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Abstract 
In this paper the effect of quadratic and cubic non-linearities of 
the system consisting of the crankshaft and torsional vibration 
damper (TVD) is taken into account. TVD consists of non-linear 
elastomer material used for controlling the torsional vibration of 
crankshaft. The method of multiple scales is used to solve the 
governing equations of the system. Meanwhile, the frequency 
response of the system for both harmonic and sub-harmonic reso-
nances is extracted.  In addition, the effects of detuning parame-
ters and other dimensionless parameters for a case of harmonic 
resonance are investigated. Moreover, the external forces including 
both inertia and gas forces are simultaneously applied into the 
model. Finally, in order to study the effectiveness of the parame-
ters, the dimensionless governing equations of the system are 
solved, considering the state space method. Then, the effects of 
the torsional damper as well as all corresponding parameters of 
the system are discussed. 
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Nomenclature 
b  Crankshaft linear damping coefficient                             
c  TVD linear damping coefficient                            

      
        

1
*F  Coefficient of excitation 

2
*F  Coefficient of excitation 

cI  Crankshaft polar mass moment of inertia 

dI  TVD polar mass moment of inertia 

ck  Crankshaft linear spring stiffness 

dk  TVD linear spring stiffness  

R. Talebitooti a,*

M. Morovati b 

 
aAsst. Prof., School of Mechanical 
Engineering, Iran University of Science 
and Technology, Tehran, Iran 
e-mail: rtalebi@iust.ac.ir 
 
bM.Sc. graduated, School of Automo-
tive Engineering, Iran University of 
Science and Technology, Tehran, Iran 
e-mail: mehdimorovati@auto.iust.ac.ir 
 

Received 21.01.2014 
In revised form 04.08.2014 
Accepted 04.08.2014 
Available online 17.08.2014 



2673   R. Talebittoti and M. Morovati / Study on TVD parameters sensitivity of a crankshaft using mult. scale and state space met. considering quad. and cubic non-linearities 

 

Latin American Journal of Solids and Structures 11 (2014) 2672-2695 
 

2k  Crankshaft non-linear quadratic non-linearities 

3k  TVD non-linear cubic non-linearities 
R   Dissipated energy 
t   Dimensionless time 
T  Kinetic energy 
V   Potential energy 

1
*  General coordinate system 

2
*  General coordinate system 

1  System natural frequency 
   Small dimensionless parameter 

1  External excitation frequency 

2  External excitation frequency 

1  
Detuning parameter 

2  Detuning parameter 

3  Detuning parameter  

 

1 INTRODUCTION 

The Vibration phenomenon is one of the most important issues should be treated to reduce the 
unpleasant shaking in various compartments. If the movement is left untreated, many consequent 
problems such as noise transmission into cavity of the car as well as fracture and failure of the 
compartments will be occurred. The crankshaft is one of those compartments should be attentioned. 
It is mostly manufactured with high mechanical strength cast iron. It should be strong enough to 
tolerate piston strokes without high torsion. In addition, it should be balanced very carefully to 
prevent vibrations generated from out of center weight of the crank. 
 Crankshaft has been investigated by many researchers. Espindola et al. (2010) indicated that a 
hysteretic model can be derived from a viscoelastic material based on four fractional parameters. 
Moreover, they derived generalized quantities of ordinary and pendulum type absorbers considering 
both viscoelastic and hysteretic materials. They have also compared the performance of the system 
with absorbers of viscoelastic and hysteretic nature. Mourelatos (2001) introduced a model to ana-
lyze the dynamic behavior of an internal combustion engine crankshaft. The model couples the 
crankshaft structure dynamics, the main bearing hydrodynamic lubrication and the engine block 
stiffness using a system approach. Smaili and Khetawat (1994) investigated the vibratory behavior 
of an automotive crankshaft. Their FEM model involved a new scheme for modeling the stiffness 
and damping properties of the journal bearings. Mourelatos (2000) developed a structural analysis 
using dynamic sub-structuring with Ritz vector to predict the dynamic response of an engine crank-
shaft, with the aid of FEM. Asfar (1992) investigated the effect of non-linearities in elastomeric 
material dampers to isolate torsional oscillations of internal combustion engines shafts. Boysal and 
Rahnejat (1997) have studied a detailed multi-body nonlinear dynamic model of a single cylinder 
internal combustion engine. Their model comprises all rigid body internal members, support bear-
ings, joints, couplers and connections between the various engine components, as well as vibration 
dampers. Montazersadegh and Fatemi (2007) studied a dynamic simulation on a crankshaft from a 
single cylinder four stroke engine. They also performed finite element analysis to obtain the various 
stress magnitude at critical locations. Murawski (2004) investigated additional bending stresses in 
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the crankshaft as well as possible vibrations of the ship’s structure due to the reaction force in the 
thrust bearings. Giakoumis et al. (2008) evaluated the crankshaft angular deformations during tur-
bocharged diesel engine operation owing to the difference between instantaneous engine and load 
torques by the aid of an experimentally validated diesel engine simulation code. 
 Furthermore, many authors is applied multiple scales method to solve various kinds of partial 
differential equations (PDEs). Multiple Scales method is one of perturbation method branches 
which is aimed at finding approximate analytic solutions to problems whose exact analytic solutions 
cannot be found. The setting where perturbation methods are applicable is where there is a family 
of equations ( )P e , depending on a parameter 1e  , and where ( )0P  has a known solution. Per-
turbation methods are designed to construct solutions to ( )P e  by adding small corrections to 
known solutions of ( )0P . The singular aim of perturbation methods is to calculate corrections to 
solutions of ( )0P . Perturbation methods do not seek to prove that a solution of ( )0P , with correc-
tions added, is close to a solution of P( e ) for e  in some finite range with respect to some measure 
of error. Its sole aim is to compute corrections and to make sure that the first correction is small 
with respect to the chosen solution of ( )0P , that the second correction is small with respect to the 
first correction and so on, all in the limit when e  approaches zero. R. Ghaderi and Azin Nejat 
(2014) is used multiple scales method to analyze the frequency response of Nano-Mechanical Canti-
lever (NMC). Then, they applied the primary resonance excitations to show the softening phenom-
enon in frequency response. Moreover, Eissa and Bassiouny (2003) is applied the method of multiple 
scales to construct a second order uniform expansion of the non-linear rolling response of a ship in 
regular beam seas. 
 In most of analytical studies surveyed above, only one term is used to simulate the external force 
applied on crankshaft. The other external forces are neglected which may lead into improper results. 
In most of the researches, authors have not considered both inertia and gas forces in their model. 
These two terms are of high importance. In other word, if these are not modeled simultaneously 
could influence on crankshaft torsional vibration. In addition, the corresponding parameters of 
crankshaft and TVD are obtained with the aid of the FEM model developed in ABAQUS software 
and curve fitting method applied in a numerical procedure developed in MATLAB.   
 In this paper, nonlinear vibration of a crankshaft is studied using the multiple scales perturba-
tion technique (MSPT) at harmonic and sub-harmonic resonance. The system consists of the main 
structure along with torsional vibration dampers. The external forces including both inertia and gas 
forces are simultaneously applied into the model. In order to study the effective parameters, the 
dimensionless governing equations of the system are solved, considering the method of state space in 
a steady state process. Then, the effects of the torsional damper as well as all corresponding param-
eters of the system are discussed. 

 

2 GOVERNING EQUATIONS OF THE SYSTEM 

The governing equations of the system including the crankshaft and elastomer have been consid-
ered. Therefore, in order to derive these equations a mathematical model is represented in this sec-
tion, using rod and disk elements. 
Lagrangian formula is used to calculate differential equations followed as in Rao (2010): 
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Figure 1: Schematic model of rod and disk elements. 

 

 ( ) i
i i i

d L L R
Q

dt q q q

¶ ¶ ¶
- + =

¢ ¢¶ ¶ ¶
  (1) 

 *2 *2 *2 * * 2 * * 2 * * * 3 *
1 2 1 2 1 2 2 1 3 2 1

1 1 1 1
( ( ) ( ) ( ) )

2 2 2 2c d c dL T V I I k k k d k dq q q q q q q q q q q¢ ¢= - = + - + - + - + -ò ò   (2) 

 *2 * * 2
1 2 1

1 1
( )

2 2
R b cq q q¢ ¢ ¢= + -   (3) 

 
where L  is representing the difference between kinetic and potential energy, R  is dissipated energy, 

iQ  is external forces and iq  is general coordinate system denoted as *
1q  and *

2q .With substituting  
Eqs. (2,3) into Eq. (1) the governing equations of the system are followed as: 
 
 * * * * * * 2 * * 3 * * * 2 * * * *

1 1 2 1 2 2 1 3 2 1 1 2 1 1 1 2 2( ) ( ) ( ) ( ) sin sinc c dI k k k k b c F t F tq q q q q q q q q q q¢¢ ¢ ¢ ¢+ - - - - - - + - - = W + W   (4) 

 * * * * * 2 * * 3 * * 2
2 2 1 2 2 1 3 2 1 2 1( ) ( ) ( ) ( ) 0d dI k k k cq q q q q q q q q¢¢ ¢ ¢+ - + - + - + - =   (5) 

 
where ck  and dk  are linear spring stiffness of the crankshaft and TVD respectively; cI  and dI  are 
polar mass moment of inertia of the crankshaft and TVD, respectively; 2k  and 3k  are non-linear 
quadratic and cubic Non-linearities of the crankshaft and TVD;b and c are linear damping coeffi-
cients of the crankshaft and TVD and *

1F  and *
2F  are the Amplitudes of the excitations. Also, in 

Eqs. (4,5) it is assumed that * *
2 1 0q q- > . 

 In order to get involve with standard equations, non-dimensional variables are introduced as 
follows: 
 

 *
1t tw=  , 1 1

1
c

K k

I
w

+
=   (6) 

 
where t  indicates the dimensionless time and 1w  is the natural frequency of the system including 
crankshaft and TVD. 
Thus, Eqs. (4) and (5) are written as: 
 
 2 3

1 1 2 2 1 1 1 2 1 2 1 1 2 1 1 1 2 2[ ( ) ( ) ( ) ( sin sin )b d F t F tq q e g q zq z q q q q q q e+ + - + + - - - - - = W + W      (7) 

 2 2 3
2 2 1 2 1 2 2 2 1 2 2 1( ) [ ( ) ( ) ( ) ] 0b dq b q q e z q q q q q q+ - + - - + - + - =     (8) 

 
where e  is a small dimensionless parameters and (.) represents the derivative with respect to *t  
and the other parameters are introduced as follows: 
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3 SOLVING THE GOVERNING EQUATIONS 

In this section the method of multiple scales proposed by Nayfeh and Mook (1995) is used to solve 
Eqs. (7,8). The approximate solution is represented followed as: 
 
 2

1 10 0 1 11 0 1 12 0 1( ; ) ( , ) ( , ) ( , ) ...t T T T T T Tq e q eq e q= + + +   (10) 

 2
2 20 0 1 21 0 1 22 0 1( ; ) ( , ) ( , ) ( , ) ...t T T T T T Tq e q eq e q= + + +   (11) 

 
where 1e << , 0T  and 1T  are the fast and slow time scales defined as: 
 
 0T t= , 1T te=  (12) 
 
In addition the time derivative becomes: 
 

 2
0 1 2 ...

d
D D D

dt
e e= + + +  , 

2
2 2 2
0 0 1 1 0 22

2 ( 2 ) ...
d

D D D D D D
dt

e e= + + + +  (13) 

 
where n nD T= ¶ ¶ . 
Substituting Eqs. (10), (11) and (13) into Eqs. (7) and (8) and reconstructing the equation with 
respect to the power of e  will result into two sets of equations: 
The equations involving the zero order 0e  can be written as: 
 

 2
0 10 10 0D q q+ =   (14) 

 2 2 2
0 20 20 10 0D q b q b q+ - =   (15) 

 
The equations involving the first order 1e  can be written as: 
 

 
2 2 2
0 11 11 0 1 10 2 20 0 10 1 0 10 1 0 20 1 10 1 10 20 1 20

3 2 2 3
1 10 1 10 20 1 10 20 1 20 1 1 2 2

2 2

3 3 sin sin

D D D D D D b b b

d d d d F t F t

q q q g q z q z q z q q q q q

q q q q q q

+ = - + - - + + - +

- + - + + W + W
  (16) 

 
2 2 2 2 2 3
0 21 21 0 1 20 11 2 0 10 2 0 20 2 10 2 10 20 2 20 2 10

2 2 3
2 10 20 2 10 20 2 20

2 2

3 3

D D D D D b b b d

d d d

q b q q b q z q z q q q q q q

q q q q q

+ = - + + - - + - +

- + -
  (17) 

 
 It should be noted that the two sets of equations represented above are coupled. In other hand, 
solution of Eq. (17) depends on the solution of Eqs. (14-16). The similar procedures are applied in 
solving to Eqs. (15) and (16). 
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 10 1 1 0 1 1 0( )exp( ) ( )exp( )A T iT A T iTq = + -   (18) 

 
where 1A  is a function of 1T  at this level of approximation. Substituting Eq. (18) in Eq. (15) yields 
the solution of 20q  as: 
 
 20 2 1 0 3 1 0( )exp( ) ( )exp( )A T i T A T iT ccq b= + +   (19) 

 
where ( )2 2

3 1 1A Ab b= -  and cc stands for the complex conjugate of the preceding terms and 2A  
is an unknown function at this level of approximation. Substituting Eqs. (18) and (19) into Eq. (16) 
yields: 
 

 

0

0 0 0 0 0

0 0 0 0

2
0 11 11 1 2 3 1 1 1 1 3 2 2 1 2

22 2
1 1 1 3 3 1 2 2 3 1 2

22
1 3 1 3 2 2 2 2 3 3 3 1 1

3 2
1 1 1 3

( 2 )e ( )

e [( 2 )e ( 2 2 )e e 2 e

e 2 2 e 2 2 e e 2 2 ]

[( 3

iT
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i T i T i T iT

D iA A i A i A i A A i A

b A AA A AA A A AA

AA AA A A A A A A A AA
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b b

b b b
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- -

¢+ = - + - - + + +

+ - + + - + -

- - + + + + +

- - 0

0 0 0 0 0

0 0 0

0 0
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3 1 3 1 1 1 1 3 1 3 1 2 2

2 22 2 2 2
1 3 3 2 2 3 3 3 3 1 1 2 1 2

22 2
1 1 2 1 2 3 1 2 3 2 2 2 3 3 2 1

2
1 2 3

3 )e (3 6 3 6

6 6 3 3 )e 3 e e 3 e e

( 6 6 6 3 6 )e 3 e e

6 e e
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iT iT i T iT i T

i T i T iT

iT i T
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AA A A A A A A A A A A A A

AAA AA A AA A A A A A A A A

AA A

b b

b b

b

-

+ - + - - + +

- - + - -

+ - + + - - +

+ 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 2

2 2 22 2
1 2 1 2 3 1 2

2 3 2 2 23 2 2 2
1 2 3 2 2 3 2 3 2 3

2 22 2
3 2 2 3 1 2

3 e e 6 e e 3 e e

6 e e e 3 e e 3 e e 3 e

e 3 e e 3 e e ] 0.5 e 0.5 e

iT i T i T iT iT i T

i T iT i T i T iT i T iT i T

iT i T iT i T iT i t i t

A A AA A AA

AA A A A A A A A A

A A A A F F NST

b b b

b b b b b

b b

- - -

-

- - - W W

+ + + +

- - - -

- - + + + + cc

  (20) 

 
where NST stands for terms that do not produce secular terms. Therefore, any particular solution 
of Eq. (20) contains secular or small divisor terms depending on the resonance conditions. The de-
tuning parameters 1s , 2s  and 3s  are introduced as follows: 
 
 12b es= + , 1 21 esW = + , 2 32 esW = +  (21) 

 
Substituting Eq. (21) in Eq. (20) and eliminating the terms that produce secular terms and small 
divisors in 11q  yields the following expression: 
 

 

2
1 2 3 1 1 1 1 3 1 1 2 1 1 1 2 3 1 1 1 1 1

2 2 2
1 1 1 3 1 1 3 1 3 3 1 2 3 3 1 1 3 3 1 1 2 2 1 1 3

1 2 1 2 3 1

2 2 exp( ) 2 exp( ) 3

6 3 3 6 6 6 3

0.5 exp( ) 0.5 exp( ) 0

iA A i A i A i A b AA i T b A A i T d A A

d AAA d AA d A A d A A A d AA A d AA A d A A

F i T F i T

g z z z s s

s s

¢- + - - + - + -

+ - + + - - +
+ + =

  (22) 

 
where the prime denotes the derivative with respect to 1T  and also the overbar shows the complex 
conjugate. The uniform solution of Eq. (20) can now be written as: 
 

 

2 2
11 2 2 1 2 1 1 1 2 1 2 3 1 2 3 2 2 2 3 3

0 1 1 2 2 3 0

(1 / 1 )[ ( 6 6 6 3 6 )]

1
exp( ) ( )exp ( 1)

3

A i A d AAA AA A AA A A A A A A

i T b AA A A i T

q b g z b

b b

= - + - - + + - -

- - -
  (23) 
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In Eqs. (23), the terms proportional to 0 0exp(2 ), exp(2 ),iT i Tb  etc are ignored, as these terms are 
neutral in resonance cases. 
 

 

0 0

0

0 0 0 0

2 2 2 2
0 21 21 2 3 2 1 2 3 2 2 1 2

2
1 1 1 2 1 2 3 1 2 3 2 2 2 3 3 1 1 2 2 3

( 1) 22
2 2 2 1 1 1 1 2 2 3

2 e ( 2 )e ( (1 ))[

( 6 6 6 3 6 )]e (1 3) ( )

e e [ e 2 ( 2 2 )e e
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b
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b
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b
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-
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2 22 2
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b

b b b

b b b b

- -

- -

- - - + - - -

- + + +

  (24) 

 
Substituting Eq. (21) in Eq. (24) and eliminating the terms that produce secular terms and small 
divisors in 21q  yields the following equation as: 
 

 
2 2 2

2 2 2 1 2 1 1 1 2 1 2 3 1 2 3 2 2 2 3 3
2

2 2 2 1 1 2 3 2 1 3 2 1 2 2 2 3 3

2 ( / 1 )[ ( 6 6 6 3 6 )]

( 6 6 6 3 6 0

i A A i A d AAA AAA AAA A A AA A

i A d AAA A AA A AA A A AA A

b b b g bz

bz

¢- + - + - - + + - -

- + - + + - - =
  (25) 

 
Now, it is convenient to introduce nA  in polar form as: 
 

 
1

exp( ); 1,2
2n n nA a i ny= =   (26) 

 
where na  and ny  are real components. Substituting Eq.(26) in Eqs. (22) and (25) and separating 
real and imaginary parts yields the governing following equations: 
 

 
3 2 3 2

1 1 2 1 1 1 1 1 2 1 1 2 1

1 2 2 3

3
0.5 (1 3 3 ) 0.75 (1 ) 0.5 (1 )cos

8
0.5 cos 0.5 cos

a a d a d a a b a a Z

F Z F Z

y g¢ = - G + - G + G - G + - G + - G

- -
  (27) 

 1 1 1 1 1 1 1 1 2 1 1 2 2 30.5 0.5 0.5 0.5 (1 )sin 0.5 sin 0.5 sina a a a b a a Z F Z F Zz z z¢ = - + G - - - G + +   (28) 

 2 2 2 3 3
2 2 2 2 1 2 1 1 2 2 2 1 2 2 2

3 3
0.5 0.75 ( 2 2 )

8 8
a a a a d d d d d d a d ab y g¢ = G + G - G - + G - G + G -   (29) 

 2 2 2 10.5 ( )a ab b z z¢ = - - + G   (30) 
 
where: 
 

 1 1 2 1 12Z Ty y s= - + + , 2 2 1 1Z Ts y= - , 3 3 1 1Z Ts y= - , 
2

2 1

b

b
G =

-
 (31) 

 
Eqs. (27-30) are first order coupled differential equations which have to be solved simultaneously. 
Two cases of resonances including harmonic and sub-harmonic are studied in next sections. 
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4 HARMONIC RESONANCE 

Considering the detuning parameters as 2b @ , 1 1W @  and also taking the value of 2W  far from 2, 
Eqs. (27-30) are written as: 
 

 3 2 3 2
1 1 2 1 1 1 1 1 2 1 1 2 1 1 2

3
0.5 (1 3 3 ) 0.75 (1 ) 0.5 (1 )cos 0.5 cos

8
a a d a d a a b a a Z F Zy g¢ = - G + - G + G - G + - G + - G -   (32) 

 1 1 1 1 1 1 1 1 2 1 1 20.5 0.5 0.5 0.5 (1 )sin 0.5 sina a a a b a a Z F Zz z z¢ = - + G - - - G +   (33) 

 2 2 2 2 2
2 2 1 1 1 2 2 2 1 2 2 2

3 3
0.5 0.75 ( 2 2 )

8 8
a d d d d d d a d aby g¢ = G + G - G - + G - G + G -   (34) 

 2 2 2 10.5 ( )a ab b z z¢ = - - + G   (35) 

 
Steady state solutions of the system are obtained with considering 0n na Z¢ ¢= =  in Eqs. (32-35) 
simultaneously. From Eq. (35) it can be obtained that 2 1z z= G . Using steady state condition in 
Eq. (31) results in: 
 
 1 2y s¢ = , 2 2 12y s s¢ = -  (36) 

 
Thus, the steady state equations in this case are followed as: 
 

 3 2 3 2
2 1 2 1 1 1 1 1 2 1 1 2 1 1 2

3
0.5 (1 3 3 ) 0.75 (1 ) 0.5 (1 )cos 0.5 cos 0

8
a a d a d a a b a a Z F Zs g+ G - - G + G - G - - G - - G + =   (37) 

 1 1 1 1 2 1 1 2[ (1 )] (1 )sin sin 0a b a a Z F Zz z- + - G - - G + =   (38) 

 2 2 2 2 2
2 1 1 1 2 2 2 1 2 2 2 2 1

3 3
0.5 0.75 ( 2 2 ) 2

8 8
a d d d d d d a d ag s sG + G - G - + G - G + G - = -   (39) 

 
Using Eqs. (37-39), the frequency response equation of the system is constructed as: 
 

 

2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 1 2 1 1 1 2 2 1 1 1 2 1 2

2 3 2 3
2 1 1 1 2 1 2 1 1 1 1 1

2 2 2 2
1 2 1 2 1 1 1

( (1 )) (0.816 / ( )) ( )(3 6 2 3 6 3

3 3
8 4 ) [( (1 )) ] [ 2 (1 3 3 ) (1 )

4 2
(0.816 / ( )) ( )(3 6

F b a d d d d a d a d a d a d a d

a a a d a d a

d d d d a d a d

g

s s z z s g

+ - G G - G - G + - G - G - G + G

+ - = + - G + - - G + - G + G - G + - G

G - G - G + 2 2 2 2 2
2 2 1 1 1 2 1 2 2 12 3 6 3 8 4 )]a d a d a dg s s- G - G - G + G + -

  (40) 

 

5 SUB-HARMONIC RESONANCE 

With assuming the detuning parameters as 2b @ , 2 2W @  and also taking the value of 1W  far 
from 1, Eqs. (27-30) are reconstructed as: 
 

 3 2 3 2
1 1 2 1 1 1 1 1 2 1 1 2 1 2 3

3
0.5 (1 3 3 ) 0.75 (1 ) 0.5 (1 )cos 0.5 cos

8
a a d a d a a b a a Z F Zy g¢ = - G + - G + G - G + - G + - G -   (41) 

 1 1 1 1 1 1 1 1 2 1 2 30.5 0.5 0.5 0.5 (1 )sin 0.5 sina a a a b a a Z F Zz z z¢ = - + G - - - G +   (42) 

 2 2 2 2 2
2 2 1 1 1 2 2 2 1 2 2 2

3 3
0.5 0.75 ( 2 2 )

8 8
a d d d d d d a d aby g¢ = G + G - G - + G - G + G -   (43) 
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Assuming the steady state conditions, Eqs. (41-43) are represented as: 
 

 3 3 2 2
3 1 1 2 1 1 1 1 2 1 1 2 1 2 3

3
0.5 ( 3 3 1) 0.75 (1 ) 0.5 (1 )cos 0.5 cos 0

8
a a d a d a a b a a Z F Zs g+ G + G - G + G - - - G - - G + =   (44) 

 1 1 1 1 2 1 2 3[ (1 )] (1 )sin sin 0a b a a Z F Zz z- + - G - - G + =   (45) 

 2 2 2 2 2
2 1 1 1 2 2 2 1 2 2 2 3 1

3 3
0.5 0.75 ( 2 2 ) 2

8 8
a d d d d d d a d ag s sG + G - G - + G - G + G - = -   (46) 

 
Using the above equations (44-46), the frequency response equation of the system is followed as: 
 

 

2 2 2 2 2 2 2 2 2 2
2 1 1 1 2 1 2 1 1 1 2 2 1 1 1 2 1 2

2 3 2 3
3 1 1 1 3 1 2 1 1 1 1 1

2 2 2 2
1 2 1 2 1 1 1

( (1 )) (0.816 / ( )) ( )(3 6 2 3 6 3

3 3
8 4 ) [( (1 )) ] [ 2 ( 1 3 3 ) (1 )

4 2
(0.816 / ( )) ( )(3 6

F b a d d d d a d a d a d a d a d

a a a d a d a

d d d d a d a

g

s s z z s g

+ - G G - G - G + - G - G - G + G +

- = + - G + - - G - - + G - G + G + - G

G - G - G + 2 2 2 2 2
2 2 1 1 1 2 1 2 3 12 3 6 3 8 4 )]d a d a d a dg s s- G - G - G + G + -

  (47) 

 
6   NUMERICAL METHODS 

In order to numerically solve the system equations, they are written in non-dimensional state space 
forms. Therefore the four variables are defined as: 
 
 1 1 2 1 3 2 4 2, , ,y y y yq q q q= = = =    (48) 
 
The above equation can be written as follows: 
 
 1 2y y=   (49) 

 3 4y y=   (50) 
 
Substituting equation (48) in dimensionless equations of system (7,8) results in below equations: 
 
 2 3

2 1 2 3 2 1 2 4 1 3 1 1 3 1 1 1 2 2[ ( ) ( ) ( ) ] ( sin sin )y y y y y y b y y d y y F t F te g z z e+ + - + + - - - - - = W + W   (51) 

 2 2 3
4 3 1 2 2 4 2 3 1 2 3 1( ) [ ( ) ( ) ( ) ] 0y y y y y b y y d y yb e z+ - + - - + - + - =   (52) 

 
 In other hand, with considering Eq. (48), the two second order dimensionless equations of the 
system are written in four first order dimensionless equations. These four equations are numerically 
solved in MATLAB software.  
 
6.1 Linear torsional spring stiffness ( ck ) and non-linearity ( 2k ) of the crankshaft calculation 

In order to estimate the linear and nonlinear quadratic terms of torsional spring stiffness, a torsion 
load is applied into the crankshaft. The, crankshaft specifications are shown in Table. 1. Firstly, the 
CAE model is built; then the FE model is developed with a high precision mesh in HyperMesh 
software. This is due to the fact that solving problems using finite element with hexahedral meshes 
are faster and more accurate than tetrahedral meshes.  In addition, sometimes in finite element 
analysis, the usage of tetrahedral meshes for complex geometries will result in unreliable results. 
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Therefore, the hexahedral meshes are devoted to this complex geometry of crankshaft. Then, the 
model is exported into ABAQUS software. The cast iron material with the properties as depicted in 
Fig. 2 is specified into the model. The crankshaft is cantilevered at the end and a 15 N.m torque is 
applied at the other side of crankshaft where the flywheel is placed. The main goal to apply the 
torque is to obtain the corresponding parameters of the crankshaft and TVD which is substantially 
independent to input applying torque. Therefore, the amount of input torque does not influence on 
the results of these corresponding parameters. Fig. 3 Shows isometric view of mesh elements of the 
crankshaft. 
 

Characteristics Units Value 

Diameter  cm 2.7 
Length  cm 45.4 

Number of fixed bearings ------ 3 
Number of movable bearings ------ 4 

Mass  kg 13.2765 
Volume  cm3 1860 

 
Table 1: General specifications of the crankshaft. 

 

 
Figure 2: Stress-Strain Diagram of Cast Iron (Griswold and Stephens, 1987). 

 

 
Figure 3: FE Model of the Crankshaft with High Precision Quads Mesh. 
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 Nonlinear analysis is chosen to model the stiffness factors. Therefore, the torque applied at the 
end of crankshaft; then it is plotted versus torsional angles as depicted in Fig. 4. It should be noted 
that the applications of numerical techniques in engineering often involve curve fitting of experi-
mental data described by Mathews and Fink (1999). Therefore, a polynomials curve 2

2ck x k x+  is 
fitted into the simulated data. Consequently, the coefficients of stiffness factors could be extracted. 

 

 
Figure 4: Curve Fitting 2

2ck x k x+ to Crankshaft Torque. 

 

 The value of ck , 2k  and their corresponding errors are listed in Table 2. The amounts of errors 
listed in the Table are negligible which approve the values of stiffness parameters. 

 

Value Units Characteristics 

129.2 kN.m/rad  
ck  

6.346  kN.m/rad  
2k  

0 % 
ck error  

4.91 % 
2k error 

Table 2: the values of stiffness parameters and their corresponding errors. 

 

6.2 The torsional stiffness parameters of TVD model  

Torsional vibration damper is applied to reduce the vibration in crankshaft. The TVD is placed at 
one side of crankshaft. It is known as a pulley placed on the crankshaft. It includes the different 
types of hub, rubber and ring components, as shown in Fig. (5). 
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       a. Hub using quad mesh  

 
 b. Ring using quad mesh c. Rubber using quad mesh  

Figure 5: Quad Meshing of Different Components of TVD. 
 
Also, TVD components specifications are listed in Table 3. 
 

 TVD’s ring 
specifications 

TVD’s rubber 
specifications 

TVD’s hub 
specifications 

Inner diameter (cm) 12.17 10.87 10.56 
Volume (cm3) 103 46.1 129 

Mass (kg) 0.74 553x10-4 0.927 
Mass moment of inertia (kg.m2) 307x10-5 179x10-6 141x10-5 

Young’s modulus (kg/m.s2) 176x109 130x109 176x109 
Poisson’s ratio (-) 0.25 0.27 0.25 

 
Table 3: TVD’s specifications. 

 
Then, considering TVD components into the model the analysis are performed similar as previous 
analysis discussed previously. There is a difference here and that the EPDM (Ethylene Propylene 
Diene Monomer) as depicted in Fig. 6. is specified for the rubber as well as cast iron which is speci-
fied for the hub and ring components. The values of the torque applied into the system are plotted 
versus angle of crankshaft and then the stiffness factors are extracted in the same way as described 
before (Fig. 7). 
 
6.3 Other component specifications 
With meshing crankshaft and TVD the components in HyperMesh software and then devoting the 
material properties for components in ABAQUS software and, some key component specifications 
could be obtained as listed in Table 5.  
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Figure 6: EPDM Stress-Stretch Diagram (Bouchart et al. 2008). 

 

 
Figure 7: Curve Fitting 3

3dk x k x+ to TVD Torque. 

 
The values of dk , 3k  and their corresponding errors are shown in Table 4. The errors reported here 
are also negligible. 
 

Value Units Characteristics 

144400 kN.m/raddk  
3231 kN.m/rad3k  

0 % dk  error 
5.23 % 3k  error 

 
Table 4: The values of dk , 3k and their corresponding errors. 
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Characteristics Units Value 

Crankshaft mass moment of inertia kg.m2 198×10-4 
TVD mass moment of inertia  kg.m2 466×10-5 

Torsional Natural Frequency of Crankshaft Hz 80.88 

Torsional Natural Frequency of TVD Hz 2976.36 
Crankshaft Mass kg 13.2765 

TVD Mass  kg 1.31 
Crankshaft Damping Coefficient  ------- 1349.5 

TVD Damping Coefficient ------- 3581.8 
 

Table 5: Crankshaft and TVD specifications. 
 
It is obvious from Table 5 that the amount of TVD damping coefficient is higher than crankshaft 
damping coefficient.  
 
6.4 Excitation force 

Mainly, the crankshaft vibrations originate among two principal sources from internal combustion 
engine. These sources contain the cylinder pressure as a first source. These also include the mass 
inertia of components caused from reciprocating movement of the piston. These two factors make 
the excitation function be more complicated. Fig. 8 shows the pressure excitation versus crankshaft 
angle with different terms. In addition, Fig. 9 shows the mass excitation moment of the engine 
components which are significantly influenced by engine rotation. 
 

 
Figure 8: Engine Pressure Excitation Moment Diagram. 

 
Figure 9: Engine Mass Excitation Moment. 
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7 NUMERICAL RESULTS AND DISCUSSION 

In some cases for designers it is so important to know the effect of varying design parameters on 
behavior of the vibration system. Therefore, in this section the effect of changing these parame-
ters on vibration behavior of the system is presented. It should be noted that, dimensionless pa-
rameters introduced depend on one or more physical parameters of the crankshaft vibration be-
havior. For instance, with improving the TVD linear damping coefficient, will lead into increasing 
the dimensionless parameter 1z . In addition, enhancing the crankshaft linear damping coefficient 
will result in increasing the dimensionless parameter z .  Moreover, with increasing the TVD line-
ar spring stiffness the dimensionless parameter 2g  would be increased in this application. In a 
case of harmonic resonance from Eqs. (37-39) it should be considered the variation of na  versus 
the detuning parameter 2s . Fig. (10) shows the variation of na  versus 2s  for real parameters 
value. The bold lines represent crankshaft vibration amplitude versus detuning parameters in 
both unstable (curve) and stable (straight line) form. Also, the dotted lines represent TVD vibra-
tion amplitude versus detuning parameter in both unstable (curve) and stable (straight line) 
form.  
 

 
Figure 10: Variation of na VS Detuning Parameter 2s  for Real Parameters Value. 

 
 Figure. (11) Shows the effect of increasing dimensionless parameter 1z  on response of the main 
system when it is 8 times greater than its real value. It is clear that increasing this dimensionless 
parameter leads to decreasing the curve inclination of crankshaft vibration and then becomes 
multi-valued at zone of steady state. In other words, the system status goes from unstable to sta-
ble during the long time. 
 Figure (12) Shows the effect of increasing dimensionless parameter z  on response of the main 
system when it is 15 times greater than its real value. It is clear that in this case by increasing 
this dimensionless parameter, the system tending to show more stable vibration than unstable 
vibration because of the value of detuning parameter. Also, by increasing this dimensionless pa-
rameter, the crankshaft becomes completely multi-valued at zone of steady state but TVD be-
comes single-valued at steady state zone. 
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Figure 11: the Effect of Increasing 1z  on the Response of the Main System. 

 

 
Figure 12: the Effect of Increasing z  on the Response of the Main System. 

 
 Figure. (13) Shows the effect of increasing dimensionless parameter 2g  on response of the 
main system when it is 6 times greater than its real value. It is clear that in this case the system 
becomes stable during the minimum time. Also, by increasing this dimensionless parameter, the 
crankshaft amplitude at zone of transient is decreased and both crankshaft and TVD have single-
valued at zone of steady state. 
 Figure (14) Shows the effect of increasing dimensionless parameter b  on response of the main 
system when it is 6 times greater than its real value. It is clear that the amplitude of vibration at 
transient zone is decreased and crankshaft has single-valued at zone of steady state. Also, the 
TVD has tending to have single-valued at zone of steady state. 
 Figure (15) Shows the effect of decreasing dimensionless parameter G  on response of the main 
system when 0.33G = - . In this case the behavior of the system is completely changed and both 
crankshaft and TVD shows divergence behavior. In addition, the system tends to be switched 
from steady (both dotted and bold straight) to unsteady (both dotted and straight curved) form. 
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Figure 13: the Effect of Increasing 2g  on the Response of the Main System. 

 

 
Figure 14: the Effect of Increasing 1b  on the Response of the Main System.  

 

 The non-dimensional equations of the system have been solved numerically in section 6. Now, 
in order to investigate the sensitivity of designing parameters of the system, the influence of pa-
rameter variation on system behavior of crankshaft and TVD will be simulated graphically in a 
harmonic resonance case. 
 Firstly, the ratio of 2 1I I  is assumed to be 0.1 of the case specified before. According to 
Fig.(16,17), the crankshaft and TVD systems show different vibration behavior. In other word, 
the vibration amplitude of crankshaft is smaller than that of TVD system. This manner is a de-
sirable case for dissipating the vibration energy, as the purpose of using TVD is to reduce vibra-
tion amplitude of the system. 
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Figure 15: the Effect of G  on the Response of the Main System when 0.33G = - . 

 

 
Figure 16: Non-Dimensional Crankshaft Amplitude VS Non-Dimensional Time when 2 1( ) 0.1I I =

 
and System 

Phase Diagram. 

 
 In Figs. (18,19), linear coefficients of crankshaft and TVD are 10 times of the reference case. It 
is well observed that, while the Non-dimensional time becomes 100, the amplitude of crankshaft 
and TVD with different vibration behavior approach into steady manner. Thus, two different 
zones in both diagrams called transient zone (Non-dimensional time is a value between 0 to 100) 
and steady state zone (Non-dimensional time is a value between 100 to 1000) are observed. In 
addition, the amplitude of TVD in steady state zone is a little lower than that of the crankshaft. 
However, with increasing linear coefficients of crankshaft and TVD to 10 times of their initial 
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values, the amplitude of crankshaft are considerably increased which leads into undesirable vibra-
tion. 
 

 
Figure 17: Non-Dimensional TVD Amplitude VS Non-Dimensional Time when 2 1( ) 0.1I I =

 
and System Phase 

Diagram. 

 

 
Figure 18: Non-Dimensional Crankshaft Amplitude VS Non-Dimensional Time when Linear Coefficients of 

Crankshaft and TVD are 10 Times and System Phase Diagram. 

0 50 100 150 200 250 300
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-6

Non-dimensional Time

N
on

-d
im

en
si

on
al

 T
V

D
 A

m
pl

itu
de

-5 0 5

x 10
-6

-4

-3

-2

-1

0

1

2

3

4
x 10

-6

TVD Amplitude

F
irs

t 
D

er
iv

at
iv

e

0 100 200 300 400
-3

-2

-1

0

1

2

3

4
x 10

-3

Non-dimensional Time

N
on

-d
im

en
si

on
al

 C
ra

nk
sh

af
t 

A
m

pl
itu

de

-4 -2 0 2 4

x 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

Crank Amplitude

F
irs

t 
D

er
iv

at
iv

e



2691   R. Talebittoti and M. Morovati / Study on TVD parameters sensitivity of a crankshaft using mult. scale and state space met. considering quad. and cubic non-linearities 

 

Latin American Journal of Solids and Structures 11 (2014) 2672-2695 
 

 
Figure 19: Non-Dimensional TVD Amplitude VS Non-Dimensional Time when Linear Coefficients of Crankshaft 

and TVD are 10 Times and System Phase Diagram. 

 
 Figures (20,21) shows this negative effect of linear crankshaft damping on system vibration 
behavior. It should be noted that, when linear crankshaft damping is assumed negative about 
25% from its real value, both crankshaft and TVD are tending to be unstable. In other words, the 
system has no desirable vibration behavior at all. 
 

 
Figure 20: Non-Dimensional Crankshaft Amplitude VS Non-Dimensional Time with Negative Damping and 

System Phase Diagram. 
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Figure 21: Non-Dimensional TVD Amplitude VS Non-Dimensional Time with Negative Damping and System 

Phase Diagram. 
 
 Figures (22,23)  show the effect of neglecting damping ratio on vibration of the system. In this 
case, the crankshaft linear damping coefficient is reduced to 0.001. It is well depicted from these 
figures that both crankshaft and TVD behave in the same manner. In other word, their ampli-
tude decreases during the non-dimensional time. Therefore, as a result of reduction of the system 
amplitude during the time and the tendency of the vibration amplitude of the system to zero, this 
reduction of crankshaft linear damping coefficient is desirable. 
 

 
Figure 22: Non-Dimensional Crankshaft Amplitude VS Non-Dimensional Time with Linear Damping Coefficient 

Reduction and System Phase Diagram. 
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Figure 23: Non-Dimensional TVD Amplitude VS Non-Dimensional Time with Linear Damping Coefficient Re-

duction and System Phase Diagram. 
 

 As depicted in Figs. (24,25), the effects of non-linear cubic TVD coefficients on vibration of 
the crankshaft and TVD are investigated .While non-linear cubic TVD coefficient is reduced to 
0.001, crankshaft and TVD show the same vibration behavior. It is clearly observed that the sys-
tem vibration amplitude is considerably high. In other word, the vibration of the system is not 
desirable although the system having the steady state vibration during the broad band time. 
 

 
Figure 24: Non-Dimensional Crankshaft Amplitude VS Non-Dimensional Time with Non-Linear Cubic TVD 

Coefficient Reduction and System Phase Diagram. 
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Figure 25: Non-Dimensional TVD Amplitude VS Non-Dimensional Time with Non-Linear Cubic TVD Coeffi-

cient Reduction and System Phase Diagram. 
 

8 CONCLUSION 

In this paper the vibration behavior of a system consisting of crankshaft and TVD has been con-
sidered. This system is described with second order non-linear differential equations. The method 
of multiple scales is applied to study the control of a combustion engine crankshaft vibration us-
ing a non-linear elastomeric material vibration damper under the interaction of external excita-
tions originated from different sources. Also, the numerical solution is applied to solve the non-
dimensional equations of the system. Practically the following results are reported as: 

 The damping coefficient of the crankshaft could greatly influence on system behavior. The 
small or negative damping factor, leads into the worst behavior of the system, as it causes 
larger steady-states amplitudes or instability for both crankshaft and TVD. 

 Large magnitude of TVD non-linearities reduces TVD effectiveness. 
 While the ratio of 2 1( )I I  reduced to 0.1, the system behavior became steady. Therefore, 

this ratio is suggested in design process, if there are no other significant factors of limita-
tion. 

 Linear Damping Coefficient Reduction leads into reduction of amplitude vibration in both 
crankshaft and TVD. This parameter is also very essential in designing the TVD for re-
ducing the vibration of the whole system. 

 With increasing b1, the amplitude of vibration at transient zone becomes smaller. In addi-
tion, the crankshaft at steady state zone is single-valued. 

 As the magnitude of G  has been taken the negative value, the system are going to be di-
verged. 

 With increasing the 2g , the crankshaft amplitude is decreased in transient zone. However, 
both crankshaft and TVD have single-value in steady state zone. 
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 With increasing the z , the crankshaft becomes multi-valued in steady state zone. Howev-
er, the TVD becomes single-valued in steady state zone. 

 While Non-Linear Cubic TVD Coefficient is reduced, both TVD and crankshaft show the 
same steady state behavior. However, the vibration amplitude of the system is considera-
bly undesirable.  
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