly, the fourth term is consi-

dered to obtain the inertia force vector and dynamic tangent stiffness matrix.  In following sections, 
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Sections 2-1 and 2-2, the internal force vector and tangent stiffness matrix developed by Battini 

(2008) are reviewed and reproduced for simplicity and clarity. Then, in Section 2-3, the extension of 

the formulation is presented for two-dimensional analysis of nonlinear dynamical problems. 

 

2.1 Coordinate systems, 4-node plane kinematics 

A plane finite element with four corner nodes is shown in Fig.1. It is described by node coordinates 

in its referenced positions, and their displacements. The global coordinate system is defined by

( )O,X,Y . 
 

 
Figure 1: Kinematic of element (Battini, 2008). 

 

 The global coordinates and global displacements of node i are denoted by ( )r ,i i iX Y=  and 

( )u ,i i iU V=  respectively. The origin of local coordinates, ( )C,x, y  is taken at center point, C, 

which is calculated by 
 

 ( ) ( ) ( )r 1 2 3 4 1 2 3 4

1 1
, ; ;

4 4c c c c cX Y X X X X X Y Y Y Y Y= = + + + = + + +   (1) 

 

 The axes of the local and global coordinate systems are considered parallel to the undeformed 

configuration. Therefore, the local coordinates of the node i is defined by 
 

 ( )r , ; ;o
i i i i i c i i c

x y x X X y Y Y= = − = −   (2) 

 

 The element motion initially up to deformed configuration is divided in two steps. The first one 

is the rigid translation and rotation of the initial element. The rigid translation is described by the 

movement of the center point of the element, C, expressed in the global coordinate, and denoted by 

uc that is calculated as 
 

 ( ) ( ) ( )u 1 2 3 4 1 2 3 4

1 1
,

4 4c c c c c
U V U U U U U V V V V V= = + + + = + + +   (3) 

 

 The rigid rotation, denoted by the angle θ , describes the orientation of the local coordinate sys-

tem in the current configuration.  After some algebraic manipulations, the rigid rotation is obtained 

as follows (Battani, 2008):  
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( ) ( )

( ) ( )

4

1

4

1

tan
i i i c c i i i c ci

i i i c c i i i c ci

x Y V Y V y X U X U

x X U X U y Y V Y V

θ =

=

 + − − − + − − =
 + − − + + − − 

∑
∑

  (4) 

  

 The second step is a local deformation concerning to local coordinate which is defined by the 

local deformation displacements ui , i=1,...,4. These displacements are expressed as 

 

 
cos sin

sin cos
i i i c c i

i i i c c i

u X U X U x

v Y V Y V y

θ θ

θ θ

       + − −           = −           − + − −             
  (5) 

 

 Finally, the local and global displacement vectors are 

 

 P P1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4;
T T

l g
u v u v u v u v U V U V U V U V   = =         (6) 

 

2.2 internal force vector and tangent stiffness matrix 

Since the internal virtual work in both local and global coordinate system is equal, the transforma-

tion matrix between global and local coordinate systems can be obtained using the variational rela-

tion between local and global displacements. The relation between the local internal force vector 

and the global one fg  is 

 

 P f P f P B fT T T T
g g l l g lW δ δ δ= = =   (7) 

 

 The global internal force vector can be specified by 

 

 f B f f K P;T
g l l l l
= =   (8) 

 

 In the literature, there are many linear formulations to calculate the local stiffness matrix Kl  

and internal force vector fl  
associated with Pl . The global tangent stiffness matrix is expressed as: 

 

 f K Pg g gδ δ=   (9) 

 

 Taking the variation of Eq. 8, (Le et al., 2013), it leads to the global stiffness matrix as (Battani, 

2008): 

 

 K B K B E -F G - G FP E,T T T
g l

 = +      (10) 

where 

 
( )diag , , ,B PE P = I - AG E R R R R R

P f F =1 2 3 4 5 6 7 8 2 1 4 3 6 5 8 7

cos sin
; ; ;

sin cos

;

T

T
T
l n n n n n n n n n n n n n n n n

θ θ

θ θ

 −  = = =   
  

   = − − − −      

  (11) 
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 The matrices A and G show the effects on the deformational displacements from a rotation of 

the reference system and they can be expressed as (Battani, 2008): 

 

( )

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 44

1

1

T

d d d d d d d d

i di i dii

y x y x y x y x

y x y x y x y x

x x y y
=

 = − − − −  

 = − − − −  
+∑

A

G
  (12) 

 

where ( ), ; 1,..., 8i ix y i =  denotes the initial coordinates of node i in the undeformed element system, 

and ( ), ; 1,..., 8di dix y i =  denotes the deformed coordinates of node i which is calculated as dix =  
;i i di i iu x y v y+ = + . 

 

2.3 Inertia force vector, mass matrix and tangent dynamic matrix 

In this section, the inertia force vector, mass and tangent dynamic matrices are derived. In order to 

formulate internal and inertia terms, the same kinematic explanation of co-rotational is implemen-

ted.   

 The kinetic energy of an element, KE , is obtained as 

 

 ( ){ }2 21
KE

2 G G
t u v dAρ= +∫ ɺɺ   (13) 

 

where, ρ  stands for the material density [kg/m3], t is the thickness and Guɺ  and Gvɺ  denote the glo-

bal velocity components. The inertial force vector is computed from kinetic energy by employing 

the Lagrangian equation of motion, 
 

 
KE KE

g g

d
f

dt

   ∂ ∂   = −   ∂ ∂      
ɺK
P P

  (14) 

 

in which the kinetic energy, KE , reads as: 

 

 
1

KE
2
T
g g

= ɺ ɺP MP   (15) 

 

where M  is the global mass matrix and it is given by 

 

 M T TT lm=   (16) 

 In Eq (16), T and lm  denote the rotation matrix and local mass matrix of four-node plane ele-

ment. In the literature, several formulations are usually taken for the local mass matrix lm , such as 

lumped mass matrix, consistent mass matrix obtained from bi-linear shape functions or supercon-

vergent mass matrix (Fried and Chavez, 2004).   

 The rotation matrix, T is defined as 
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 ( )diag , , ,T T T T T T1 1 1 1 1

cos sin
;

sin cos

θ θ

θ θ

 
 = =  −  

  (17) 

 The first term of the inertial force vector is computed by differentiations of the kinetic energy: 
 

 
KE

MP MP
P

g g

g

d

dt

 ∂  = + ∂  

ɺɺ ɺ ɺ

ɺ
  (18) 

 

and the global mass matrix is only function of θ  that varies with time: 
 

 ( )M
M = M M GE PT

g
t

θ θ

θ
θ

θ

∂ ∂
= =

∂ ∂
ɺɺ ɺ   (19) 

 

 In Eq (19), the term Mθ  denote the derivative of M with respect to θ  and is calculated as fo-

llows: 

 

 
M T T

T + T
T

l T lm m
θ θ θ

∂ ∂ ∂
=

∂ ∂ ∂
  (20) 

where: 
 

 ( )diag
T

L T L I I I I I1 1 1 1 1 1 1

0 1
; , , , , ;

1 0θ

 ∂  = = =  −∂   
  (21) 

 

 Substituting Eq. 21 into Eq. 20 leads to another expression for the term Mθ  as 

 

 ( )M
M T L L T T M T

1
1

T T l l T lm mθ θ
θ

∂
= = + =

∂
  (22) 

 

 Further, the second term of inertial force vector can be computed by differentiation of the kine-

tic energy with respect to global displacement. Therefore it leads to: 

 

 
KE KE

P M P GE
P P

1

2
T T
g g

g g

θ

θ

θ

   ∂ ∂ ∂   = =      ∂ ∂ ∂  

ɺ ɺ   (23) 

 

 By substituting Eqs 18-23 into Eq. 14, the inertial force vector is expressed as 

 

 
K
f MP MP P M P GE

1

2
T T

g g g gθ

 = + −    
ɺɺ ɺ ɺ ɺ ɺ   (24) 

 

2.3.1 Nonlinear equation of motion 

As shown in the above equations, the inertia force vector depends on P P P, ,g g g
ɺ ɺɺ  and the elastic force 

vector depends on Pg . Therefore, one can express the non-linear governing equation of motion as 
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 ( ) ( )K g extf P P P f P F, , 0g g g g+ − =ɺ ɺɺ   (25) 

where Kf , 
gf  and extF  are the inertial, internal and external force vectors, respectively. The New-

mark method can be extended in order to solve Eq. 25. It is worth mentioning that here all matri-

ces are not fixed (Crisfield, 1997). 

 

 
( ) ( )n+1

g

g

, 1 , 1 1

, 1 , 1

0

, ,

i n ext n n

i n g g g g n g

+ + +

+ +

− = =

= +ɺ ɺɺ
K,

F

f P P P f P

h

  (26) 

 

where 1n+h  is the equivalent dynamic out-of-balance forces. If all necessary information is available 

at time step n, one can solve Eq. 25 by using a predictor- corrector method. The term , 1i nh +  can be 

written as follow using Taylor series: 

 

 ( )
h

hP P K P
, 1

, 1 , , 1 , , ,
i n

i n i n g n g n i n d n g

n
U

+
+ +

∂
= + − = + ∆

∂
h h   (27) 

 

in which K ,d n  denotes the dynamic tangent matrix and is given by 

 

 
ff

K
P P

,
gK

d n

g gn n

∂∂
= +
∂ ∂

  (28) 

 

 Substituting Eq. 27 into Eq. 26, an expected incremental predictor step can be computed as 

 

 ( )P K F F1
, , 1 ,g d n ext n ext n
−

+∆ = −   (29) 

 

 The use of Newmark time integration leads to the corrective updates displacement, velocity and 

acceleration as described in below 

 

 ( ) ( )

( )

, 1 ,

, 1 , , , 1 , , ,2

, 1 , 1 , , ,2

1 1 1 2
1

2

1 1 1 2

2

g n g n g

g n g n g n g n g n g n g n

g n g n g n g n g n

t
tt

tt

β
γ γ

β ββ

β

β ββ

+

+ +

+ +

= + ∆

  −   = + ∆ − + − − −      ∆  ∆

−
= − − −

∆∆

ɺ ɺ ɺɺ ɺ ɺɺ

ɺɺ ɺ ɺɺ

P P P

P P P P P P P

P P P P P

  (30) 

 

 In Eq. 30, t∆  shows the time step and the β  and γ  are the parameters of the Newmark met-

hod. Using the updated displacement, velocity and acceleration (Eq. 30), Eq. 26 can be again com-

puted. If the equivalent dynamic out-of-balance forces are not zero, the Newton-Raphson corrector 

must be used. After some algebraic manipulations, one can obtain the following for the corrector 

Pgδ  
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 P K 1
, 1 1g d n nδ −
+ += − h   (31) 

 At this stage, one needs to again calculate the update displacement, velocity and acceleration 

using 
 

 
, 1 , 1 , 1 , 1

, 1 , 1 2

;

1

g n g n g g n g n g

g n g n g

t

t

γ
δ δ

β

δ
β

+ + + +

+ +

= + = +
∆

= +
∆

ɺ ɺ

ɺɺ ɺɺ

P P P P P P

P P P

  (32) 

 

 This procedure is repeated until the equivalent dynamic out-of-balance forces are smaller than a 

predictor tolerance.  

 In order to obtain the tangent dynamic matrix, the differentiation of each term must be calcula-

ted. The tangent stiffness matrix, mass and gyroscopic matrix are given by 

 

 ( ) ( ) ( )
f f f M M M

K M C GE P P GE P GE
P P P
; ;

T
g K k K T T T

g g g g

g g g θ θ θ

∂  ∂ ∂ ∂ ∂ ∂ = = = = + −
 ∂ ∂ ∂ ∂ ∂ ∂ 

ɺ ɺ ɺ

ɺɺ ɺ
  (33) 

 

 The derivation of each term of inertia force vector respect to global displacement is computed in 

order to obtain the expression for f PK g∂ ∂ . This leads to 

 

 ( )KE
MP

M P GE
P

1
g T

g

g

θ= =
∂

ɺɺ

ɺɺ   (34-a) 

 ( ) ( )KE
M

GE P P GE M P P GG E L L E2 2 1
T T T T T T
g g g g

θ
θ

θ

 ∂  = + − +   ∂ 
ɺ ɺ ɺ ɺ   (34-b) 

 ( )( ) ( )KE
M

P P GE GE P M P GG E L L E3 2 1

1 1

2 2

T
T T T T T T T
g g g g

θ
θ

θ

   ∂  = +  − +      ∂ 
ɺ ɺ ɺ ɺ   (34-c) 

 

 

 Therefore, the expression of f PK g∂ ∂ is given by 

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34) 

 K K KE E E
1 2 3
+ -KE =   (35) 

 

where the term Mθ θ∂ ∂  is obtained using Eqs (20-22) as: 

 

 ( )M T T
M T + T M T L M M L T1 1

T
l T l T T l lθ
θ θ θ θ

θ θ θ

∂ ∂ ∂
= = +

∂ ∂ ∂
  (36) 

with 
 

 ( )diagL I I I I I2 2 2 2 2 2

0 1
, , , , ;

1 0

 − = =  
  

  (37) 
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 Substituting Eqs 10, 33 and 34 into Eq. 28, and after some algebraic work, the tangent dynamic 

matrix is found as 

 K K K M C
2

1g E k
d

tt

γ

ββ
= + + +

∆∆
  (38) 

 

3 NUMERICAL EXAMPLES 

Two numerical examples are used to show the performance of the proposed formulation. MATLAB 

Version 7.4 (R2007a) was used for the calculations. In presented formulation, the linear Qm6 (Tay-

lor et al., 1976) has been used for the local formulation. The results obtained with the new co-

rotational formulation are evaluated with results obtained by nonlinear formulation of the Qm6 

element corresponding to the updated Lagrangian considered as a reference solution.  

 Note that all considered structures are without damping, and  β  and γ  are fixed at ¼ and ½, 

respectively. 

 

3.1 Example 1: angle frame  

For the first test-case, an angle frame depicted in Fig. 2 is considered. The structure is clamped at 

one end, and its module of elasticity, Poisson ratio and material density are considered to be 40 

GPa, 0.3 and 1740 kg/m3, respectively.  The dimension of the structure loaded by a harmonically 

distributed vertical force 0 sin( )F F tω=  is also shown in Fig.2. The amplitude of the external load,

0F ,  and its frequency, ω , are assumed  to be 4000 N and 25π  rad/s, respectively. The size of the 

time step is taken 1.2E-3 s, and a fine mesh consists of 304 square elements is used.  

 

 

 
Figure 2: Angle frame with dimension; left fine mesh, right coarse mesh. 
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 In Figs. 3 and 4, the time history response of node A in X and Y directions are illustrated, res-

pectively. According to Figs. 3 and 4, it can be concluded that the results obtained by the proposed 

formulation agree very well with the selected reference solution obtained from nonlinear formulation 

based on the updated Lagrangian. 

 

 
Figure 3: The X displacement history of point A. 

 

 
Figure 4: The Y displacement history of point A. 

 

 Figures 5 and 6 show the time history response of node A in X and Y directions using new co-

rotational formulation using a coarse mesh. Here, the coarse mesh consists of 240 square elements. 

As shown in Figs. 5 and 6, the results obtained from new co-rotational formulation with coarse 

mesh are much closer to the ones obtained from the reference solution (fine mesh). 
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Table 1 is presented the CPU time and total number of iterations necessary for two formulations.  

 

Number of plane elements New formulation Reference solution 

Coarse mesh: 240 14.32 (180) 17.43 (197) 

Fine mesh: 304 20.23 (185) 24.25 (199) 
 

 Table 1: Angle frame-CPU time (total number of iterations). 

 

 
Figure 5: The X displacement history of point A. 

 

 

 
Figure 6: The Y displacement history of point A. 
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 According to Table 1, it can be concluded that the presented co-rotational formulation is faster 

than the reference solution (which in this study is the nonlinear formulation based on the update 

Lagrangian). As mentioned earlier, one of the limitations of the proposed CR method is that it is 

only valid for small pure deformation. To show the applicability of these formulation to example 1, 

where the structure is meshed by 240 elements, the element deformation (calculated from Eq. (5)) 

for a sample element (shown in Fig.7) at three different time steps are calculated and tabulated in 

Table 2. 

 One can conclude from Table 2 that the pure deformations for the considered element are small 

in all time steps. This argument is also corrects for all elements of the structure, and thus the CR 

formulation is a robust approach to model these kind of problems. 

 
Figure 7: Angle frame with dimension; coarse mesh along with sample element. 

 

node 308 309 313 314 

t=0.0055 s 

x 0.0866E-5 0.0031E-5 -0.0136E-5 -0.0101E-5 

y 0.3084E-5 0.0819E-5 -0.1215E-5 -0.0390E-5 

t=0.055 s 

x 0.2058E-4 -0.2121E-4 0.0508E-4 -0.0445E-4 

y 0.2173E-4 -0.0989E-4 -0.2249E-4 0.1065E-4 

t=0.3 s 

x -0.0939E-4 0.0882E-4 -0.0083E-4 0.014E-4 

y -0.1976E-4 -0.0007E-4 0.1908E-4 0.0075E-4 

 

Table 2: Element pure deformation for a sample element shown in Fig.7. 

 

3.2 Example 2: angle frame  

As a second test-case example, a half ring depicted in Fig.8 is considered. Due to the symmetry, 

only half of the structure is modeled. This structure is made of steel with the density of 7800 kg/m3, 

Poisson ratio of 0.3, and the module of elasticity is considered to be 200 GPa. The inner and outer 
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radial of the structure are 200 and 210 mm, respectively.  The structure is clamped at one end, and 

the other end is fixed in X direction. The structure is loaded by a harmonic concentrated vertical 

force 0 sin( )F F tω=  with 0F  = 4000 N, 25ω π= rad/s. 

 Here, the size of time step is assumed to be 3.2E-3 s, and a fine mesh consists of 240 elements is 

considered. Similar to the first example, the time history response of node A is considered and its 

variation along Y direction is plotted in Fig. 9. 

 From Fig. 9, one can find a very good agreement between results obtained by the proposed co-

rotational formulation and the one calculated by the reference classical method.  

 The same comparison as above, but using a coarse mesh for proposed model, is depicted in Fig. 

10.  In this example the coarse mesh consists of 160 square elements. This qualitative comparison 

along with the quantitative one reported in Table 3 clearly highlights the robustness of the propo-

sed formulation.  

 

 
Figure 8: quarter thin ring with dimension; left fine mesh, right coarse mesh. 

 

 
Figure 9: The Y displacement history of point A. 
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Number of plane elements New formulation Reference solution 

Coarse mesh: 160 8.51 (83) 12.23 (105) 

Fine mesh: 240 12.16 (86) 16.57 (107) 
 

Table 3: quarter thin ring- CPU time (total number of iterations). 

 

 It should be noted that in this example all elements' pure deformation are small (at the same 

order for that of example 1). 

 

 
Figure 10: The Y displacement history of point A. 

 

4 CONCLUSION  

In this study, an extension of BATTINI´s formulation for nonlinear dynamical analysis of four- 

node plane element was presented. In CR approach, the small deformation quantities are extracted 

from the given displacement field, named CR-framework. Here, the CR-framework is adopted to 

develop internal forces vector and tangent stiffness matrix along with the inertia forces vector and 

tangent dynamic matrix. The proposed formulation was successfully tested against two numerical 

examples that show its applicability to investigate the plane structures possessing large displace-

ment, but small strains. Furthermore, it should be emphasized that using the described CR frame-

work, competent linear elements are automatically transformed to nonlinear formulations. 
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