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Abstract 
This paper is concerned with the dynamic behavior of the spinning 
Functionally Graded Material (FGM) shaft on rigid bearings. A p-
version, hierarchical finite element is employed to define the model. 
A theoretical study allows the establishment of the kinetic energy 
and the strain energy of the shaft, necessary to the result of the 
equations of motion. In this model the transverse shear defor-
mation, rotary inertia and gyroscopic effects have been incorpo-
rated. A hierarchical beam finite element with six degrees of free-
dom per node is developed and used to model the shaft. A program 
is elaborate for the calculation of the natural frequencies of a spin-
ning FGM shaft. To verify the present model, the results are com-
pared with those available in the literature. The efficiency and 
accuracy of the methods employed are discussed. 
 
Keywords 
Spinning shaft, Functionally Graded Material, FGM, p- version, 
hierarchical finite element method, FEM. 
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1 INTRODUCTION 

The structural systems spinning about their longitudinal axis are used in the most diverse areas of 
modern technology. In this sense, these are used as a shaft, for power transmission in aero-
propulsion systems, in helicopter drive applications, and in industrial machines such as steam and 
gas turbines. In addition, these are used in the cutting tools used in boring and milling operations. 
Moreover, the axial booms attached to spin-stabilized spacecraft and subjected to solar heating. 
 In order to enhance their vibration behavior, eliminate or even postpone the occurrence of any 
instability jeopardizing their operational life and expand their efficiency, a better understanding of 
their behavior is required. In addition, having in view that these structural systems operate in se-
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vere environmental conditions such as high temperatures, in order to resist without catastrophic 
failures, advanced structural models have to be devised. 
 In this context, the application of the functionally gradient material (FGM) concept is likely to 
eliminate the shortcomings that are inherently generated when instead; standard composite material 
structures are used. 
 The FGM is a new kind of composite material developed recently in which the material property 
graded distribution is formed by the composition of different material media in variant proportion 
in space, so as to meet the requirements of material properties for different parts of a member. In 
the meanwhile, as each part of the material of structure varies in continuous way, there is more 
advantage of the material properties than ordinary laminated and composed ones. Such kind of 
composite material composed non-uniformly and continuously in structure by different materials in 
desired way makes development of material stride forward towards a higher level (Koizumi, 1993). 
 FGMs have been widely used in various fields including electronics, chemistry, optics, biomedi-
cine, etc. The concept of fabricating FGMs was first introduced as a means of preparing thermal 
barrier materials by a group of material scientists (Makino et al., 1994) in Japan in 1984. FGMs are 
made by combining different materials with powder metallurgy methods. 
 In FGMs, the material distribution is governed by the volume fraction law and varied radially in 
a functionally graded shaft for a constituent material. This leads to continuous change in the com-
position of the shaft and results in gradients in the mechanical and thermal properties.  
  The literature on the vibration analysis of FGM rotating shaft is limited to few published arti-
cles. Many of these studies are for isotropic and composite shells; you can see these articles in refer-
ence (Hosseini-Hashemi et al., 2013). 
 The works of Oh et al. (2003-2005) and Fazelzadeh et al. (2007a-2007b) are among the few pa-
pers devoted to the mechanics of thin-walled beams constructed with functionally graded materials. 
The scope of these papers has been mainly directed towards the analysis of rotating beams and 
secondarily to the analysis of thermo-elastic coupling effects associated with graded properties. Oh 
et al. (2003-2005) also focused their attention to the study of dynamic stability of cylindrical spin-
ning beams. The studies on vibration of rotating beam made of FGMs using the p-version of FEM 
have not been seen in the literature. 
 This paper deals with the p-version, hierarchical finite element method applied to free vibration 
analysis of spinning FGM shafts. The hierarchical concept for finite element shape functions has 
been investigated during the past 25 years. Babuška et al. (1981) established a theoretical basis for 
p-elements, where the mesh keeps unchanged and the polynomial degree of the shape functions is 
increased; however, in the standard h-version of the finite element method the mesh is refined to 
achieve convergence and the polynomial degree of the shape functions remains unchanged. Since 
then, standard forms of the hierarchical shape functions have been represented in the literature 
elsewhere; see for instance (Szabỏ and Sahrmann, 1988; Szabỏ and Babuška, 1991). 
Meirovitch and Baruh (1983) and Zhu (1986) have shown that the hierarchical finite element meth-
od yields a better accuracy than the h-version for eigenvalues problems. The hierarchical shape 
functions used by Bardell (1989) are based on integrated Legendre orthogonal polynomials; the 
symbolic computing is used to calculate the mass and stiffness matrices of beams and plates. Coté 
and Charron (2001) give the selection of p-version shape functions for plate vibration analysis. 
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 In the presented FGM shaft model, the Timoshenko theory will be adopted. It is the purpose of 
the present work to study dynamic characteristics such as natural frequencies, whirling frequencies, 
and the critical speeds of the spinning FGM shaft. In the model, the transverse shear deformation, 
rotary inertia, and gyroscopic effects have been incorporated. To determine the rotating shaft sys-
tem’s responses, the hierarchical finite element method with trigonometric shape functions (Bou-
khalfa et al., 2008-2010) is employed to solve the equations of motion. 
 
 
2 EQUATIONS OF MOTION 

2.1  Kinetic and strain energy expressions of the shaft 

The shaft is modeled as a Timoshenko beam, that is, first-order shear deformation theory with rota-
ry inertia and gyroscopic effect is used. The shaft rotates at constant speed about its longitudinal 
axis. The shaft has a uniform, circular cross section.  
 The following displacement field of a spinning shaft is assumed by choosing the coordinate axis x 
to coincide with the shaft axis: 
 

U(x, y, z, t) =U0 (x, t)+ z!x (x, t)! y!y (x, t)
V (x, y, z, t) =V0 (x, t)! z"(x, t)
W (x, y, z, t) =W0 (x, t)+ y"(x, t)
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 Where U, V and W are the displacements due to bending of any point on the cross-section of 
the shaft in the x, y and z directions respectively, the variables U0, V0 and W0 are the displace-
ments due to bending of the shaft’s axis (longitudinal displacement, horizontal transverse displace-
ment and vertical transverse displacement), while xβ and yβ are the rotation angles of the cross-

section, about the y and z axis respectively. Theφ  is the angular displacement of the cross-section 
due to the torsion deformation of the shaft (see figure 1).  
 The strain components in the cylindrical coordinate system (As shown in figure 2-3) can be writ-
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The constitutive relations for functionally graded shaft can be expressed as 
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Figure 1: The elastic displacements of a typical cross-section of the shaft. 

 Where Qij (i,j = 1,6) are the effective elastic constants. 
 The stress-strain relations in the cylindrical coordinate system (see figure 4) can be expressed as 
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 where Q11 =
E

1!! 2  , Q55 =Q66 =
E

2 (1+! )
 and ks is the transverse shear correction factor. 

 
2.2  Gradation relation 

There are some models for expressing the variation of material properties in FGMs in the literature. 
The most commonly used of these models is the power-law distribution of the volume fraction. 
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Based on this model, the material property gradation through the shaft radius is represented in 
terms of the volume fraction by Reddy and Chin (1998) 
 

P (r) = (Po !Pi ) (
r ! Ri
e
)n +Pi  with Ro ≤ r ≤ Ri (5) 

 
where P(r) denotes a generic material property and Po and Pi denote the property of the outer and 
inner faces of the shaft, respectively (e.g. elastic modulus) and n is a grading index that dictates the 
material variation profile through the thickness(radius). This study assumes that the elastic modu-
lus E, density ρ and the Poisson’s ratio υ vary according to the gradation relation (5)  
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 The formula of the strain energy is 
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Figure 2: The cylindrical coordinate System. 

 
          Figure 3: Inner and outer Radius of FGM shaft. 
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Figure 4: The stress components; 
a) in the coordinate axes (x, y, z) - b) in the coordinate axes ( )θ,, rx . 

 

The various components of strain energy of the shaft are presented as follow 
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where  
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The kinetic energy of the spinning FGM shaft, including the effects of translatory and rotary inertia 
(see Chang M.Y. et al. (2004)), can be written as  
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where Ω is the rotating speed of the shaft which is assumed constant, L is the length of the shaft, 
the yxpI ββ Ω2  term accounts for the gyroscopic effect, and ( )22

yxdI ββ  +  represent the rotary iner-

tia effect. The mass moments of inertia Im, the diametrical mass moments of inertia Id and polar 
mass moment of inertia Ip of spinning shaft per unit length are defined in equation (11). As the 
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2.3  Hierarchical Beam element formulation 

The spinning flexible shaft is descretised by hierarchical beam element (p- element) with two nodes 
1 and 2 is shown in figure 5. The element’s nodal d.o.f. at each node are yxWVU ββ ,,,, 000 andφ . 

The local and non-dimensional co-ordinates are related by 
 

Lx=ξ      With (0 ≤ ξ  ≤ 1)
 

(12) 
 

 

Figure 5: 3D Beam element with two nodes. 
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 where [N] is the matrix of the shape functions, given by 
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yx
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The group of the shape functions used in this study (see Houmat A. (2001)) is given by 
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The functions (f1, f2) are those of the finite element method necessary to describe the nodal dis-
placements of the element; whereas the trigonometric functions fr+2 contribute only to the internal 
field of displacement and do not affect nodal displacements. The most attractive particularity of the 
trigonometric functions is that they offer great numerical stability. The shaft is modeled by one 
element called hierarchical finite elements with p shape functions.  
 After modelling the spinning FGM shaft using the p- version of the finite element method and 
applying the Euler-Lagrange equations, the motion’s equations of free vibration of spinning flexible 
shaft can be obtained. 
 

[ ]{ } [ ]{ } [ ]{ } { }0=++ qKqGqM 
 

(17) 
 
[M] and [K] are the mass and stiffness matrix respectively, [G] is the gyroscopic matrix (the differ-
ent matrices of the equation (17) are given in the appendix). 
 
3 RESULTS  

A program based on the formulation proposed to resolve the resolution of the equation (17).    
 To investigate the vibration characteristics of FGM shaft, the functionally gradient material 
considered is to be composed of two material constituents. The material properties are graded in the 
thickness (radial) direction according to a volume fraction power law distribution. The functionally 
graded materials are stainless steel and nickel, and Zirconia. Their material properties determined 
at T=300 K, are given in Table 1. Four types of FGM shaft are considered to be made from these 
materials. 
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FGM Material E [ N/m2] ν ρ [kg/m3] 
Stainless Steel (SS) 2.07788·1011 0.317756 8166 
Nickel (Ni) 2.05098·1011 0.31 8900 
Zirconia (Zi) 1.68063·1011 0.297996 5700 

Table 1: Material properties of FGMs (Loy et al., 1999; Pradhan et al., 2000). 

Type I: FGM shaft has stainless steel (SS) on its inner surface and nickel (Ni) on its outer surface. 
Type II: FGM shaft has nickel (Ni) its inner surface and stainless steel (SS) on its outer surface. 
Type III: FGM shaft has Zirconia (Zi) its inner surface and stainless steel (SS) on its outer surface. 
Type IV: FGM shaft has stainless steel (SS) its inner surface and Zirconia (Zi) on its outer surface. 

 
3.1  Convergence 

First, the mechanical properties of Type I FG shaft are listed in table 1. The geometric parameters 
are e/D =0.002, L/D =20. The shear correction factor ks =0.5 and the rotating speed Ω =0. In this 
example, the FGM spinning shaft is modeled by one element of length L.  
 The results of the three bending modes for various boundary conditions and power law index n 
of the FGM shaft as a function of the number of hierarchical terms p are shown in figure 6. Figure 
clearly shows that rapid convergence from above to the exact values occurs when the number of 
hierarchical terms increased. This shows the exactitude of the method even with one element and a 
reduced number of the shape functions. It is noticeable in the case of low frequencies, a very small p 
is needed (p=5 sufficient), whereas in the case of the high frequencies, and in order to have a good 
convergence, p should be increased. 
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Figure 6: Convergence of the frequency ω for the 3 bending modes of the FGM shaft (FG Type I) 
for different boundary conditions (S: simply-supported; C: clamped) as a function of the number 

of hierarchical terms p (a) n=0.5; b) n=5; c) n=15 ). 
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3.2  Validation 

In the first example, the natural frequency ω for the 3 bending modes of a simply supported homo-
geneous shaft for different rotating speed Ω are compared with those available in the literature to 
verify the present model. The diameter D and the total length L of the solid shaft are 0.05 m and 
0.9 m respectively. The elastic modulus E, density ρ and the Poisson’s ratio υ are E =2·1011 N/m2, 
ν= 0.3, ρ= 7800 kg/m3. A shear correction factor of 6/7 is also used. The shaft is modeled by one 
element of length L. The shaft is simply-supported at the ends. In this validation, p =10. 
 The result obtained using the present model is shown in table 2 together with the analytical 
solutions (René-Jean (1988)) by using the Euler-Bernoulli beam theory. In our work, the shaft is 
modeled by one element with two nodes by using the Timoshenko beam theory. The rapid conver-
gence while taking one element and a reduced number of shape functions shows the advantage of 
the method used.  
  In the second example, the natural frequencies of FGM shaft are analyzed and compared with 
those available in the literature to verify the present model. In this example, the Type II FGM hol-
low shaft is investigated. The properties of material are listed in table 1. The geometric parameters 
are e/D =0.002, L/D =20. The shear correction factor ks =0.5 and the rotating speed Ω =0. In this 
example, the FGM spinning shaft is modeled by one element of length L. The shaft is simply-
supported at the ends. In this validation, p =10. 
 The result obtained using the present model is shown in table 3 together with those of referenced 
paper. In this reference, Loy et al. (1999) investigated the free vibration of simply supported FGM 
cylindrical shells. This is extended to cylindrical shells with deferent support conditions in the work 
of Pradhan et al. (2000). The governing equations derived based on the classical shell theory as-
sumption are solved using Rayleigh–Ritz method. It can be seen from this table that the present 
results are in excellent agreement with those of the literature. 
 
 

Rotating speed Ω [rd/s] 0 104 

Bending Mode ω [Hz] Present René-Jean 
(1988) 

Backward mode (B) Forward mode (F) 

Present René-Jean 
(1988) Present René-Jean 

(1988) 
1 128.1837 122.7475 122.3467 119.7548 134.2918 125.8150 
2 507.0806 490.9899 484.6529 479.0191 530.4377 503.2598 
3 1120.8937 1104.7273 1073.5822 1077.7931 1169.8098 1132.3346 

 

Table 2: The frequency ω for the 3 bending modes of a simply supported homogeneous shaft 
(D= 0.05 m, L= 0.9 m, E =2·1011 N/m2, ν= 0.3, ρ= 7800 kg/m3, ks = 6/7). 
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n 
MODE 1 (Present) 

Timoshenko beam theory 
with p-version of the FEM 

MODE 1 (Loy et al., 1999) 
Love’s shell theory with  Rayleigh–Ritz method 

0 6.9397 6.8577 
0.5 7.0584 7.0972 
1 7.1197 7.0384 

 

Table 3: Comparison of natural frequencies (Hz) for simply supported FGM shaft (FG Type II),  
e = 0.002 m, D/e = 500, L/D= 20, Eo =2.07788·1011 N/m2, oν = 0.317756, oρ = 8166 kg/m3 

Ei = 2.05098·1011N/m2, iν = 0.31, iρ = 8900 kg/m3, ks = 0.50). 

 

3.3  Results and interpretations  

In this study, the results obtained for various applications are presented. The influence of the me-
chanical and geometrical parameters on the natural frequencies of the spinning FGM shafts is stud-
ied. In this study, p = 10. 
 
3.3.1  Influence of the gyroscopic effect, the ratios L/D and e/D on the natural frequencies 

In the following example, the frequencies of a FGM spinning shaft are analyzed, FGM shaft has 
stainless steel (SS) on its inner surface and nickel (Ni) on its outer surface (FG Type I). The me-
chanical properties of shaft are shown in table 1, with ks = 0.503.  Figure 7 shows the variation of 
the bending fundamental frequency ω as a function of rotating speed Ω of simply supported FGM 
shaft for various ratios L/D and different power law index n. Figure 8 shows the variation of the 
bending fundamental frequency ω as a function of rotating speed Ω of simply supported FGM shaft 
for various ratios e/D and different power law index n. 
 The gyroscopic effect inherent to rotating structures induces a precession motion. When the 
rotating speed increase, the forward modes (1F) increase, whereas the backward modes (1B) de-
crease. The gyroscopic effect causes a coupling of orthogonal displacements to the axis of rotation, 
and by consequence separate the frequencies in two branches: backward precession mode and for-
ward precession mode. In all cases, the forward modes increase with increasing rotating speed how-
ever the backward modes decrease.   
 For the different power law index n, the natural frequency decreases as L/D ratio increases. Fur-
ther, natural frequency of the FGM shaft increases as e/D ratio increases. It is noticed the influence 
of the e/D ratio on the natural frequency is almost negligible; the curves are almost identical for the 
various e/D ratios and n. This is due to the deformation of the cross section is negligible, and thus 
the natural frequency of the thin-walled shaft would approximately independent of thickness ratio 
e/D.  
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Figure 7: The first backward (1B) and forward (1F) bending mode of simply supported FGM 
shaft (FG Type I) for various ratios L/D and different rotating speeds a) e/D = 0.002, n=0.5; 

b) e/D = 0.002, n=5; c) e/D = 0.002, n=15)). 

Figure 8a. 
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Figure 8: The first backward (1B) and forward (1F) bending mode of simply supported FGM shaft (FG Type I) for 
various ratios e/D and different rotating speeds (a) L/D = 20, n=0.5; b) L/D = 20, n=5; c) L/D = 20, n=15).  
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3.3.2  Influence of the FGM Type on the natural frequencies 

In this example presented on the vibration of a simply supported FGM shafts. The functionally 
gradient material (FGM) considered is composed of Stainless Steel, Nickel and Zirconia and its 
properties are graded in the thickness (radial) direction according to a volume fraction power-law 
distribution. In this study, the results for the frequency characteristics, the influence of the constit-
uent volume fractions and the effects of the FGM configuration are presented. The influence of con-
stituent volume fractions is studied by varying the volume fractions of the stainless steel, nickel and 
Zirconia. This is carried out by varying the value of the power-law index n. The effects of the FGM 
configuration are studied by studying the frequencies of four types of FGM shaft, are presented in 
the beginning of the results.  
 Figure 9 shows the 3 bending modes of the FGM shaft with various power law index n for S-S 
boundary condition and different FG Types. For the Type I FG (Type III FG) shafts, the natural 
frequencies increased when n increased, and for the Type II FG (Type IV FG) shafts, the natural 
frequencies increased when n decreased. In Types I and II FG shafts, the natural frequencies for all 
values of n lie between those for a Stainless Steel and Nickel shaft. In Types III and IV FG shafts, 
the natural frequencies for all values of n lie between those for a Stainless Steel and Zirconia. For 
n>1, the natural frequencies for Type I FG (Type III FG ) shafts are higher than for Type II FG 
(Type IV FG ) shafts and for n<1, the natural frequencies for Type II FG (Type IV FG) shafts are 
higher than Type I FG (Type III FG ) shafts. For the Type I FG (Type III FG) shafts, the behav-
iors of volume fraction of stainless steel (Zirconia) and volume fraction of Nickel (stainless steel) are 
opposite to that for the Type II FG (Type IV FG) shafts.Thus the constituent volume fractions and 
the configurations of the constituent materials affect the natural frequencies. 
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Figure 9: The frequency ω for the 3 bending modes of the FGM shaft with various power law index n for S-S 
boundary condition and different FG Types a) first frequency ω1; b) second frequency ω2; c) third frequency ω3) 
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4  CONCLUSIONS 

The analysis of the free vibrations of the spinning FGM shafts using the p-version of the finite ele-
ment method with trigonometric shape functions is presented in this work. The results obtained 
agree with those available in the literature. Several examples were treated to determine the influ-
ence of the various geometrical and physical parameters of the spinning shafts. This work enabled 
us to arrive at the following conclusions:  
− Monotonous and uniform convergence is checked by increasing the number of the shape func-
tions p. The convergence of the solutions is ensured by the element beam with two nodes. The re-
sults agree with the solutions found in the literature.   
− The gyroscopic effect causes a coupling of orthogonal displacements to the axis of rotation, and 
by consequence separates the frequencies in two branches, backward and forward precession modes. 
In all cases the forward modes increase with increasing rotating speed however the backward modes 
decrease. This effect has a significant influence on the behaviours of the spinning shafts. 
− The dynamic characteristics and in particular the natural frequencies of the spinning FGM 
shafts are influenced appreciably by changing the power low index, the constituent materials, the 
length, the mean diameter, the rotating speed and the boundary conditions.   
− The natural frequencies of the thin-walled spinning FGM shaft are approximately independent of 
the thickness ratio and mean diameter of the spinning shaft. 
 Prospects for future studies can be undertaken following this work: a study which takes into 
account damping interns in the case of a functionally graded material rotor with flexible disks, sup-
ported by supports with oil and subjected to disturbing forces like the air pockets or seisms, etc.   
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NOMENCLATURE 

 U(x, y, z) Displacement in x direction. 
V(x, y, z) Displacement in y direction. 
W(x, y, z) Displacement in z direction. 

xβ  Rotation angles of the cross-section about the y axis. 

yβ  Rotation angles of the cross-section, about the z axis. 
φ  Angular displacement of the cross-section due to the torsion deformation of 

the shaft. 
E Young modulus. 
G  Shear modulus. 
ρ   Masse density. 

ν   Poisson coefficient. 
n Power law index 
(x, y, z) Cartesian coordinates.   

(x, r,θ ) Cylindrical coordinates.   

Gc Centre of the cross-section.  
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(O, x, y, z) Inertial reference frame. 

(Gc, x1,  y1, z1) Local reference frame is located in the centre of the cross-section.   
Qij Elastic constants. 
ks Shear correction factor. 
L Length of the shaft. 
D   Mean radius of the shaft. 
e Wall thickness of the shaft. 
Ri  The inner radius of the shaft. 
Ro The outer radius of the shaft. 
θ   Circumferential coordinate. 

ξ   Local and non-dimensional co-ordinates. 
ω  Natural frequency, eigen-value. 
Ω    Rotating speed. 
[N] Matrix of the shape functions. 

)(ξf   Shape functions. 
p Number of the shape functions or number of hierarchical terms. 
t Time. 
Ec Kinetic energy. 
Ed  Strain energy. 
{qi} Generalized coordinates, with (i = U, V, W, βx , βy ,ϕ) 
[M] Masse matrix. 
[K] Stiffness matrix. 
[G] Gyroscopic matrix. 
T Temperature in Kelvin 

 
APPENDIX 

The various matrices of equation (17) which assemble the elementary matrices of the system as follows  
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 Where [ ] [ ]
ξ∂

∂
=ʹ′ i

i
N

N , with (i = U, V, W, xβ , yβ , φ )  

 The terms of the matrices are a function of the integrals: ( ) ( ) ξξξ βαβα dffJ nmnm ∫=
1

0

; 

 (m, n) indicate the number of the shape functions used, and ( )βα ,  is the order of derivation. 
 


