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Abstract 
This paper is concerned with the study of propagation of Stoneley 
waves at the interface of two dissimilar isotropic microstretch 
thermoelastic diffusion medium in the context of generalized theo-
ries of thermoelasticity. The dispersion equation of Stoneley waves 
is derived in the form of a determinant by using the boundary 
conditions. The dispersion curves giving the phase velocity and 
attenuation coefficients with wave number are computed numeri-
cally. Numerically computed results are shown graphically to 
depict the diffusion effect alongwith the relaxation times in mi-
crostretch thermoelastic diffusion solid half spaces for thermally 
insulated and impermeable boundaries, respectively. The compo-
nents of displacement, stress, couple stress, microstress, and tem-
perature change are presented graphically for two dissimilar mi-
crostretch thermoelastic diffusion half-spaces. Several cases of 
interest under different conditions are also deduced and discussed.  
 
Keywords 
Microstrecth, Dispersion equation, Stoneley waves, Propagation 
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1 INTRODUCTION 

The exact nature of the layers beneath the earth’s surface is not known. One has, therefore to con-
sider various appropriate models for the purpose of theoretical investigations. These problems not 
only provide better information about the internal composition of the earth but also helpful in ex-
ploration of valuable materials beneath the earth surface. 
 Mathematical modeling of surface wave propagation along the free boundary of an elastic half-
space or along the interface between two dissimilar elastic half-spaces has been subject of continued 
interest for many years. These waves are well known in the study of geophysics, ocean acoustics, 
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SAW devices and more recently nondestructive evaluation. The study of surface wave propagation 
is of much practical importance in various fields such as earthquake engineering, soil dynamics, 
aeronautics, nuclear reactors, high energy particle accelerator etc. Rayleigh (1885) discussed the 
surface wave propagation along the free boundary of an elastic half-space, non-attenuated in their 
direction of propagation and damped normal to the boundary. 
Stoneley (1924) studied the existence of waves, which are similar to surface waves and propagating 
along the plane interface between two distinct elastic solid half spaces in perfect contact. Stoneley 
waves can also propagate on interfaces either two elastic media or a solid medium and a liquid me-
dium. Stoneley (1924) derived the dispersion equation for the propagation of Stoneley waves. 
Tajuddin (1995) investigated the existence of Stoneley waves at an interface between two micropo-
lar elastic half spaces.  
 Eringen (1966b, 1968) developed the theory of micromorphic bodies by considering a material 
point as endowed with three deformable directions. Subsequently, he developed the theory of mi-
crostretch elastic solid (1971) which is a generalization of micropolar elasticity (1966a). The materi-
al points in microstretch elastic body can stretch and contract independently of the translational 
and rotational processes. The difference between these solids and micropolar elastic solids stems 
from the presence of scalar microstretch and a vector first moment. These solids can undergo intrin-
sic volume change independent of the macro volume change and is accompanied by a non deviatoric 
stress moment vector. 
 Eringen(1990) also developed the theory of thermo microstretch elastic solids. The microstretch 
continuum is a model for Bravias lattice with a basis on the atomic level and a two phase dipolar 
solid with a core on the macroscopic level. For example, composite materials reinforced with 
chopped elastic fibres, porous media whose pores are filled with gas or inviscid liquid, asphalt or 
other elastic inclusions and ‘solid-liquid’ crystals, etc., should be characterizable by microstretch 
solids. A comprehensive review on the micropolar continuum theory has been given in his book by 
Eringen(1999). 
 Iesan and Pompei (1995) discussed the equilibrium theory of microstretch elastic solids. The 
problem of wave propagation through a cylindrical bore contained in a microstretch elastic medium 
has been studied by Kumar and Deswal(2002). Tomar and Singh (2006) discussed the propagation 
of Stoneley waves at an interface between two microstretch elastic half-spaces. Kumar and Pratap 
(2009) studied the propagation of free vibrations in microstretch thermoelastic homogeneous iso-
tropic, thermally conducting plate bordered with layers of inviscid liquid on both sides subjected to 
stress free thermally insulated and isothermal conditions. Markov (2009) discussed the propagation 
of Stoneley elastic wave at the boundary of two fluid-saturated porous media and determined the 
velocity and attenuation of the Stoneley surface waves. Ahmed and Abo-Dahab (2012) studied the 
propagation of Rayleigh and Stoneley waves in a thermoelastic orthotropic granular half-space sup-
porting a different layer under the influence of initial stress and gravity field. 
 Diffusion can be defined as the random walk to accumulate the particles from region of high 
concentration to that of low concentration. At the present time, there is a great deal of interest in 
the study of this phenomenon due to its application in geophysics and electronic industry. Study of 
phenomenon of diffusion is utilized to enhance the conditions of oil extraction (searching ways of 
more efficiently recovering oil from its deposits).  
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Nowacki (1974a, 1974b, 1974c, 1976) in a series of papers presented the theory of thermoelastic 
diffusion by using coupled thermoelastic model. Uniqueness and reciprocity theorems for the equa-
tions of generalized thermoelastic diffusion problem, in isotropic media, was proved by Sherief et 
al.(2004)on the basis of the variational principle equations, under restrictive assumptions on the 
elastic coefficients. Kumar and Kansal (2008) derived the basic equation of anisotropic thermoelas-
tic diffusion based upon Green-Lindsay model and discussed the Lamb waves. 
 Kumar and Chawla (2009) discussed the wave propagation at the imperfect boundary between 
transversely isotropic themoelastic diffusive half space and an isotropic elastic layer. Kumar and 
Kansal(2011) construct the fundamental solution of system of differential equations in the theory of 
thermomicrostretch elastic diffusive solids in case of steady oscillations in terms of elementary func-
tions. Sharma (2007, 2008) discussed the plane harmonic generalized thermoelastic diffusive waves 
and elasto thermodiffusive surface waves in heat-conducting solids. Recently Kumar et al. 
(2013)studied the reflection and transmission of plane waves  at the interface  between a mi-
crostretch thermoelastic diffusion solid half-space and elastic solid half space.  
 Keeping in view of these applications, dispersion equations for Stoneley waves at the interface of 
two dissimilar isotropic microstretch thermoelastic diffusion medium in the context of generalized 
theories of thermoelasticity have been derived. It is found that Stoneley waves in a microstretch 
thermoelastic diffusion solid medium are dispersive. Numerical computations are performed for a 
particular model to study the variations of phase velocity and attenuation coefficient with respect to 
wave number. The present work is novel and have not been discussed earlier in the literature. The 
results presented in this paper should prove useful for researchers in material science, designers of 
new materials as well as for those working on the development of theory of elasticity. 
 
2 BASIC EQUATIONS 

Following Eringen (1999), Sherief et al. (2004) and Kumar & Kansal (2008), the equations of 
motion and the constitutive relations in a homogeneous isotropic microstretch thermoelastic diffu-
sion solid in the absence of body forces, body couples, stretch force, and heat sources are given by  
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and constitutive relations are 
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where 

 , , 1, , , , , , , ,o o oK b      are material constants ,  is the mass density ,  1 2 3, ,u u u u


  is 

the displacement vector and  1 2 3, ,   


is the microrotation vector, * is the scalar mi-

crostretch function, T and 0T are the small temperature increment and the reference temperature 

of the body chosen such that 0 1,T T   C is the concentration of the diffusion material in the 

elastic body. *K  is the coefficient of the thermal conductivity, *C the specific heat at constant 
strain, D is the thermoelastic diffusion constant. a, b are, respectively, coefficients describing the 

measure of thermodiffusion and of mass diffusion effects,  1 13 2 ,tK     

 2 13 2 ,cK       1 23 2 ,tK        2 23 2 cK      , 1 2,t t   are coefficients 

of linear thermal expansion and 1 2,c c  are the coefficients of linear diffusion expansion. j is the 

microintertia, oj is the microinertia of the microelements, ijt and ijm  are components of stress and 

couple stress tensors respectively, *
i is the microstress tensor,  , ,

1

2ij i j j ie u u   
 

are compo-

nents of infinitesimal strain, kke is the dilatation, ij  is the Kronecker delta, 0 1,   are diffusion 

relaxation times with 1 0 0    and 0 1,   are thermal relaxation times with 1 0 0   . Here 
0 1

0 1 1 0          for Coupled Thermoelasitc (CT) model, 1
1 0,   1 01,     for 

Lord-Shulman (L-S) model and 0,  0
1  where 0 0  for Green-Lindsay (G-L) model. 

In the above equations, a comma followed by a suffix denotes spatial derivative and a superposed 
dot denotes the derivative with respect to time respectively.  
  
 
3 FORMULATION OF THE PROBLEM 

We consider two homogeneous isotropic microstretch generalized thermoelastic diffusion half-
spaces 1M  and 2M connecting at the interface 3 0x  . The origin of the coordinate system 

1 2 3( , , )x x x is taken at any point on the plane horizontal surface with 3x  axis,  pointing vertically 

downward to the half-space, which is thus represented by 3 0x  . We choose the 1x  axis in the 

direction of wave propagation in such a way that all the particles on a line parallel to the 2x  axis 
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are equally displaced. Therefore, all field quantities are independent of the 2x  coordinate. Medi-

um 2M  occupies the region 3 0x    and the region 3 0x   is occupied by the half-space 

(medium 1M ). The plane 3 0x   represents the interface between two media 1M  and 2M . For the 

two dimensional problem, we take 
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We define the following dimensionless quantities  
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Upon introducing the quantities (10) in equations (1)-(5), with the aid of (9) and after suppress-
ing the primes, we obtain 
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We introduce the potential functions and  through the relations 
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in the equations (11)-(16), we obtain 
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4 SOLUTION OF THE PROBLEM 

We assume the solutions of the form 
 

       1* *
1 3 3, , , , , , , , i x ctT C x x t T C x e         (24) 

 

where   is the wave number, c   is the angular frequency, and c is phase velocity of the 

wave. Using (24) in equations (18), (21)–(23) and satisfying the radiation condition 
*, , , 0T C    as 3x  , we obtain the values of *, , ,T C   for medium 1M , 
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where , ( 1,2,3,4)pA p  are arbitrary constants, the coupling constants 1 2 3, ,p p pn n n  given in ap-

pendix B. 
We attach bar for the variables in the medium 2M  and write the appropriate values of 

*, , ,T C  for 2 3( 0)M x  satisfying the radiation conditions as  
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where  
2 ( 1,2,3,4)pm p  are the roots of the equation  
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and 
2 ( 1,2,3,4)pm p  are the roots of the equation  
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1D are given in appendix A,  

 Similarly, we assume the solutions of the field equations as 
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Using (29) in equations (19) and (20), and satisfying the radiation condition 2, 0    as 

3x  , we obtain the values of 2,   for medium 1M , 
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where ( 5,6)pA p  are arbitrary constants, 4 pn is the coupling constant given in appendix B. 

We attach bar for the variables in the medium 2M  and write the appropriate values of 2,  for 

2 3( 0)M x  satisfying the radiation conditions as  
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

     (31) 

where 
2 ( 5,6)pm p  are the roots of the equation 

4 * 2 *
2 2 0D A D B    (32) 

 
and 
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2 ( 5,6)pm p  are the roots of the equation 
 

4 * 2 *
2 2 0D A D B    (33) 

 

where 3 ,D d dx the coefficients * * *
2 2 2, ,A B A and *

2B  are given in appendix A, 

The roots of equation (27) in the descending order corresponds to the velocities of propagation of  
four possible waves, namely longitudinal displacement wave (LD), thermal wave (T), mass diffu-
sion wave (MD) and longitudinal microstretch wave (LM), respectively. Similarly, two roots of 
the equation (32) in the descending order corresponds to the velocities of propagation of two cou-
pled transverse displacement and transverse microrotational waves (CD I, CD II), respectively.  
 

(i) In the absence of diffusion effect, equation (27) leads to sixth order differential equation 

6 * 4 * 2 * * * *
3 3 3 3 3 30,  where ,  and are given in appendix A             D A D B D C A B C     (34) 

The roots of the equation (34) 2 ( 1,2,3)pm p  correspond to the LD, T and LM waves, respective-

ly.   
Clearly, we can notice here that, on neglecting the diffusion effect, the wave corresponding to this 
parameter namely mass diffusion wave (MD) become deceased.  
Therefore, it is observed from the equation (27) and (34), that there exist a new type of wave 
namely MD wave. 
 

(ii)  On neglecting the diffusion, micropolarity and microstretch effects, equation (27) and 
(32) simultaneously leads to the forth and second order differential equations as 

4 * 2 *
4 4 0,D A D B    (35) 

and 

 
2 26

2
0,

1

b
D


 


 (36) 

* *
4 4 where  and  are given in appendix AA B . 

The roots of the equation (35) correspond to the Longitudinal wave (P-wave), and T waves, and 
(36) relate to the SV- wave, respectively.   
Therefore, it is again observed that there exist new type of wave in (34) namely Longitudinal 
microstretch wave (LM) and transverse microrotational waves (CD II) in (32) which become de-
coupled in this case . 

Substituting the values of , ,   and  from equations (25), (26), (30) and (31) in equation (17), 

we obtained displacement components 
For medium 1M  

   

     

11 3 2 3 3 3 4 3 5 3 6 3

11 3 2 3 3 3 4 3 5 3 6 3

1 1 2 3 4 5 5 6 6

3 1 1 2 2 3 3 4 4 5 6

,

,

i x ctm x m x m x m x m x m x

i x ctm x m x m x m x m x m x

u i A e A e A e A e m A e m A e e

u m A e m A e m A e m A e i A e A e e









     

     

       
          
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For medium 2M  

     

     

11 3 2 3 3 3 4 3 5 3 6 3

11 3 2 3 3 3 4 3 5 3 6 3

1 1 2 3 4 5 5 6 6

3 1 1 2 2 3 3 4 4 5 6

,

.

i x ctm x m x m x m x m x m x

i x ctm x m x m x m x m x m x

u i A e A e A e A e m A e m A e e

u m A e m A e m A e m A e i A e A e e













       
       

 

 

5 BOUNDARY CONDITIONS 

The following boundary conditions must be satisfied on the boundary between two microstretch 
thermoelastic diffusion media. Mathematically, these can be written (at the surface 3 0x  ) as 

(i) 33 33 ,t t  (37) 

(ii) 31 31 ,t t  (38) 

(iii) 32 32 ,m m  (39) 

(iv) 
* *
3 3 ,   (40) 

(v) 3 3 ,u u  (41) 

(vi) 1 1 ,u u  (42) 

(vii) 2 2   (43) 

(viii) * *   (44) 

(ix) T T  (45) 

(x) C C  (46) 

(xi) 
* *

3 3

,
T T

K K
x x

  
   

 (47) 

(xii) 
* *

3 3

,
C C

x x
  


 

 (48) 

 

6 DERIVATIONS OF THE SECULAR EQUATIONS 

Making use of equations (25)-(26), (30) and (31) in the equations (37)-(48), we obtain a system of 

twelve simultaneous linear equations:  

 

6

6
1

0,qp p qp p
p

k A k A


   for ( 1,2,....,12),q       (49) 

 

where the values of , , (1,2,3,.......,12)ijk for i j  are given in Appendix C. 

The system of equations (49) has a non-trivial solution if the determinant of amplitudes ,p pA A  
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 (p=1, 2, 3, 4, 5, 6) vanishes which leads to the secular equation   

12 12
0 , (1, 2,3,.......,12)ijk for i j


   (50) 

Equation (50) is the dispersion equation for the propagation of Stoneley waves at an interface 

between microstretch thermoelastic diffusion solid half spaces. This equation has complete infor-

mation about the phase velocity, wave number, and attenuation coefficient of the surface waves 

propagating in such a medium. 
 
7 PARTICULAR CASES 

(i) In the absence of diffusion effect, the dispersion equation for the propagation of Stoneley 
waves at an interface between microstretch thermoelastic solid half spaces is obtained as

 
 

10 10
0 , (1, 2,3,.......,10)ijk for i j


   (51) 

with the values of ijk  as   
 

 
 

 
 

2 2
1 2 1 2 1

1
2 21

5 1 2 1, 5 2, 5 1

5 1

1 , ( 1,2,3)

1 , ( 4,5)
,

1 , ( 6,7,8)

1 , ( 9,10)

p p p

p

p
p p p

p

m b a n n i c for p

i m b for p
k

m b a n n i c for p

i m b for p

  


  


  



     
        
  

  

 

 
 

 
 

2 3

2 2
2 3

2 3
55 2 3

2 2
2 5 3

, ( 1,2,3)
, ( 1,2,3)

, ( 4,5) , ( 4,5)
, ,

, ( 6,7,8), ( 6,7,8)

, ( 9,10), ( 9,10)

p
p

p

p p
pp

p

i m b b for p
m for p

b m b for p i for p
k k

m for pi m b b for p

i for pb m b for p



 








  


          
    

 

 

4

5

, ( 1, 2,3)

, ( 4,5)
,

, ( 6,7,8)

, ( 9,10)

p

p

p

i for p

m for p
k

i for p

m for p








   
 

5 1

4 3

5
5 1, 5

4 3, 5 5

, ( 1, 2,3)

, ( 4,5)
,

, ( 6,7,8)

, ( 9,10)

p

p p

p
p

p p

i b n for p

b n m for p
k

i b n for p

b n m for p



 

 


     
 

 

 

6 1

5 3

6
6 5 1, 5

5 3, 5

, ( 1, 2,3)

, ( 4,5)
,

, ( 6,7,8)

, ( 9,10)

p p

p

p
p p

p

b m n for p

i b n for p
k

b m n for p

i b n for p




 




   
  

3

7

3, 5

0, ( 1, 2,3)

, ( 4,5)
,

0, ( 6,7,8)

, ( 9,10)

p

p

p

for p

n for p
k

for p

n for p


   
  
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1

8
1, 5

, ( 1,2,3)

0, ( 4,5)
,

, ( 6,7,8)

0, ( 9,10)

p

p
p

n for p

for p
k

n for p

for p



    
 

2

9
2, 5

, ( 1, 2,3)

0, ( 4,5)
,

, ( 6,7,8)

0, ( 9,10)

p

p
p

n for p

for p
k

n for p

for p



    
 

 

*
2

10 *
5 2, 5

, ( 1, 2,3)

0, ( 4,5)
,

, ( 6,7,8)

0, ( 9,10)

p p

p

p p

K m n for p

for p
k

K m n for p

for p
 

 
  


 

 

 
(ii) In the absence of thermal and diffusion effects, the dispersion equation (50) reduced to the 
propagation of Stoneley waves at an interface between microstretch elastic solid half spaces. The 
resulting dispersion equation in reduced form is similar as obtained by Tomer and Singh (2006). 

(iii) Take 0 0,  0  and 0
1  in equation (50), yield the expression of secular equation 

for the propagation of Stoneley waves at an interface between microstretch thermoelastic diffusion 
solid half spaces with two relaxation times.  
(iv) Using 1

1 1 00,      and 1  in equations (50),  gives the corresponding results for 

the propagation of Stoneley waves at an interface between microstretch thermoelastic diffusion 
solid half spaces with with one relaxation time. 
(v) On taking 0 1

0 1 1 0          in equations (50), provide the corresponding expres-

sion of secular equation for the propagation of Stoneley waves at an interface between mi-
crostretch thermoelastic diffusion solid half spaces with Coupled Thermoelastic (CT) theory.  
 
8  NUMERICAL RESULTS AND DISCUSSION 

The analysis is conducted for a magnesium crystal-like material. Following Eringen (1984), the 
values of micropolar parameters for medium M1 are given by  
 

10 -2 10 -2 10 2

3 3 19 2 9

9.4 10 Nm , 4.0 10 Nm , 1.0 10 ,

1.74 10 , 0.2 10 , 0.779 10

K Nm

Kgm j m N

 

 



  

     

     
 

 

Thermal and diffusion parameters are given by  
 

* 3 1 1 * 6 1 1 1 5 -1
t1

5 -1 3 4 3 -1
t2 0 1 0 c1

4 3 -1 4 2 2 -1 5 -1 5 2
c2

1 * 0

1.04 10 , K 1.7 10 , 2.33 10 K ,

2.48 10 K , .298 10 K, 0.01, 0.02, 2.65 10 m Kg ,

2.83 10 m Kg , 2.9 10 m s K , 32 10 Kg m s ,

0.04, 1.5, 0.

C JKg K Jm s K

T

a b



   



  

     

 

  

     

       

     

   8 303, 0.85 10D Kgm s  

  

 

and, the microstretch parameters are taken as 
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19 2 9 9 10 2

10 2
1

0.19 10 , 0.779 10 , 0.5 10 , 0.5 10 ,

0.5 10

o o o oj m N b N Nm

Nm

 



   



       

 
 

 

and for medium M2 are given by 
 

10 -2 10 -2 10 2

3 3 19 2 9

0.759 10 Nm , 0.189 10 Nm , 1.49 10 ,

2.190 10 , 0.196 10 , 0.268 10

K Nm

Kgm j m N

 

 



  

     

     
 

 

Thermal and diffusion parameters are given by  
 

* 3 1 1 * 6 1 1 1 5 -1
t1

5 -1 3 4 3 -1
t2 0 1 0 c1

4 3 -1 4 2 2 -1 5 -1 5 2
c2

1 *

1.18 10 , K 1.5 10 , 2.22 10 K ,

2.38 10 K , .198 10 K, 0.009, 0.01, 2.34 10 m Kg ,

2.61 10 m Kg , 2.32 10 m s K , 30.61 10 Kg m s ,

0.03, 1.48

C JKg K Jm s K

T

a b



   



 

     

 

  

     

       

     

  0 8 3, 0.02, 0.63 10D Kgm s    

 

 

and, the microstretch parameters are taken as 
 

19 2 9 9 10 2

10 2
1

0.165 10 , 0.61 10 , 0.25 10 , 0.37 10 ,

0.37 10

o o o oj m N b N Nm

Nm

 



   



       

 
 

 

MATLAB software 7.04 has been used for numerical computation of the resulting quantities. The 
values of phase velocity and attenuation coefficient with wave number at the stress free boundary 
with thermally insulated and impermeable boundaries along with the relaxation times are shown 
in fig.1 and fig.2. Components of displacements, normal stress, tangential couple stress, mi-
crostress, and temperature change with wave number has been determined at the surface 3 1x  , 

and is shown in figs.3-9 for medium M1 and in figs.10-16 for medium M2, respectively. In all fig-
ures, for the thermally insulated boundary and impermeable boundary, the words LSWD and 
GLWD symbolize the graphs for L-S and G-L theories in microstretch thermoelastic diffusion 
medium, respectively and the words LSWTD and GLWTD symbolize the graphs for L-S and G-L 
theories in microstretch thermoelastic medium, respectively.  
 
8.1 Phase Velocity 

Figure 1 depicts the variation of phase velocity with frequency. In the presence of diffusion effect, 
the values of phase velocity for LSWD decrease monotonically and a significant difference in the 
values is noticed when compared in absence of diffusion LSWTD, for smaller values of frequency. 
The trend of variation and behavior of GLWD and GLWTD is similar to LSWD and LSWTD, 
respectively and for higher values of frequency, the values of phase velocity become dispersionless.  
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Figure1: Variation of phase velocity w.r.t frequency. 

 

8.2 Attenuation Coefficient 

Figure 2 shows that the values of attenuation coefficient increase linearly for whole range of fre-
quency for LSWD, GLWD, LSWTD and GLWTD respectively; nevertheless, a significant differ-
ence in the values of attenuation coefficient is noticed for LSWTD, GLWTD when compared to 
LSWD, GLWD respectively, for whole range of frequency. 

 
Figure 2: Variation of attenuation w.r.t frequency. 

 
Figure3 depicts the variation of component of vertical displacement with wave number. It is no-
ticed that, the value of 3u decrease monotonically and oscillates afterward for smaller values of 

wave number in case of LSWD and GLWD, respectively, which finally become stationary for 
higher values of  .  An incredible effect in LSWTD is noticed when compared to LSWD for the 

initial values of wave number and similar trend of variation is also noticed for GLWTD when 
compared to GLWD, respectively. 
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Figure 3: Variation of 3u w.r.t wave number. 

 

Figures 4-5 shows the trend of variation and behavior of the component of normal stress and cou-
ple stress, respectively. It is clear from the figures that due to the absence of diffusion effect, T33 
and m32 remains oscillatory and become linear due to the presence of diffusion effect, for smaller 
values of wave number. The oscillation of T33 is opposite to that of m32, in case of T33 the values 
first increases sharply whereas the values of m32 decrease monotonically for 0 5  . In Figures 

4-5, LSWTD and GLWTD show a notable diffusion effect when compared to LSWD and GLWD 
for16 30   , respectively. 

 

 
 

 

 
 

Figure 4: Variation of T33 w.r.t wave number. 
 

Figure 5: Variation of m32 w.r.t wave number. 
 

Figures 6-8 show the variation of *
3 , T and * with respect to wave number, respectively. In the 

presence of diffusion effect, the values of *
3  and T become consistent for 0 30  , the similar 

behavior and variation is followed by * with difference in the magnitude values. Nevertheless, in 

the absence of diffusion effect the trend of variation and behavior of *
3 , T and *  is similar, but 

it is oscillatory for 0 7   and attains consistency for other values of . A significant effect of 

diffusion is noticed for LSWTD and GLWTD when compared to LSWD and GLWD, respectively. 
The value of 2 with wave number  is shown in Figure9. It is clear from figure that initially 

there is sudden increase in values of 2 for LSWTD and GLWTD which become stable with the 

increase of , in the absence of diffusion. In contrast, the values for LSWD and GLWD shows 
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significant effect due to presence of diffusion for smaller values of  which shows similar trend of 

variation for 6 30  . 

 
 

 

 
 
 

 
 

Figure 6: Variation of *
3  w.r.t wave number. 

 

Figure 7: Variation of temperature change 
‘T’ w.r.t wave number. 

 
 

 

 

 
Figure 9: Variation of 2 w.r.t wave number. 

 
 
 

Figure 8: Variation of * w.r.t wave number. 
 
 

Figures10-16 shows the graph for the resulting quantities of medium M2. 

 
 

 
 

 

 
Figure 11: Variation of T33 w.r.t wave number. 
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Figure 10: Variation of 3u w.r.t wave number. 

 
 
 

Figure 12: Variation of m32 w.r.t wave number. 

 

 

Figure 13: Variation of *
3  w.r.t wave number. 

 

 
 

Figure 14: Variation of temperature change ‘T’ w.r.t 

wave number. 

 
Figure 15: Variation of * w.r.t wave number. 

Figure 16: Variation of 2 w.r.t wave number. 

 

Figure 10 depicts the variation of the component of vertical displacement with wave number. It is 
noticed that the trend of variation and behavior for LSWD, GLWD, LSWTD and GLWTD is 
similar for 0 18   with difference in their magnitude values, but for 18 30  the values of 

LSWD and GLWD decrease sharply due to presence of the diffusion effect. The similar behavior 
of curves is also noticed for the component of normal stress as revealed in Figure11. A signifi-
cance difference in the corresponding values for LSWD and GLWD in comparison to LSWTD and 
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GLWED is noticed for higher values of . Figures12-14 shows the variation of m32, 
*
3  and T 

with wave number , respectively. The values of m32 and *
3  for LSWD, GLWD, LSWTD and 

GLWTD shows a steadily linear behavior for 0 25  , but due to the existence of diffusion 

effect the values for LSWD and GLWD increase monotonically for other values of  . The effect 

of diffusion for LSWD and GLWD in Figures12-14 is opposite to that in Figures 10-11 which 
sharply decreases for 26 30  . With the gradual increase in the value of wave number for

0 22  , the values of * and 2 shows a constant behavior for LSWD, GLWD, LSWTD and 

GLWTD, respectively, with the corresponding change in magnitude values, however, the values of 
* and 2 for LSWD and GLWD decrease rapidly which reveals the diffusion effect with the cor-

responding change in magnitude values for the higher values of wave number   as shown in Fig-

ures15-16. 
 

9 CONCLUSION 

The propagation of Stoneley waves at the interface of two dissimilar isotropic microstretch ther-
moelastic diffusion medium has been investigated in the context of generalized theories of ther-
moelasticity. Dispersion equations of Stoneley waves for surface wave propagation are derived for 
the considered mathematical model. Numerical computations are performed for a particular model 
to study the variation of phase velocity and attenuation coefficient with respect to wave number. 
The components of displacement, stress, couple stress, microstress, and temperature change are 
computed numerically and shown graphically to depict the effect of diffusion for Lord-Shulman 
(1967) and Green-Lindsay (1972) theories of thermoelasticity.  

It is concluded that the effect of diffusion for all the resulting quantities in medium M1 is 
significant for smaller values of wave number, on the other hand, the effect of diffusion in medi-
um M2 is more for the higher values of wave number. Furthermore, the resulting quantities for 
LSWD, GLWD, LSWTD and GLWTD try to converge towards zero in medium M1, but the same 
quantities attempt to diverge in medium M2. Notable impact due to relaxation times is also re-
vealed due to the presence of diffusion effect for every resulting quantity in both the mediums 
M1and M2, respectively. 
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