www.lajss.org
Latin American Journal of Solids and Structures 4 (2007) 61-85

Spectral /HP finite elements applied to linear and non-linear
structural elastic problems

Alberto Costa Nogueira Jr.! and Marco L. Bittencourt®*

!Thorus Scisoft Tecnologia da Informacdo Ltda., Campinas, SP — Brazil
2Departamento de Projeto Mecénico, Faculdade de Engenharia Mecanica,
Universidade Estadual de Campinas, Campinas, SP — Brazil

Abstract

The main purpose of this paper is to demonstrate the applicability of the Spectral/hp
Finite Element Method, originally developed to CFD problems [17], for the solution of linear
and non-linear structural elastic problems using 3D non-structured meshes. Before achieving
this goal, we present a previous study considering the selection of a set of hierarchical basis
functions suitable to elliptic problems. This study compares some triangular hierarchical
basis available in the literature in terms of the numerical conditioning resulting from the
solution of the Poisson’s problem with homogeneous Dirichlet boundary conditions. Based
on these prior results and on the computational benefits of a tensor formulation when dealing
with high-order numerical integration and differentiation, the Spectral/hp framework due
to [17] was adopted to solve linear and non-linear structural elastic problems. Numerical
examples are used to validate the application of the Spectral/hp FEM in the context of the
structural mechanics.
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1 Introduction

The quality of the approximation of Boundary Value Problems (BVP) obtained from the ap-
plication of the Finite Element Method (FEM) depends on the size and shape of the elements,
the properties of the approximation space and the regularity of the solution [14,16]. From the
computational point of view, the choice of the basis for the approximation space influences the
stability and efficiency of the numerical procedures used to calculate the approximated solu-
tion. In general the finite element basis consist of piecewise polynomial functions defined on the
elements of the partition which discretizes the problem domain.

Specifically, the p-version of the FEM has the following main features [17,28]: high-order
numerical integration; numerical differentiation; appropriate shape functions; geometric map-
ping for arbitrary domains; global Cy inter-element continuity; degrees of freedom numbering;
application of boundary conditions; and post-processing of results.
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The p-shape functions are associated to the topological entities (vertex, edge, face and body)
of the elements. In general, these functions are built from one-dimensional Legendre and Cheby-
shev polynomials [10,28,31]. Hierarchical or modal p-basis are characterized by the following
properties [17]: vertex modes have one magnitude at one vertex and are zero at all other ver-
tices; edges modes have magnitude along one edge and are zero at all other edges and vertices;
face modes have magnitude along one face but are zero along all other faces, edges and vertices.
Hierarchy means that high order expansion sets X1 contains the terms of the lower order
expansion sets X, i.e., X;, C X,11. A nodal basis denotes a non-hierarchical expansion which
is associated with a set of nodal points and generally based upon Lagrange polynomials.

Many p-shape functions have been presented in the literature. Peano [24,25] considered
families of hierarchical interpolation functions for straight-side triangular elements that can be
applied to any polynomial order. Each new degrees of freedom for p > 2 represents the p-th
derivative of the current approximation. The functions are mapped directly onto the elements
using barycentric coordinates. Katz & Rossow [18,26] extended Peano’s work with the definition
of a reference element and the use of pre-computed universal matrices and vectors to increase
the computational performance. Zienkiewicz presented functions for hierarchical quadrilateral
elements with good condition number of the local matrices, easy achievement of inter-element
continuity and the use of error estimators [33].

The classical hierarchical functions for quadrilaterals and hexahedra introduced by Szabé &
Babuska in [28] have excellent sparsity and conditioning properties due to the use of Legendre
polynomials and their fully tensorial nature [12,20]. However, the functions for triangles and
tetrahedra do not have similar properties and show an exponential increase of the local condition
number with the element order p [2,9].

Carnevali [9] introduced hierarchical shape functions for triangles and tetrahedra with the
property that the p-th edge, face and body functions are orthogonal in the Laplace operator
sense to the same functions with orders not superior to p — 2, p— 3 and p — 4, respectively. This
fact resulted in local stiffness matrices with better condition numbers and sparsity compared to
the functions defined in [28].

Sherwin & Karniadakis [27] presented hierarchical shape functions for triangles and tetrahe-
dra based on collapsed cartesian coordinates, tensorial product, Jacobi orthogonal polynomials
and exact numerical integration using tensor product of one-dimensional Gauss-Jacobi quadra-
ture [17]. The collapsed coordinate systems for triangles and tetrahedra are obtained from the
cartesian coordinate systems defined on quadrilaterals and hexahedra, respectively.

Webb & Abouchakra [32] used Jacobi polynomials to define shape functions for the [0,1]
2-simplex reference triangle. The quadrature rule defined in [11] is used. The extension of these
functions to tetrahedra are presented in [1] and also use pre-computed universal matrices.

Nogueira & Bittencourt [15] showed the advantages of using Jacobi polynomials to improve
the computational efficiency and the sparsity of the local and global matrices. It was also verified
that the functions proposed in [9] have an exponential increasing of the condition number with
the element order but still inferior to that verified in the functions presented in [28].
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Adjerid [2] proposed new functions for triangles and tetrahedra with better sparsity and
condition properties when compared to [9,28]. These functions are based on [28] and use the or-
thogonalization of face (2D case) and face and body (3D case) functions. The strategy presented
is very similar to that one used in [21,22] to define pre-condititioners for domain decomposition
methods in meshes of hexahedral elements.

A fully tensorial-based procedure to construct nodal and modal shape functions for triangles
and tetrahedral in barycentric coordinates was presented in [6]. Due to the use of tensorial prod-
uct, the modal functions have a natural global C” inter-element continuity. A unified approach
to construct h- and p-shape functions for quadrilaterals, hexahedral, triangles and tetrahedral
based on the tensorial product of one-dimensional bases is in [7]. The approach uses indices to
denote the one-dimensional polynomials in each tensorization direction. The appropriate manip-
ulation of the indices allows the construction of hierarchical or non-hierarchial and inter-element
continuous or non-continuous bases. In addition, a new tensorial basis for triangles is defined
aiming to improve the sparsity profiles of the local finite element matrices. The use of tensorial
based construction has advantages as the manipulation of only one-dimensional polynomials and
their derivatives, better computational performance and simplified implementation of parallel
procedures and use of one-dimensional integration rules [6].

In addition to the mesh discretization (structured or non-structured) and the use of tensorial
product functions for triangles and tetrahedra, the properties of conditioning and sparsity of the
local matrices are essential in the p-version of the FEM [4,9,12,15,29]. The local properties
are determined by the way the shape functions are defined and influence indirectly the corre-
spondent properties of the global matrices [9,12,34]. The improved numerical efficiency of the
structured expansions arise from their tensorial product based construction. Following [17] to
be competitive the unstructured expansions must be as efficient as the structured ones mainly
when applied to time-dependent problems.

The purpose of this paper is to apply the Spectral/hp FEM [17], originally developed to
CFD, to linear and non-linear elasticity problems. The paper is organized as follows. First
a brief review of the Spectral/hp FEM is presented. After that, the linear and non-linear
elasticity formulations are discussed. The condition number of p-basis are studied based on
results of their application to the Poisson’s problem solved using iterative methods. Finally,
results obtained from the application to Spectral/hp FEM to linear and non-linear elasticity
problems are presented.

2 The spectral/hp finite element method

The Spectral/hp FEM uses collapsed coordinate systems to define the shape functions for trian-
gles and tetrahedra. Figure 1 illustrates the procedure to obtain the triangle 7% = {(£,7) | —1 <
£,m;€+n <0} from the square R? = {(a,b) | =1 < a,b < 1}. This transformation allows the
use of tensorial product to write the shape functions for triangles. Due to the rational nature
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of the transformation (a,b) — (§,m) (a = % — 1), additional terms are included in the local
expressions of the shape functions in the coordinates (a, b) to obtain polynomial basis in the local
triangular and quadrangular domains. Figure 2 shows the analogous 3-steps transformation to

obtain the local tetrahedron T from the hexahedron R [17,27].

b n
=11

(-1,1) (1,1) (cﬂﬂ

£ = (14a)(1-b)2-1

- N0

b=n

10.0) a ~ b=n :
a=2(1+§/(1-m)-1 A

(<11 (1.-1) () N N

a=-1 a0 a=1

Figure 1: Mapping between quadrilateral and triangular domains [27].
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Figure 2: Mapping between hexahedron and tetrahedron domains [27].

Local and global operations are defined for the Spectral/hp FEM. The local operations are
related to the numerical integration, numerical differentiation and the local-global mapping of
the shape functions. Connectivity manipulation and degree of freedom numbering are the main
global operations. Aspects of the numerical integration and differentiation are discussed here
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briefly. Detailed analysis of the local and global operations, and the appropriate application of
boundary conditions, are presented in [17].

The numerical integration in the tetrahedron domain 7% = {(£,1,¢) | =1 < &1, E4n+¢ <
—1} uses the collapsed transformation illustrated in Figure 2 which are expressed by the following

PP 9 B | G /)

(=n—=¢) 7 (1-¢ 7

For the linear and non-linear elasticity problems, the following general expression has to be

/TS u(&,m, C)dﬁdndcz/_l1 /_11 /_llu(a, b, c)Jdadbdc (2)

where the Jacobian J of the R* — T transformation is given by

=gk () () g

The numerical integration of (2) from the tensorial product of one-dimensional quadrature

/_11 /_11 /_11 u(a, b, ¢) <1;b> (1 o) c>2 dadbde

) Qilw Qile{glwku(%bj’%)(1—2bj> (1—2%)2} | N

i=0 j=0

relations

c=, (1)

integrated

rules is

where a;,b; and ¢, are tensorial-based coordinates of the @1, Q2 and @3 quadrature points in
each spatial direction a, b and ¢, respectively; w;, w; and wy, are the respective weights of the
Gauss quadrature.

The Gauss-Jacobi quadrature is defined by [17]

1 Q-1
/ (1= )1+ 2 f(2)dz = Y wi’ f(07), (5)
1=0

-1
a,B a,B
(] K]
selection of the weights @ and § of the Jacobi polynomial. For a« = 8 = 0, the Gauss-Legendre
quadrature is obtained. The boundary points of the domain may be included in the numerical

where w; " and z;"" are the weights and coordinates of the integration points for an appropriate

integration when using the Gauss-Jacobi quadrature with Lobatto and Radau distributions of
points [17].

Based on the previous definition, the number of integration points for the consistent inte-
gration of (4) may be reduced with the inclusion of the Jacobian terms in the weights. For that
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purpose, (¢ =0, 5 =0), (¢ =1, § =0) and (o = 2, § = 0) are selected, respectively, in the
directions a, b and ¢. The integration on T2 given in (4) may be written as

2
/// abc(l_b>< )dadbdc
@l ,0 = Wl 2,0 0,0 ;1,0 2,0
S S {z 20u(a 7ij,c,;>} | )
1=0 j= k=0
where
w10 w20
w0 = %and w0 = Z. (7)

The Gauss-Radau distribution is used in the 7,  directions while the Gauss-Lobatto points
are considered for the £ direction as illustrated in Figure 3. This selection avoids multiple points
on the vertices (£ = —1, n = =1, ( = 1) and (£ = —1, n = 1, { = 1) and along the edge
that connects these vertices. Therefore, the calculation on the singular points of the collapsed
transformation is avoided. Although numerical perturbations would be expected when using
singular integration points, [17] gave a theoretical proof demonstrating the boundness of the
collapsed transformation over the singular points.

-1
-1 1
-0.5 -0.5

0.5 0.5

n

Figure 3: Quadrature points for the local tetrahedron T2 with Q; = Q2 = Q3 = 7 and Gauss-
Lobatto points in the ¢-direction and Gauss-Radau points in the n and ¢-directions [17].

The differential operators of the linear and non-linear elasticity problems are applied to the
shape functions of the approximation space and evaluated on the integration points for each finite
element of the mesh. The collocation differentiation may be used to calculate the derivatives of
the shape functions on the integration points [17]. It is based on the representation of arbitrary
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polynomial functions by Lagrange polynomials defined on the quadrature coordinates. The
representation is a simple change of basis for the same polynomial space. Based on that, the
local polynomial approximation for a one-dimensional function u(§) is written as

P P
&)= tpdp(§) = > uphy(€) (8)
p=0 p=0

where ¢,(£) are the interpolation functions of order < Py, hy(§) are the Lagrange polynomials
defined on the P; + 1 integration points and 1, and u, are the coefficients of the approximation
in the original and transformed basis, respectively.

Due to the collocation property of the Lagrange polynomials (i.e., h;(§;) = d;;), the coeffi-
cients u, are the values of the approximated function on the integration points, i.e.,

up = u(&p). 9)
Therefore, it is possible to express the derivative of the approximated function as

Py Py

%oinﬁwgﬁm%@ (10)

p=

For the reference element 73, which is mapped from the hexahedron R2, the polynomial
expansion of the function u(a, b, ¢) in terms of Lagrange polynomials in the tensorial coordinates
a,b and c is

Py,P3,Ps3

u(a,b,c) = Z UpgrPpgr(a, b, c) ZZZUW ¢(b)hy(c), (11)

p,q,7=0 p=0 ¢=0 r=0

where ¥pgr(a,b,¢) = ¢pgr(§,m, () are the basis functions represented in the tensorized space
(a,b,¢) and hj (for j = p,q,r) are the Lagrange polynomials of order P; (i = 1,2, 3).
Analogously to equation (10), the partial derivatives of the approximated function are

ou P P P
ﬁMQ:ZZZW hq(b)hr(c), (12)
p=0 q=0 r=0
ou ool B b
—-(a,b,c) = Zzzupqr ( )hr(c)v (13)
ob 8()
p=0 q=0 r=0
P P P

%WQZZZZ%MMM%9 (14)

p=0 g¢=0 r=0
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The evaluation of the previous expressions on the integration points using the collocation prop-
erty of the Lagrange polynomials gives

Py

ou Ohy(a

%(aivijck) = Zup]k‘ g(i ) ) (15)
p=0 %

du S0

ap (@i bjser) = > tigh % | (16)
q=0 bi

du 5 Ohy(e)

3c @i bjyer) = > uigr e (17)
r=0 Ck

The procedures for the collocation differentiation, which result from the evaluation of the
derivatives of Lagrange polynomials, used in the previous expressions are discussed in [17] and
are based on the distribution of points for the Gauss-Jacobi, Gauss-Legendre, Gauss-Radau and
Gauss-Lobatto quadratures.

From expressions (15) to (17), the chain rule is applied to obtain the local partial derivatives
with respect to the cartesian coordinates (£, 7, ) of the reference element T3, i.e.,

9 4 9
% (15(?1(336)851 2 9
V=1 | T (1—b)(1—c)8a+§1—c;8b (18)
o o14a) & (1+b)d 8
ac I-b(1-cda (1-cdb e

For the cases b = 1 or ¢ = 1, the operator V becomes singular. This problem may be avoided
using Gauss-Radau quadrature along the b and c-directions.

3 Formulation of the linear and non-linear elasticity problems

The linear elasticity BVP is given by the following equations [28]

dive+b = 0 em (),
u = @ em 007, (19)
t

on = em OOV,

where o is the Cauchy tensorial field; b is the body load vector field defined on the 2 domain;
u is the displacement vector field with prescribed values @ on the Dirichlet boundary 9QP; t is
the surface load vector field with prescribed values t applied on the Neumann boundary 9Q;
and n is the normal vector field on 9QY. For all examples presented in this paper, @ = 0.
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The material constitutive equation is given by the Hooke’s law, i.e.,

1€, (20)
(Vu+ vuT). (21)

N~ O

where C is the elasticity tensorial field and € is the infinitesimal strain tensorial field defined on
the material points of the domain €.

The weak or variational form of the BVP (20) is expressed by:

Find the displacement vector field u € V = {v(x) € [H(Q)]* : v = 0 on 9P} such as

/ o(u):e(v)dV = / b-vdV +/ t-vdS, VvevV, (22)
Q Q N

where H'(Q) is the Sobolev space commonly used in the variational formulation of second-order
problems.
The previous weak form may be expressed as

B(u,v) =F(v), VYveV, (23)

where B(u,v) and F(v) are the bilinear and linear forms given by

B(u,v) = /Qa(u) s e(v)dV, (24)
F(v) = / b-vdV +/ t-vdS, Vvev. (25)
Q 0N

Considering the finite dimensional subspace SP C V, the p-version finite element approxi-
mation of (22) is expressed as [28]

ol = S (@0 (20
where )
¢, 0 0
[®]=| 0 ¢, 0 (27)
0 0 ¢

is the matrix of the global basis functions obtained here from the assembling of the local basis
proposed for the Spectral/hp FEM; {4} = {a;,a;,a;} is the vector of the unknown degrees
of freedom; and n, is the dimension of the space SP. In [28], the space SP is written formally
as SP(Q2, A, Q), where the parameters 2, A, Q are the problem domain, the discretization mesh
and the local-global mapping, respectively. The index p in S indicates the polynomial order of
elements of the mesh.
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Using the Galerkin approach, the substitution of (26) in (22) results in the approximated
equation

Bp({u}, {v}) = Fp({v}), V{v}eV, (28)

where the discretized bilinear and linear forms are
By({u},{v}) = A([D]{V})T[C]([D]{u})d‘/, (29)

F V) = /Q (bave + byvy + bov,)dV + /a (v, E)dS (30)

In the previous expression, [C] is the isotropic elasticity matrix and its coefficients are expressed
in terms of the material properties and [D] is the following differential operator

ottt oo

g
I
o oo o ofle

Fodlo ofle o o

Equation (28) may be written as the following system of algebraic equations

(K] {u} = {f}, (32)

where [K| and {f} are the global stiffness matrix and equivalent load vector, respectively.
The material description is used here to formulate the non-linear elasticity problem of large
deformation. The strain measure is given by the Lagrangian tensor, i.e., [8,19]

1 1
E(u) =5 (Vu+ vu’) + 5Vu’fvu. (33)
The equilibrium equation is given by [8,19]
DivS + b = 0, (34)

where S is the second Piolla-Kirchhoff stress tensor and b is the material representation of
the body load vector. The Hooke’s law is used as the constitutive equation for the non-linear
elasticity problem.

The related weak or variational form of the non-linear elasticity problem is:

Find the displacement vector fieldu € V = {v(x) € [H*(Q)]? : v = 0 on 900P} such that

/s:aEdV:/b.avdv+/ t-ovds, (35)
Q Q oON
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where 0JE = DE(v)[dv] is the Gateaux differential of E in the direction dv.
The finite element approximation of the previous weak form using the p-version is obtained
from (26) and (27) and the following system of algebraic equations results

[K(uw)]{u} = {f}, (36)

where K(u) is the non-linear global stiffness matrix. The Newton-Raphson procedure is used
to linearize and solve the previous system of equations.

4 Results

This section presents results of the application of the Spectral/hp FEM to solve linear and non-
linear elasticity problems using meshes of triangles and tetrahedra. Initially, a comparison of
sets of p-shape functions presented in the literature is considered when applied to the Poisson’s
equation in two-dimensional domains. This previous analysis has been used to select the most
appropriate set of p-basis functions to be applied in the solution of the elasticity problems
presented in the following.

4.1 Comparison of p-shape functions

In [15] a comparison of the condition numbering and sparsity of the local mass and stiffness
matrices of triangles and tetrahedra obtained from the application of p-basis presented in the
literature were considered [1,9,27,28,32] and a new basis was proposed. This section presents
the solution of algebraic global systems, obtained from the application of the mentioned p-
basis to the Poisson’s problem, by the standard and Jacobi pre-conditioning conjugate gradient
methods [3].

The square and L-shaped domains illustrated in Figure 4 are considered. The load terms
were chosen to result high gradients in the solution for the square domain and a smooth solution
of the L-shaped domain as in this case there is a geometric singularity [23]. The respective
analytical solutions for the square and L-shaped domains are

= —x)(1 - an Ty _
u(z,y) = zy(1 — 2)(1 —y) tan™ " [60 < 7 O.8>] : (37)
and
u(z,y) = ;7‘2/3 sin 23—9(1 —22)(1 —9?), (38)

where 7 = /22 + y2 and 6 = tan~! (—%) These solutions are plotted in Figures 4(c) and 4(f),
respectively.

Figure 5 shows the number of iterations of the standard and Jacobi conjugate gradient
methods using the convergence criterion || [K]{u} — {f}||2/|[{f}||2 < € for ¢ = 1075 versus
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(b) Mesh with 54 elements. (c) Analytical solution.

(e) Mesh with 108 elements. (f) Analytical solution.

Figure 4: Square and L-shaped domains, finite element meshes and analytical solutions [23].
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the polynomial order p = 2,3,...,8. The behaviour of the results are very close to those
ones obtained for the local condition number of the stiffness matrices presented in [15]. The
results also asserts the validity of the estimation of the global condition number in terms of the
local behaviour presented in [34]. In addition, the theoretical relation between the number of
iterations (NIT'(¢)) of the conjugate gradient method and the condition number of the global
stiffness matrices (k(Agiop)), i-€., [3]

NIT(e) < k(Agiop) In(2/€) + 1, (39)

N

is also observed. Based on that, it is verified that the local analysis of the shape functions
gives consistent information about the behaviour of the shape functions when applied to linear
elliptic problems solved by iterative methods [9,12,34]. In this sense, the local analysis are useful
for the appropriate selection of the p-basis in the context of iterative methods and algebraic
multigrid [16].
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(a) Square domain.
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(b) L-shaped domain.

Figure 5: Number of iterations for the standard and Jacobi conjugate gradient methods versus
the polynomial order for the square and L-shaped domains.
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Based on the previous global results and the local analysis presented in [15], the shape func-
tions developed in [1,32] have the lowest increasing rate of the condition number in terms of the
polynomial order p. Although this set of basis functions has demonstrated an excellent perfor-
mance from the conditioning point of view the functions presented by [15,27] have also showed
remarkable results with the advantage of using a tensorial formulation which optimizes numerical
and computational efficiency. These arguments has led to the adoption of the Spectral/hp basis
functions to approximate the solution of the considered linear and non-linear elastic structural
problems.

4.2 Linear elasticity problems

This section presents results of the application of the Spectral/hAp FEM to two linear and one
non-linear elastic problems. The first problem has analytical solution and the energy norm
of the error is calculated as the approximation space is refined. The other two examples do
not have analytical solution and the error energy norm is estimated based on the a posteriori-
estimate given in [28]. The results are also compared with those ones obtained using the ANSY'S
commercial software.

4.2.1 Cantilever beam

Figure 6 shows the finite element mesh of tetrahedra used for the vertical prismatic cantilever
beam with quadrangular cross-section subjected to its own weight. The global coordinate system
and the boundary conditions on the superior face of the beam are indicated. The cross section
dimensions are [ = 1.0m and h = 1.0m. Three beam lengths are considered, i.e., ¢ = 3.0m,
9.0m and 18.0m. The material properties are density (p = 7885.0 kg/m?), Young’s modulus
(E = 210.0x10° N/m?) and Poisson’s ratio (v = 0, 3). The gravity acceleration is g = 9.81m/s.
The finite element meshes have 18 tetrahedral along the length of the beam (y axis).

The boundary conditions on the superior face of the beam were applied as follow: one vertex
has all the three displacement components zero; another vertex has only the y and z component
with zero displacements; the other two vertices have zero displacements in the y-direction. The
way boundary conditions were applied follows [13]. The analytical solution of this problem,
Uey = (Ug, Uy, uz), is [30]

vpg

we = (20 200 ),
Uy = %{2cy—y2—y(x2+z2—x—z)}, (40)
u, = %(Qyz —2cz —y).
The respective strain and stress components are given by
vpg 1z
Yoy = Yz = VYyz = 0,600 = €2, = _?(C - y)agyy = E(C - y)a
Ozx = Ozz = Tgy = Taz = Tyz :Oaayy :pg(ny). (41)
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Figure 6: Mesh of tetrahedral for the prismatic cantilever beam.

From the previous expressions, the energy norm of the exact solution may be calculated,
where it should be observed that only o, contributes to the strain energy. Therefore,

1 1

2

[eallfq) = §B(uex,u6x) = 2/Qayy€yydv' (42)
The substitution of the expressions for o,, and €,, given in (41) results in

_ (pg)* bt 2
OyyEyydV = (c — y)*dxdydz. (43)
Q E Jo Jo Jo

Using the given values for the material properties and dimensions results in the following
values for the energy norm of the exact solution for each of the three lengths and 8-digit accuracy

el =~ 012821376 (c =3.0m),
[eallFqy ~ 346177146  (c=9.0m),
[UeallBq) ~ 27.69417169 (c=18.0m). (44)

The energy norm of the error in the Galerkin-FEM approximated solution is [2§]

lell By = teelz@) — Il E@) - (45)

The energy norm of the approximated solution {u} is obtained straightforward using (32),
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ie.,

[l =\ 3Bp({u) fu)) (46)
Bt () = (@7 | [ (BB (@) = (@) KIa) = @740 )

Figures 7(a) and 7(b) show the relative error in the energy norm for the three lengths of
the beam in terms of the number of degrees of freedom N related to the polynomial orders
p=1,...,8 and the square root of N, respectively, as plotted in [28].
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(a) Relative error x number of degrees of freedom.  (b) Relative error x, /number of degrees of freedom.

Figure 7: Relative error for the approximated solutions of the cantilever beam in terms of the
number of degrees of freedom for p =1,...,8 and the three lengths of the beam.

It should be observed that the error in the energy norm is not zero for p > 2 as it would
be expected. This behaviour may be explained due to the way boundary conditions affect the
global mesure of the error in energy norm. Local perturbations in the approximated solution
may occur due to the Saint-Venant’s Principle [30]). As the beam length is increased, the error
decreases. The previous hypotheses may be verified in Figure 8 which shows the error of the
vertical displacement of node (x,y, z) = (1,¢, 1) located on the free end of the beam in terms of
the polynomial order. The quadratic feature of the exact and approximated solutions may be
observed.

4.2.2 Cantilever beam with body and surface loads

In this example, a cantilever beam is subjected to its own weight and a surface load. The finite
element solutions is obtained for p = 1,...,8 for three meshes with 34, 65 and 102 tetrahedral
as illustrated in Figure 9. The boundary conditions and the constant 10* N/m? surface load
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Figure 8: Percentual error of the vertical displacement u,, of node (z,y,2) = (1,¢,1) versus the
polynomial order.

(a) 34 elements. (b) 65 elements. (c) 102 elements.

Figure 9: Meshes used in the second example.

applied on the negative direction of the superior face are also illustrated. The dimensions of
the beam are ¢ = 2.0m,l; = 0.6m,lo = 0.2m,h = 0.2m. The material properties are the same
ones used in the previous example.

As the considered problem does not have an analytical solution, the approximation error in
the finite element solutions will be calculated using the a-posteriori error estimate in the energy
norm given in [28]. This estimate uses the energy of the solution for three refinement levels
p,p— 1 and p — 2. Based on these values and the number of degrees of freedom for each level,
it is possible to estimate the energy of the exact solution.

From equation (45) and the a-priori error estimate indicated in [5], the energy norm of the
error in the finite element approximation may be expressed as

2 2 k?
lellz@) = lues —ullpg) = (ue) — 1(u) ~ <5, (48)
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where k and 3 are positive constants ([ is related to the regularity of the exact solution), N is
the number of degrees of freedom and II(-) the energy of the solution. There are 3 unknowns in
the previous equation II(ue, ), k and 3. Taking the finite element solutions for three values of p,
the unknowns may be calculated and the following relation is obtained [28]

Im—11 N, 1
log——P2  log -2
IT—1I,—¢ ~ Ny (49)
Im—10,4 Ny_o’
log ——F2—  log -2
II-1I,» Np—1

where II is the energy of the exact solution; II,,II,_1,II,_5 and N,, N;,—1, Np—2 are the energy of
the finite element solutions and the numbers of degrees of freedom for the approximation spaces
p,p— 1 and p — 2, respectively. Denoting the right hand side of the previous equation by @), it

follows that 0
II - 1I, - IT—1I,¢ (50)
II-1I,4 II-1I,» '

The previous a-posteriori estimate assumes monotonic convergence of II,, and implies the
nestedness of the approximation spaces for different polynomial orders, i.e., SP=2 C SP~1 C SP,
which is valid for the p-version due to the hierarchy of the spaces.

Figures 10 shows the convergence behaviour of the approximated solution obtained using
the h and p-versions of the FEM for each of three meshes used. The convergence is compared
based on the error in the energy norm versus the number of degrees of freedom in the log-log
scale. The p-refinements were obtained for p = 1,...,8. The h-refinements are represented by
the dashed lines which were extrapolated based on the solutions for the meshes of 34, 65 and
102 linear tetrahedral. The legend of each plot indicates the angular coefficients of the fitted
lines for the h and p-versions. The calculation of the p-coefficients do not take in account the
pre-asymptotic behaviour between p =1 and p = 2.
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Figure 10: Relative error in the energy norm versus the number of degrees of freedom for the
second example.
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Based on these results, it may be observed that the error coefficient for the p-version is about
twice the error for the h-refinement. This behaviour agrees with the theoretical estimates of
exponential convergence rate for p-refinements [28].

The estimates of the exact solution energy with 8-digit accuracy for the three meshes are,
respectively,

II(u) ~ 0.08464549 (34 elements),
II(u) ~ 0.08483894 (65 elements),
II(u) =~ 0.08634225 (102 elements). (51)

Figure 11 shows the behaviour of the relative error of the approximated solutions obtained
using the p-version for p = 1,...,8 in terms of the square root of the number of degrees of
freedom for each one of the three meshes used.
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Figure 11: Percentual relative error versus the number of degrees of freedom for three meshes of
the second example.

It should be observed the interesting behaviour of the decrease of the accuracy with the
increasing of the number of elements. The error estimate in the energy norm used are entirely
based on p-refinements and it seems not adequate for the hp-version. It may also be observed
the low accuracy of the linear solutions which may be explained due to the greater stiffness of
the linear tetrahedra when used in the approximation of the elasticity operator.

Table 1 compares the displacement components for one node of the 3 meshes based on the
solutions obtained from the ANSYS program and the Spectral/hp FEM used in this paper.
ANSYS implements a p-error estimator with a non-uniform refinement of the elements. The
refinement stopping criterion is based on the difference of the strain energies of each element
between two successive refinements and the user-supplied accuracy, which was 1% for the consid-
ered example. The polynomial order indicated in Table 1 for the ANSYS solutions are related to
the most predominant order found in the elements of the meshes, which is in general the largest
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order. The results for the two formulations have a reasonable correlation for the nodal solutions.
As it would be expected, the u, displacement components tend to zero and the values obtained
from ANSYS oscillates around zero. The Spectral/hp u, values are greater than the respective
ANSYS absolute values. This behaviour may be explained due to the singularity of the local
transformations applied to the definition of the shape functions. Anyway, the convergence of
the FEM is based on the energy norm of error and not locally in each point of the domain. The
contribution of the u, displacement in the energy norm is minimal for both solutions.

Table 1: Comparison of nodal solution obtained using the ANSYS software and the Spectral/hp
FEM for the second example.

Displacement u [m]

Mesh Node

Formulation

Uy Uy Uy
34 elem. 1 ANSYS 0,54665e-05  -0,32492e-04 -0,29401e-08
p=4 Spectral/hp  0,54970e-05 -0,32792e-04  0,60912e-06
65 elem. 1 ANSYS 0,54679e-05 -0,32501e-04 -0,80350e-08
p=4 Spectral/hp  0,55637e-05 -0,32834e-04  0,10157e-06
102 elem. 1 ANSYS 0,54621e-05 -0,32470e-04  0,14558e-09
p=3 Spectral/hp  0,54983e-05 -0,32734e-04  0,31620e-06

4.3 Non-linear elasticity

The Spectral/hp FEM considered in this paper will be applied to the problem of large deforma-
tion of a cantilever beam submitted to its own weight and a constant surface load. The mesh
used of 23 tetrahedra, the boundary conditions and surface load are illustrated in Figure 12.
The dimensions of the beam are ¢ = 3.0m x [ = 0.3m x h = 0.05m. The material properties are
p = 250.0 kg/m?, E = 4.0 x 103 N/m? and v = 0.3. The surface load intensity is 100.0 N/m?
and applied in the negative y-direction. The solutions were obtained for p = 1,...,8 using the
Newton-Raphson method with one load step. The energy stop criterion in the Euclidian norm
were used with 10~ precision. The results are compared for one node of the mesh with the
non-linear formulation of the ANSYS software based on the h-version and taking the equivalent
numbers of degrees of freedom for the two formulations.

Figures 13(a) and 13(b) show the convergence behaviour of the solutions in the non-linear
cantilever beam when the approximation space is refined for p = 1,...,8. The convergence is
indicated, respectively, in terms of the logarithmic and percentual of the relative error in the
energy norm versus the number of degrees of freedom. Figure 13(a) also shows the comparison
of the relative errors for the h and p versions of FEM. The results for the h-version were
extrapolated based on the solutions calculated for meshes of 23, 33, 64 and 108 elements.

As in the linear case, it may be observed from Figure 13(a) that the p-version has an
exponential convergence rate for the non-linear cantilever beam. The rate of convergence of the
p-version is very superior when compared with the results obtained for h-version. For non-linear
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Figure 12: Non-linear cantilever beam.
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Figure 13: Error behaviour for the non-linear cantilever beam.
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Figure 14: Convergence of Newton-Rhapson iterations for the three convergence criteria versus
the total number of iterations and p = 5.

problems, the larger stiffness produced by the linear Lagrange elements is more critical when
compared to the linear case.

The estimate of the energy of the exact solution for the mesh with 23 elements using the
a-posteriori estimate given [28] is

II(u) ~ 21.19735351. (52)

For the mesh with 23 elements illustrated in Figure 12(a) and polynomial order p = 5,
Figure 14 shows the behaviour of the non-linear solution obtained with 5 load steps according
to the Euclidian norm of the load, displacement and energy criteria of the Newton-Rhapson
procedure [8]. It may be observed that the convergence criteria are not absolutely equivalent
in terms of the norms of their respective expressions used to measure convergence. The energy
criterion has an intermediate behaviour and is situated between the limits of the displacement
and load criteria.

For the same conditions used in the previous test of the convergence criteria, Figure 15
shows the displacements in the y-direction for one node of the mesh obtained from the linear
and non-linear models. Due to the non-linear stiffness, the displacement at the end of each load
step is lower than that of the linear case.

Table 2 presents the comparison of the displacement components for one node of the mesh
calculated using the ANSYS program and the Spectral/hp FEM. Two different meshes were
used. The p-mesh has 23 tetrahedral and polynomial order p = 5. The ANSYS mesh has 303
quadratic tetrahedral. For both meshes, the number of degrees of freedom is 2100. The dis-
placement and load convergence criteria were used simultaneously in the ANSYS program. The
precisions were 1072 and 107 for the load and displacement convergence criteria, respectively.
For the Spectral/hp FEM, the energy criterion was used with 10~# precision. The results have a
reasonable agreement which shows that the Spectral/hp Methods are suitable also for non-linear
solid mechanic problems.
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Figure 15: Load steps versus the nodal y-displacement for the linear and non-linear models.

Table 2: Comparison of the nodal solution for the non-linear cantilever beam obtained from the
ANSYS program and the Spectral/hp Method.

Displacement u [m]

Mesh DOFs Node Formulation Uy Uy U,
h 2100 5 ANSYS -0,46644e-01  -0,52177  0,50587¢-04
p=5 2100 5 Spectral/hp  -0,46630e-01 -0,52143 -0,13399e-03

5 Conclusions

Based on the results obtained in this paper, it is possible to conclude that the Spectral/hp FEM
proposed in [17] for CFD problems in 3D non-structured meshes are also applicable to linear
and non-linear elasticity problems. From the local side, this method has the advantages of using
high-order tensorial integration quadratures and high-order local numerical differentiation. For
the global viewpoint, the construction of C? approximations may be obtained in a consistent and
direct way in a pre-processing step. For linear and non-linear elasticity problems considered in
this paper, it should be advisable to use a quadratic element to start the p-refinement procedure
due to the poor stiffness representation of the linear elements.
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