
www.lajss.org
Latin American Journal of Solids and Structures 4 (2007) 103–120

Time-dependent behaviour of reacting viscoelastic concrete

Milan Suter1 and Gurmail S. Benipal2,∗

1Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Delhi,
New Delhi – India

2Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Delhi,
New Delhi – India

Abstract

Concrete exhibits time-dependent behaviour like basic creep, recovery and stress relax-
ation. Solidification theory proposed by Bazant and co-workers attempts to simulate the
aging creep of hydrating concrete under uniaxial stress. There exists considerable empirical
evidence to the effect that even mature concrete exhibits creep-like phenomena on exposure
to chemically aggressive environment. The dissolution-precipitation mechanism has been
proposed by Benipal for explaining such behaviour of reacting elastic solids. Based on this
chemomechanical mechanism, a theory of reacting isotropic linear elastic solids has recently
been proposed by the authors. This theory is capable of explaining long-term behaviour, but
is incapable of predicting the creep of mature concrete not involved in any reactions. In this
paper, a theory of isotropic linear viscoelastic solids applicable to both reacting and inert
solids has been proposed. Here, the earlier model dealing with the reacting elastic solids
has been named reacting rheological element. The present theory of reacting viscoelastic
concrete is based on the above reacting rheological model arranged in parallel with an ag-
ing Maxwell rheological element. This theory has been shown to predict satisfactorily the
observed time-dependent behaviour of concrete involved in hydration and other reactions
simultaneously subjected to multiaxial stress/strain histories. The theoretical significance
and the practical relevance of the results obtained have been discussed.

Keywords: chemomechanics, dissolution-precipitation theory, aging Maxwell model, time-
dependent behaviour, reacting viscoelastic concrete

1 Introduction

One dimensional classical rheological models such as Kelvin-Voigt model, three-element model,
etc., are used in predicting the time-dependent deformation of linear viscoelastic non-aging
materials. These models are inadequate to predict the behaviour of materials like concrete
exhibiting aging viscoelastic response [4]. After many attempts at proposing empirical models,
a proper theory called solidification theory was proposed for predicting aging creep of hydrating
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concrete [2]. As per this theory, creep is caused by presence of viscoelastic hydration products
of concrete whereas aging is associated with their volume growth on solidification.

It has been reported [1,5] that even mature concrete, which otherwise does not exhibit much
creep, does so on exposure to reacting chemicals. During their service life, concrete structures
under the action of service loads are simultaneously exposed to reacting chemicals in their
environment. As such, they are expected to exhibit creep-like behavior, apart from the gradual
reduction in stiffness and strength. As a matter of fact, the service life may itself be determined
by the excessive displacements under service loads as well as chemical deterioration. Thus, there
is a need to propose theories for predicting the chemomechanical response of such materials.

Linear aging viscoelasticity theories of homogeneous isotropic materials are the simplest ones
of the chemomechanical theories. Under the action of service loads, concrete constituents can
justifiably be assumed to be linear in the sense that their mechanical properties like elasticity
and viscosity are independent of the magnitude of stress components. Any effect that is stress
dependent as plasticity or cracking is not sought to be included in these theories. In contrast,
aging is understood here as time-dependent autonomous variation of the above material prop-
erties. For example, the hydration of concrete causes gradual increase in stiffness, while the
damage caused by softening at elevated temperatures or by chemical deterioration results in
gradual stiffness degradation.

Such a linear aging chemomechanical theory called dissolution- precipitation theory (DPT)
was proposed [3] in which creep in reacting elastic solids is attributed to be caused by the gradual
transformation of the uniaxially stressed reacting elastic constituents into stress-free solute on
dissolution. In contrast to the classical viscoelasticity theories as well as the solidification theory
(ST), none of the constituent phases has been assumed to be viscoelastic in nature in the
above theory. Recently, based on this dissolution precipitation mechanism of chemomechanical
behaviour, a dissolution-precipitation theory has been proposed to model the time-dependent
mechanical behaviour of reacting homogeneous isotropic linear elastic solids under multiaxial
stress/strain histories [7, 8]. The above micromechanics-based dissolution precipitation theory
has also been recast in a phenomenological form wherein the empirical parameters of the newly
proposed ‘reacting rheological element’ can be quantified by using the available experimental
data [6]. It can be observed that the solidification theory as well as the dissolution precipitation
theory belongs to the class of linear aging theories.

The dissolution-precipitation theory, at its current stage of development, is incapable of pre-
dicting observed time-dependent deformations such as creep, recovery and relaxation exhibited
by mature inert concrete not involved in any reactions. This fact implies that concrete is not
an elastic solid as assumed in the present theory but a viscoelastic solid capable of exhibiting
time-dependent deformations even in the absence of any reactions. In view of these facts, in
this paper, the above phenomenological dissolution-precipitation theory has been extended to
incorporate the effect of viscoelastic nature of the material. In the rheological reacting vis-
coelastic model studied here, the above reacting rheological element is arranged in parallel to an
aging Maxwell rheological element. The creep, recovery, superposition and relaxation behavior
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of concrete has been investigated has been delineated and compared with the available empirical
data. The temporal variation of the forces in two elements has also been traced. The material
modeled is assumed to be isotropic linear aging viscoelastic solid undergoing infinitesimally small
deformations.

2 Proposed rheological model

In this paper, the mechanical behaviour of a rheological model composed of above reacting
rheological element and aging Maxwell element arranged in-parallel (Fig. 1) has been studied. 

                                    Ea 
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                                     Eb                 S 

                   

 

  

 

 

 
 
 
 
 

Figure 1: The proposed rheological model.

Let the subscripts a and b pertain to the reacting element and the Maxwell element re-
spectively. The following relations for stress σ and strain ε hold for these rheological elements
arranged in parallel.

σ = σa + σb and ε = εa = εb

•
σ =

•
σa +

•
σb and

•
ε =

•
εa =

•
εb (1)

where the superposed ‘dot’ denotes rate of variation of stresses, strains and other variables with
time t.

The constitutive equation of the rate type for the reacting element derived earlier for sus-
tained state of stress [7,8] has been modified here for the general case of variable stresses in the
following form:

•
ε =

ε
•
α

(p + qα)
+

•
σa

r(p + qα)
(2)

where α represents the fractional extent of the reaction occurred and increases monotonically
with time t. The α − t relation quantifying the reaction kinetics has been presented later.
From the authors’ earlier work on micromechanical aspects [7, 8], the parameters p and q are
identified to represent the relative stiffness of the inert phase and the reacting products deposited
respectively. The parameter r denotes the absolute stiffness of the reacting phase before the start
of the reaction. Its value can be estimated from the following expression knowing the values
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of the volume fraction v10 of the reacting phase before the start of the reaction and its elastic
modulus E1.

r = v10E1 (3)

Let Ea, representing the instantaneous stiffness of the reacting element, be given by

Ea = r(p + qα) (4)

From the above equations, one obtains the constitutive equation of the reacting element in
the following simpler form

•
εa =

rε
•
α

Ea
+

•
σa

Ea
(5)

The corresponding constitutive equation for the Maxwell element with elastic constant Eb

and instantaneous viscosity S is stated as

•
εb =

•
σb

Eb
+

σb

S
(6)

Using equation (1) and eliminating σa from the above equations (5) and (6), one obtains the
following governing equation for the proposed rheological model

σb

S
+

(
1

Ea
+

1
Eb

)
•
σb =

•
σ +rε

•
α

Ea
(7)

It has been established by the authors [7, 8] that the relevant equations given above for the
one dimensional case applied to all the principal stress directions separately.

In the next section, the creep, recovery, superposition and relaxation behaviour of reacting
viscoelastic concrete has been analyzed qualitatively. The empirical calibration of the model
and the quantitative prediction of the material response have been undertaken in the subsequent
section.

3 Qualitative analysis of material behaviour

3.1 Creep

Consider a material point under the action of triaxial normal stresses σi and exhibiting time-
dependent normal strains εi. Let a state of average stress σi0 be applied at any time t=t0, i.e.,
α = α0, and kept sustained thereafter. As

•
σi = 0, the material exhibits creep even though the

element stresses σia and σib keep on varying with time. Thus, the differential equations (1) and
(7) reduce to

σib
S +

(
1

Ea
+ 1

Eb

) •
σib = rεi

•
α

Ea
•

σia = − •
σib and

•
εi =

•
εia =

•
εib

(8)
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Let σai0 and σbi0 be the initial stresses in reacting element and Maxwell element respectively
and εai0 and εbi0 are the corresponding instantaneous strains (at t=t0) just after the application
of stresses. In view of equation (1),

σi0 = σai0 + σbi0 εai0 = εbi0 = εi0 (9)

Just before loading, the elements are stress-free and strain-free. The instantaneously applied
stress components σi0 introduce stress increments σai0 and σbi0 in the reacting and Maxwell
elements respectively. The corresponding instantaneous incremental elastic strain components
are given by the Hooke’s Law as follows:

εi0 =
σaj0 [δij − (1− δij)ν]

Ea0
=

σbj0 [δij − (1− δij)ν]
Eb

(10)

Here, Ea0 = r(p+qα0) is the instantaneous modulus of elasticity of reacting element at t=t0
i.e., at α = α0, Knowing that the parallel elements share the applied stresses σi0in proportion
to their relative stiffness, the element normal stress increments σai0 and σbi0 are obtained as

σa10 =
Ea0σ10

Ea0 + Eb
σa20 =

Ea0σ20

Ea0 + Eb
σ30 =

Ea0σ30

Ea0 + Eb

σb10 =
Ebσ10

Ea0 + Eb
σb20 =

Ebσ20

Ea0 + Eb
σb30 =

Ebσ30

Ea0 + Eb
(11)

Assuming the stress in the reacting element to remain constant during the incremental time
interval ∆t, or equivalently ∆α, both the elements exhibit creep strains. In view of the relevant
equations derived earlier [7, 8], the total strain in reacting element at time t1= t0 + ∆t or at
α1 = α0 + ∆α is obtained as

εai = εai0

[
p + qα1)
p + qα0

] 1
q

(12)

Similarly, total strain in Maxwell element due to creep at time t1 is given by the well known
expression

εbi = εbi0 +
[δij − (1− δij)ν] σbj0

S
·∆t (13)

As the Maxwell element and the reacting element are in-parallel, their strains at any time
are expected to be equal, even though their stresses can vary continuously with the passage of
time. Yet, as can be observed, their strains at the instant t1 turn out to be unequal and the
stresses are assumed to be constant in the derivation of above equations. The required strain
compatibility condition is sought to be satisfied by imposing instantaneously the incremental
stresses ∆σai and ∆σbi on the two elements at the end of the time interval. As no additional
external stresses are applied during this time interval, the incremental stresses are related as

∆σai + ∆σbi = 0 (14)
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The instantaneous strain increments ∆εai and ∆εbi due to these stress increments ∆σai and
∆σbi respectively are

∆εai =
[δij − (1− δij)ν]∆σaj

Ea1
∆εbi =

[δij − (1− δij)ν]∆σbj

Eb
. (15)

where Ea1 = r [p + qα1]. Using the equations (1), (8), (9), (11) and (13), the total strains εi in
both the elements at t1 are obtained as

εai + ∆εai = εbi + ∆εbi = εi (16)

εai +
[δij − (1− δij)ν]∆σaj

Ea1
= εbi +

[δij − (1− δij)ν]∆σbj

Eb
= εi (17)

Using the equations (1), (8), (11) and (15), the values of ∆σbi and ∆σai required for strain
compatibility are estimated as

∆σb1 =
σ10Ea1Eb

(Ea0 + Eb) (Ea1 + Eb)

[(
p + qα1)
p + qα0

) 1
q

− Eb

S
∆t− 1

]

∆σb2 =
σ20Ea1Eb

(Ea0 + Eb) (Ea1 + Eb)

[(
p + qα1

p + qα0

) 1
q

− Eb

S
∆t− 1

]

∆σb3 =
σ30Ea1Eb

(Ea0 + Eb) (Ea1 + Eb)

[(
p + qα1

p + qα0

) 1
q

− Eb

S
∆t− 1

]

In view of the equations (8), (11), (12) and (3.1), the final state of stresses after the first
time interval in reacting and Maxwell elements are σbi = σbi0 +∆σbi and σai = σai0 +∆σai. The
relevant expressions obtained as

σb1 =
Ebσ10

Ea0 + Eb

[
1 +

Ea1

(Ea1 + Eb)

{(
p + qα1

p + qα0

) 1
q

− Eb

S
∆t− 1

}]

σb2 =
Ebσ20

Ea0 + Eb

[
1 +

Ea1

(Ea1 + Eb)

{(
p + qα1)
p + qα0

) 1
q

− Eb

S
∆t− 1

}]

σb3 =
Ebσ30

Ea0 + Eb

[
1 +

Ea1

(Ea1 + Eb)

{(
p + qα1)
p + qα0

) 1
q

− Eb

S
∆t− 1

}]

σa1 =
Ea0σ10

Ea0 + Eb

[
1 +

EbEa1

Ea0 (Ea1 + Eb)

{(
p + qα1

p + qα0

) 1
q

− Eb

S
∆t− 1

}]

σa2 =
Ea0σ20

Ea0 + Eb

[
1 +

EbEa1

Ea0 (Ea1 + Eb)

{(
p + qα1

p + qα0

) 1
q

− Eb

S
∆t− 1

}]

σa3 =
Ea0σ30

Ea0 + Eb

[
1 +

EbEa1

Ea0 (Ea1 + Eb)

{(
p + qα1

p + qα0

) 1
q

− Eb

S
∆t− 1

}]
(18)
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Though all the normal strains are equal in the reacting and Maxwell element, using the
equations (8), (12) and (17), different expressions for final strains in these elements just after
the end of first time interval are obtained as

εa1 = ε10

[(
p + qα1)
p + qα0

) 1
q

+
Eb

Ea1 + Eb

{
1−

(
p + qα1)
p + qα0

) 1
q

+
Eb

S
∆t

}]

εa2 = ε20

[(
p + qα1)
p + qα0

) 1
q

+
Eb

Ea1 + Eb

{
1−

(
p + qα1)
p + qα0

) 1
q

+
Eb

S
∆t

}]

εa3 = ε30

[(
p + qα1)
p + qα0

) 1
q

+
Eb

Ea1 + Eb

{
1−

(
p + qα1)
p + qα0

) 1
q

+
Eb

S
∆t

}]

εb1 = ε10

[
1 +

Eb

S
∆t +

Ea1

Ea1 + Eb

{(
p + qα1)
p + qα0

) 1
q

− Eb

S
∆t− 1

}]

εb2 = ε20

[
1 +

Eb

S
∆t +

Ea1

Ea1 + Eb

{(
p + qα1)
p + qα0

) 1
q

− Eb

S
∆t− 1

}]

εb3 = ε30

[
1 +

Eb

S
∆t +

Ea1

Ea1 + Eb

{(
p + qα1)
p + qα0

) 1
q

− Eb

S
∆t− 1

}]
(19)

Following the above procedure for the succeeding time intervals, the time-dependent response
of the system under sustained stresses σi0 as well as the temporal variation of the stresses in
the two individual elements can be calculated. The states of element stress so obtained are
considered to be constant during the next time interval and the above state of strain plays the
role of initial state of strain for the same time interval.

As and when
·
α = 0, the reacting element expected to behave like an elastic spring. Such a

situation can arise on the completion of the ongoing reaction or during the absence of one of the
reactants. Hence, this model becomes indistinguishable from the three-element model of general
linear substance with the governing differential equation as

σb

S
+

(
1

Ea
+

1
Eb

)
•
σb =

•
σ

Ea
(20)

The following well known expression for the creep response of such a model is deduced from
the above formulation.

εi =
[δij − (1− δij)ν] σj0

Ea

{
1− Eb

Ea + Eb
e
− tEaEb

S(Ea+Eb)

}
(21)

3.2 Recovery

To recapitulate, the material is subjected to a state of stress σi0 imposed at α = α0 and sustained
thereafter. The future material response in the form of strains εi and the element stresses σai
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and σbi has been obtained above. Let the above material be unloaded at α = α1. Equivalently,
a state of stress equal and opposite to σi0 is considered to be applied at α = α1. Thereafter, the
material is not under the action of any applied stresses even though the internal stresses in the
form of varying element stresses do exist. In this section, a numerical algorithm is presented for
obtaining material response after unloading, i.e., for α > α1.

Following the numerical algorithm adopted for obtaining the creep response, the total strains
as well as the elemental stresses are obtained at the instant just before unloading. As discussed
above, the process of unloading involves an application of a state of stress ‘ -σi0’ at α1. The
element stresses introduced instantaneously are obtained by using the equation (3) and replacing
Ea0 by Ea1. The corresponding changes in the state of strain upon unloading are obtained by
using the Hooke’s Law and the relevant elastic moduli. The final state of strain and the element
stresses at an instant just after unloading are then obtained by superposing the above computed
values. These strain values constitute the initial values of the strains for computing the future
material response by using the procedure adopted for obtaining creep strains as well as element
stresses.

3.3 Principle of superposition

The additive principle of superposition derived by the authors [7, 8] holds good for this model.
Because of the complexity of the problem, the above contention has not been proved, but
it has been verified to be true in this paper with the help of two states of stress applied at
different times. The values of the relevant material parameters estimated later using the available
experimental data have been used in this numerical study. Let a state of stress ‘A’ (10 MPa, 8
MPa and 5 MPa) be applied at any time t0=8 days and sustained thereafter. Another state of
stress ‘B’ (8 MPa, 3 MPa and -3 MPa) is imposed at t1= 50 days in addition to the previous
stresses. The states of strain at 100 days due to the above states of stress applied separately as
well as applied simultaneously are calculated with the help of the equations (27). The strains
at t2=100 days due to state of stress ‘A’ are ε1A = 406.7 × 10−6, ε2A = 290.5 × 10−6 and
ε3A = 154.1 × 10−6. Similarly, strains at t2=100 due stress ‘B’ are ε1B = 404.1 × 10−6, ε2B =
113.7 × 10−6 and ε3B = −151.6 × 10−6. The strains due to combined state of stress (A+B)
are determined as ε1(A+B) = 810.8 × 10−6, ε2(A+B) = 404.2 × 10−6 and ε3(A+B) = 2.5 × 10−6

respectively.
The sum of the strains due to states of stress ‘A’ and ‘B’ are obtained as

ε1A + ε1B = 406.7× 10−6 + 404.1× 10−6 = 810.8× 10−6 = ε1(A+B)

ε2A + ε2B = 290.5× 10−6 + 113.7× 10−6 = 404.2× 10−6 = ε2(A+B)

ε3A + ε3B = 154.1× 10−6 − 151.6× 10−6 = 2.5× 10−6 = ε3(A+B)

Thus, as can be seen, the validity of the principle of superposition is verified.
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3.4 Stress relaxation

Consider a concrete material point exhibiting creep under the action of a constant state of
average stress σi0 applied at t0. The total strains as well as the states of stress gradually change
with time in both of the elements. Let, at any instant of time t1, the state of strain is denoted
by εi and the states of stress in the reacting and Maxwell elements are denoted by σai and σbi

respectively. These states of stress and strain are determined by using the algorithm developed
above. If this state of strain is kept constant thereafter, i.e.,

•
εi =

•
εai =

•
εbi = 0, the equations

(5) and (6) assume the following rate form.

rεi
•
α +

•
σai = 0 for reacting element (22)

σbi

S
+

•
σbi

Eb
= 0 for Maxwell element (23)

The equation (22) for the reacting element can be rewritten in the following rate and differ-
ential forms.

•
σai = −rεi

•
α

dσai = −rεidα (24)

The symbol
•

σai can be interpreted as the rate of decrease of the stress component σai with
the progress of reaction and is proportional to the instantaneous rate of reaction. This implies
that there is no stress relaxation in the absence of reactions. The equivalent differential relation
gives the incremental decrease in the same stress component occurred during time interval dt.
To obtain the value of the residual stress component σai at some future instant t ≥ t1, this
differential equation has to be integrated with respect to α as below:

σai = −rεi

α∫
α1

dα + C

σai = −rεi(α− α1) + C

(25)

The constant of integration C is obtained from the condition that, at α = α1, σai = σai.
This condition gives C = σai. Thus, the values of the residual stress components in the reacting
element are given by the following expression:

σai = σai − rεi(α− α1) (26)

With the progress of reaction, the reacting element experiences gradual stress relaxation.
The values of the stress components σai decrease from σai to the following minimum value as
the reaction proceeds to completion (α = 1).

(σai)min = σai − rεi(1− α1) (27)
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Thus, the reacting element generally has some residual state of stress. In view of the unique
α − t relation, the value of the residual stresses can be obtained at any future instant of time
t ≥ t1.

Similarly, the expression for the residual stress components in the Maxwell element is ob-
tained, in terms of empirical constant C defined later, by integrating the equation (23) with
respect to time t as follows:

σbi = σbi

[
1 + Ct1
1 + Ct

] Eb
CS0

(28)

As is well known, the Maxwell element experiences complete asymptotic stress relaxation. If
the Maxwell element is considered separately, the residual state of stress vanishes asymptotically.
The value of the residual average stresses σi at any time t ≥ t1 is obtained by adding the
instantaneous values of the stresses in both the elements as follows

σi = σai − rεi(α− α1) + σbi

[
1 + Ct1
1 + Ct

] Eb
CS0

(29)

It can be observed that, apart from the material properties, the residual average stresses also
dependent upon t0 and t1 as well as up on the reaction kinetics.

4 Computational study

4.1 Empirical calibration of the model

To predict the material response to any stress history at any stage of reaction, it is necessary
to estimate the material parameters like a, p, q, r and S. Here, the material constants have
been estimated using creep-time plot (Fig. 9.18 of reference [4]) of a particular uniaxial creep
test conducted on a concrete/mortar specimen undergoing hydration reaction in a particular
ambient chemical environment. The creep curve gives the variation of axial creep strain with
time t. The mix proportion of concrete was taken as 1:3.5:3.5 with 0.72 water-cement ratio.

Following the approach adopted earlier [3, 8], the effect of the ambient environment as well
as of the chemical nature of the reactants on the reaction kinetics is represented through an
α-t relation. As such, the parameter α is a measure of intrinsic time. In the present case, this
relation is calibrated from the data on hydration kinetics at room temperature. As earlier, the
form of the α-t relation has been assumed to be

α =
t

a + t
(30)

This gives the instantaneous rate of reaction as

•
α =

a

(a + t)2
(31)
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Thus, the empirical constant a turns out to be equal to the reciprocal of the initial rate of
reaction at t=0 as follows

•
α =

1
a

(32)

For better predictions, more complex α-t relation can be assumed. The reaction kinetics
represented by the relation depends upon several factors such as, the nature of concrete con-
stituents, nature and concentration of chemical reactants, temperature, amount of solvent like
pore water, etc.

The value of the dashpot coefficient S for the conventional Maxwell element is expected to
vary with the progress of reaction. Its instantaneous value has been assumed to vary with time
as

S = S0(1 + Ct) (33)

where S0 is initial viscosity constant at the beginning of hydration and C is an empirical constant.
Once the values to the empirical material parameters are determined, the above compu-

tational algorithm can be used for predicting creep. After many attempts at predicting the
observed creep behaviour under uniaxial compressive stress [4] by assigning different combina-
tions of values to the empirical material parameters, the following values have been found to
give the best fit within acceptable error: a = 10, p=1.25, q = −0.50, C=90 and S0=150. In the
present case involving hydration, the reacting phase is identified to be cement. From the mix
proportions, its volume fraction before the start of the reaction is estimated to be about 0.1.
Based on the arguments presented elsewhere [8] concerning the disruptive effect of dissolution of
cement grains on the integrity of concrete, the effective volume fraction of the reacting phase is
estimated to be 0.25. So far as their elastic modulus E1 is concerned, unhydrated cement grains
are indistinguishable from hard rock particles. Assuming the value of modulus of elasticity of
the reacting phase as 4.8X104 MPa, the value of the parameter r is estimated to be 1.2X104

MPa. The value of Eb has been assed to be 25000 MPa. Using the above value of parameter
a, the resulting hydration kinetics is depicted in Fig. 2 in the form of α − t plot. It should be
remembered that the reaction kinetics of concrete depends upon the type of cement, chemical
admixtures if any, ambient temperature, etc. The above α − t relation has been deduced from
the empirical data on creep of the given concrete under uniaxial compression and in a particular
ambient environment. This observation applies to other empirical constants as well. It should
be kept in mind that the above empirical parameters of the model should be used to predict
behaviour of same concrete in the same ambient environment.

4.2 Quantitative prediction of material response

Using the relevant equations derived above, the creep behaviour of reacting viscoelastic concrete
subjected to diverse biaxial and triaxial stress histories has been predicted. The empirical data
on creep and recovery for the chosen stress histories is available in the literature [4]. Such data
have also been plotted in the same figures for direct comparison with the quantitative theoretical
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Figure 2: Theoretical prediction of degree of reaction vs time.

predictions. The time variation of the element stresses has also been presented. For the chosen
biaxial and triaxial stress histories, the effect of age at loading has been investigated. The
stress relaxation behaviour has also been predicted. Using a numerical illustrative example, the
principle of superposition has also been validated. The computational algorithm developed is
based on incremental procedure in the time domain.

5 Discussion

In this paper, a chemico-mechanical theory of reacting isotropic linear aging viscoelastic solids
has been constructed. The time-dependent deformations are caused by both the dissolution-
precipitation mechanism and the viscoelastic nature of the material. The proposed theory
(DPT) and the well-known solidification theory (ST) developed by Bazant and co-workers seek
to simulate the observed behaviour of concrete at all ages. Both of these theories, being phe-
nomenological engineering theories, lack the basis in rational continuum thermo-mechanics. As
these theories share the objective as well as broad phenomenological approach, the DPT and
ST are competing theories.

Where the DPT of the reacting elastic solids was first proposed in 1995 [3], it was motivated,
albeit to a partial extent, by the then available ST. Partly, the motivation was provided by
the need to explain the observed time-dependent deformations in reacting mature concrete.
DPT shares with ST the hypothesis that the volume of solid reaction products grows with
their precipitation/solidification out of the solution phase and, at the instant of precipitation
/solidification, these reaction products are stress-free. Beyond this, their dissimilarities define
the distinguishing characteristics of these theories. First of all, DPT identifies a new mechanism
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– DP Mechanism – of time-dependent deformations even in elastic solids when they are involved
in some reactions. To be specific, ST is incapable of predicting the time-dependent deformation
exhibited by mature (elastic) concrete on exposure to reacting environment. Also, ST presumes
that the unreacted phase to be stress-free. Such an assumption is not justified in mature concrete
with all of its constituent phases being in solid state. Hence, the scope of ST is limited to only
hydrating concrete but only at early age. Because of the fact that ST can not simulate the
mechanical behaviour of reacting mature concrete, durability of concrete constituents in service
subjected to simultaneous action of loads and chemical environment is outside its scope of
validity. In contrast, the DPT constitutes a major theoretical contribution to the durability
mechanics of concrete. The DP theory and the earlier version of ST both lack the capability
to explain the observed phenomenon of aging creep of mature concrete. The solidification
theory has been modified later by incorporating the effect of ‘micro-prestress’ to simulate such
phenomenon (Baweja et al 1997).

Available experimental data on the creep of concrete under triaxial and biaxial compressive
stress histories [4] has been used for empirical calibration and validation of the proposed model.
The triaxial stress history used involves application of triaxial compressive sate of stress [σ1 =
13 MPa, σ2 = 13.5MPa, σ3 = 6.5MPa] at 8 days, increasing σ3 to 13.7 MPa at 70 days and
followed by unloading at 102 days. The empirical model parameters determined above has
been used to obtain the material response up to 150 days for this load history. Theoretical
prediction of material response under such stress history presupposes the validity of principle of
superposition. The required principle of superposition has been proved earlier for the reacting
element [7] and for the linear Maxwell element this principle is known to be valid. For the
proposed rheological model of the reacting viscoelastic concrete, the superposition principle has
been numerically verified above.

Comparison of predicted creep and total strains with the experimental data shown in Fig. 3a
and 3b respectively reveals the basic soundness of the proposed model. It can be observed that
the model predicts instantaneous state of strain introduced upon loading. Under sustained state
of stress the creep occurs and the reacting concrete has been shown to exhibit gradual increase of
strains. The instantaneous application of additional stress σ3 results in an instantaneous increase
in the corresponding strain ε3 but an instantaneous decrease of strain in the lateral directions
due to Poisson’s effect. Upon unloading, the instantaneous elastic recovery is followed by creep
recovery. However, in contrast to the conventional three element model, the residual strains do
not vanish asymptotically. Apart from these expected qualitative theoretical predictions, the
quantitative predictions of the model have also been found to be satisfactory. In particular, the
error in the predicted strain does not exceed ten percent.

It is well known that, as the reacting element and the Maxwell element are arranged in
parallel, the sum of the individual element stresses is always equal to the applied stresses.
The variation of these element stresses with time separately for each normal stress has been
plotted in Fig. 3c. The aim is to compare, from a different angle, the proposed model with the
corresponding classical three element model. Let it be recapitulated that, in the conventional
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Figure 3: Theoretical predictions in concrete under triaxial stress history.

three element model under sustained uniaxial stress, the stress in the Maxwell element decreases
with the progress of time and vanishes asymptotically. This is because of the fact that, with
progressive decrease in the rate of creep, the stress in the dashpot and so in the Maxwell element
decreases. After unloading, the stresses in the Maxwell and spring elements in the three-element
rheological model balance each other and both vanish asymptotically. Similarly, it has been
predicted for the proposed rheological model, as shown in the Fig. 3c, that the states of stress
applied instantaneously at 8 days and 70 days are shared by the two elements in the ratio of their
relative instantaneous stiffness. Under sustained state of stress, relative contribution of Maxwell
element has been predicted to decrease with time. Upon unloading, the element normal stresses
in reacting element and Maxwell element balance each other at all times. These element stresses
decrease with time and vanish asymptotically as the strain rate vanishes. As pointed out in
the preceding paragraph, a certain state of strain is reached asymptotically. Both the elements
attain the same state of strain. However, the spring of the Maxwell element is strain-free, the
entire strain being suffered by the dashpot.

Similarly, temporal variation of element stresses and creep strains of concrete subjected to
biaxial loading and unloading has been shown in Fig. 4. A biaxial state of compressive stress
[σ1 = 12.8 MPa, σ2 = 7.4MPa, σ3 = 0MPa] is applied at 8 days and removed at 28 days.
The expected qualitative behaviour patterns are obtained. It can be observed that the stress σ3

remains zero in both the elements. The quantitative theoretical predictions have been found to
be close to the experimental observations [4]. It can also be observed that, as expected, reacting
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viscoelastic concrete has been predicted to exhibit creep strains under sustained loading as well
as residual strains after unloading to be of the same sense as the instantaneous elastic strains
upon loading.
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(b)

Figure 4: Theoretical prediction of concrete response to loading-unloading under biaxial stresses:
(a) Element stresses (b) Creep.

It can be observed from Fig. 3 and Fig. 4 that reacting viscoelastic concrete has been
predicted to exhibit positive creep recovery after unloading. This prediction is confirmed by
experimental data on concrete [4]. However, the reacting elastic concrete has been shown to
exhibit negative creep recovery [8]. Similarly, negative creep recovery has been predicted by
solidification theory of hydrating concrete [2]. In the two theories, viz, dissolution precipitation
theory [DPT] and solidification theory [ST], this phenomenon has been studied theoretically in
terms of the concept of divergence. Here, no such analytical derivation has been given, but it
has been shown by numerical examples that, in this respect, the model of reacting viscoelastic
concrete proposed in this paper is better than the above two theories.

Additionally, temporal variation of element stresses and total strains in concrete subjected
to a loading-unloading cycle of triaxial compressive stresses [σ1 = 13MPa, σ2 = 13.5MPa,

σ3 = 6.5MPa] has been shown in Fig. 5. The effect of age at loading of the above triaxial
state of stress on element stresses and total strains have been plotted in Fig. 6. The qualitative
predictions of the model in both of these illustrative examples are satisfactory. For example,
creep at any age is predicted to be lesser when the concrete is loaded at later ages. The temporal
variation of element stresses, being more complex, deserves an explanation. It should be realized
that the elastic modulus and viscosity of the Maxwell element increase with the passage of time.
Just after loading, and at the asymptotic stage, the applied stresses are shared by elements
in the ratio of their instantaneous relative stiffness. However, under the sustained loading the
variation of the element stresses in the presence of ongoing reactions is governed by their viscosity
parameters.
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Figure 5: Theoretical prediction of concrete response to loading-unloading under triaxial stresses:
(a) Element stresses (b) Total strain.
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Figure 6: Theoretical prediction of effect of age at loading on concrete behaviour under sustained
triaxial state of stresses: (a) Element stress (b) Total strain.

The phenomenon of stress relaxation under the chosen triaxial states of stress has also been
investigated. A state of triaxial compression [σ1 = 15MPa, σ2 = 8MPa, σ3 = −5MPa] has
been applied at 28 days. Under sustained state of stress, the reacting viscoelastic concrete
exhibits creep. At 100 days, the total state of strain is kept constant as shown in Fig. 7a. It
can be observed from Fig. 7b that the element stresses gradually decrease with the passage of
time and can even undergo change of sense. The temporal variation of total stresses has been
shown in Fig. 8. It can be observed from these figures that the total stresses do not vanish
asymptotically and that the residual total stresses do not experience change of sense.
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Figure 7: Theoretical prediction of creep and relaxation of concrete under triaxial state of stress:
a) Total strains b) Element stresses.
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Figure 8: Theoretical prediction of stress-relaxation.

6 Conclusions

The chemico-mechanical model of reacting homogeneous isotropic linear elastic concrete pro-
posed earlier has been extended in this paper to reacting viscoelastic concrete. The proposed
rheological model is obtained by arranging in parallel the reacting element with Maxwell ele-
ment with time-dependent viscosity. The proposed model has been calibrated by using available
experimental data.
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The creep, recovery and stress relaxation behaviour of same hydrating concrete in the same
ambient environment subjected to multiaxial stress has been predicted. Comparison of the
theoretical predictions with the experimental data shows the basic soundness of the proposed
model. Plots showing temporal variations of element stresses have been shown to provide deeper
insight into the phenomenon.

The proposed model is similar to the solidification theory of hydrating concrete, but there
exist certain inherent dissimilarities also. Both these theories belong to the class of linear aging
viscoelasticity theories. While the scope of the solidification theory is restricted to hydrating
early age concrete, the proposed model is capable of predicting time-dependent behaviour of
concrete involved in all types of reactions. As such, it has obvious significance for durability
mechanics of concrete. Both of the theories are incapable of predicting aging creep in mature
concrete not involved in any reactions including hydration. Recently, the solidification theory
has been extended in the form of microprestress solidification theory to remove this lacuna. It
is proposed to extend the proposed rheological model also along these lines.
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