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Abstract 

In this paper, at first the attenuation of Lamb waves in three-

layer adhesive joints, including two elastic plates bonded together 

by a viscoelastic adhesive layer, is investigated using Global ma-

trix method and then suitable incidence angle is theoretically 

calculated to generate low-attenuation Lamb waves using angle 

beam transducer. Theoretical boundary value problem in three-

layer adhesive joints with perfect bond and traction-free boundary 

conditions on their outer surfaces is solved to find a combination 

of frequencies and modes with lowest attenuation. Characteristic 

equation is derived by applying continuity and boundary condi-

tions in three-layer joints using Global matrix method. Phase 

velocity dispersion curves and attenuation intensity plot in high 

and low frequencies are obtained with numerical solution of this 

equation by a computer code for a three-layer joint, including an 

aluminum repair patch bonded to the aircraft aluminum skin by a 

layer of viscoelastic epoxy adhesive. To validate the numerical 

solution results of characteristic equation, wave structure curves 

are plotted for a special mode in two different frequencies in the 

adhesive joint. Also, transducer incidence angle is calculated in 

terms of frequency for different modes using theoretical method to 

generate Lamb wave modes with low attenuation level by angle 

beam transducer. These modes are recognizable by transducers in 

inspections with Lamb waves because of low attenuation level. 
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Three-layer adhesive joints; viscoelastic; lamb wave generation; 
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1 INTRODUCTION 

The applications of adhesive joints in plates and pipes to increase life, improve stiffness, protect 

against corrosion, and electrical insulation have been caused the widespread use of viscoelastic pol-

ymer material like epoxy with plates and pipes as adhesive and coating. An example of these joints’ 
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application is a three-layer adhesive joint including an aluminum patch bonded to a surface, like 

aircraft aluminum skin, by a viscoelastic epoxy adhesive layer. Repair patches are used to extend 

the life of the aircraft. Ultrasonic guided waves are used to inspect these adhesive joints. Lamb 

waves have applications in non-destructive inspection of elastic-viscoelastic multi-layer joints and 

plates. Some modes of these waves have frequencies with minimum attenuation and are recogniza-

ble in inspection by transducer, and they can also detect the defects in the structures. Low-

attenuation Lamb waves can be produced in multi-layer structures using angle beam transducers for 

inspection purposes. 

Different studies have been carried out to obtain propagated modes and frequencies in multi-

layer structures (or dispersion curves). Thomson (1950) and Haskell (1953) first investigated the 

equations of elastic waves propagation in planar multi-layers with arbitrary number of layers using 

transfer matrix method or Thomson-Haskell method. They introduced a transfer matrix that shows 

the relationship between displacement and stress in bottom of a layer in comparison to their values 

in top of the same layer. One of the difficulties when using transfer matrix method is the instability 

of the solution whenever the product of frequency in thickness increases. Dunkin (1965) introduced 

delta operator technique to solve this difficulty. Knopoff (1964) was the first to use Global matrix 

method to investigate the propagation of elastic waves in multi-layers. In this method a global ma-

trix is used which is derived from putting together the equations of continuity and boundary condi-

tions in all the layers. In investigated studies, the effect of wave energy attenuation in materials is 

not taken into consideration. 

Watson (1972) obtained the complex roots of the characteristic equation in earth layers and 

showed that imaginary part of the wave number is the same as the attenuation in multilayered. 

Hosten and Castaings (1993) applied the transfer matrix method in multilayered anisotropic and 

damping media. The use of this method in high frequencies is accompanied with numerical instabil-

ity. Castaings and Hosten (1994) applied delta operator technique to improve the stability of trans-

fer matrix method in multilayered anisotropic damping plates. Lowe (1995) presented a summary of 

the matrix methods for modeling the propagation of ultrasonic waves in multilayered media. Both 

global matrix method and transfer matrix method are used in this study. These techniques can be 

used to obtain attenuation and phase velocity dispersion curves in viscoelastic materials. Pan et al. 

(1999) investigated the propagation of ultrasonic guided waves in gas pipelines with a thick coating 

to choose the suitable mode for inspection. Both the effect of coating thickness and the effect of 

coating damping on dispersion curves and mode shapes were investigated and the modes being the 

least affected by coating thickness and coating damping were identified. To model the viscoelastic 

behavior, the coating is assumed a linear standard solid. Seifried et al. (2002) investigated the prop-

agation of guided waves in multilayered adhesive structures by taking into consideration the low 

stiffness and viscoelastic behavior of adhesive layer. To better understand the guided waves behav-

ior and to obtain dispersion curves, they used analytical, experimental and transient FEM simula-

tion methods. 

Simonetti (2004) investigated the propagation of Lamb wave in elastic plates coated with viscoe-

lastic materials, and considered the viscoelastic coatings effect on dispersion properties of Lamb 

wave propagation in elastic plates. To do this, he used Superposition Partial Bulk Waves (SPBW) 

method to model the wave. Simonetti and Cawely (2004) investigated the propagation of shear 
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horizontal (SH) waves in an elastic plate coated with viscoelastic material. Material damping causes 

an excessive reduction of applied signal in ultrasonic test. In this research, SH wave dispersion 

curves for metal plates coated with viscoelastic layers are obtained using SPBW method. Barshing-

er and Rose (2004) investigated the propagation of guided waves in elastic hollow cylinders with 

viscoelastic coating using experimental and analytical methods. Wave equation is solved using theo-

retical boundary value problem and the best modes are specified. In this research, Global matrix 

method is used to obtain the roots of characteristic equation. It should be noted that in this paper, 

the viscoelastic characteristics of the coating are obtained using the transient wave propagation 

method. Shorter (2004) investigated the wave propagation in linear viscoelastic laminates using 

spectral finite element method or semi-analytical finite element method (SAFE). In this reference, 

damping loss factor is estimated for waves in low frequencies, and also stiffness matrix is assumed 

to be real. Birgersson et al. (2005) investigated damping loss factor using SAFE method and taking 

into consideration the complex stiffness matrix. Bartoli et al. (2006) investigated the wave propaga-

tion in viscoelastic waveguides with an arbitrary cross-section. To model ultrasonic wave propaga-

tion in different waveguides, SAFE method is used. The results of group velocity and phase velocity 

dispersion curves (for undamped media), attenuation and energy velocity (for damped media), and 

cross-section mode shapes are obtained which are used in non-destructive inspection. The results 

accuracy is validated compared to the SPBW method. Marzani et al. (2008) used SAFE method to 

analyze wave propagation in viscoelastic axisymmetric waveguides. The results accuracy of the dis-

persion curves is validated compared to the SPBW method. Puthillath and Rose (2010) inspected 

the titanium repair patches bonded to the aircraft aluminum skin using ultrasonic guided waves. 

They plotted the wave structures using a theoretical method and selected the mode shape with 

maximum in-plane displacement for inspection, although they didn’t take into consideration the 

effect of material damping. 

In the present study, the propagation of Lamb waves in elastic-viscoelastic three-layer joints, in-

cluding two elastic plates bonded together with a layer of viscoelastic adhesive, is investigated using 

Global matrix method and considering viscoelastic layer damping effect. Then, the suitable inci-

dence angle is theoretically calculated to generate Lamb wave mode with low attenuation using 

angle beam transducer. Also, wave structure is plotted for a specific mode in two different frequen-

cies to verify that continuity and boundary conditions are satisfied and also to explain the attenua-

tion behavior of waves in joints. Adhesive damping causes the excessive reduction of sending signal 

amplitude in ultrasonic test; so, modes and frequencies with minimum attenuation should be speci-

fied. Because these waves travel the maximum possible distance in joints and can detect the differ-

ent defects namely interfacial defects. 

 

2 THEORETICAL MODELING OF LAMB WAVES PROPAGATION IN THREE-LAYER ADHESIVE JOINTS 

Lamb waves are propagated in thin plate-like mediums in which planar dimensions are far greater 

than the thickness of plate and wavelength of the same order with plate thickness (Su and Ye, 

2009). Free upper and lower surfaces in plate guide movement of these waves. Lamb waves have 

infinite modes and their propagation properties depend on wave entry angle, frequency, and struc-

ture geometry. Figure 1 shows Lamb wave propagation in an adhesive joint which is comprised of 

three layers. The first and the third layers, which are elastic and isotropic, are bonded together by 
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the second layer which is an isotropic viscoelastic layer. The layers are perfectly bonded together 

and the free surfaces at the top and the bottom of the three layers are traction-free. Layers thick-

ness is shown by h1, h2, and h3. A local Cartesian coordinate system is used to investigate the prop-

agation of Lamb waves in the three layers. Because of the propagation of the Lamb waves in three-

layer joint, the problem is investigated as plain strain, and also the wave propagation is considered 

harmonic. In each layer, Lamb wave are comprised of shear and longitudinal waves superposition 

(Rose, 2004). L+ and L- show the propagation of longitudinal waves downwards and upwards the 

plate, and S+ and S- show the propagation of shear waves downwards and upwards the plate, re-

spectively. 

 

 
Figure 1: The propagation of Lamb wave in an elastic-viscoelastic three-layer adhesive joint. 

 

Assuming that the wave propagation in three-layer adhesive joints in terms of time is harmonic, 

stress-strain equations of viscoelastic layer are similar to those in elastic layer, except that material 

properties of viscoelastic layer are complex numbers and a function of frequency (Christensen, 

2010). This dependency between elastic and viscoelastic material in harmonic state is called Alfrey’s 

Correspondence Principle (Flugge, 1975 and Ferry, 1980). Also, Navier’s equation of motion in vis-

coelastic layer is similar to the elastic layer and is expressed by Eq. (1): 

 

 
2

2
2

( ) ( . )
t

u
u u   (1) 

 

In Eq. (1), , , and  are Lame constants and density, respectively. Lame constants in viscoe-

lastic material are complex numbers and a function of frequency which are measured using experi-

mental methods such as ultrasonic tests (Barshinger and Rose, 2004). In Eq. (1), the displacement 

field, u , can be decomposed as a combination of the gradient of a scalar potential field, , and the 

curl of a vector potential field, H (Helmholtz decomposition) (Rose , 2004 and Graff, 1991): 

 

 , .u H H 0   (2) 

 

Substituting Eq. (2) in Eq. (1), scalar and vector equations are obtained respectively: 
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Eq. (3) shows the propagation of longitudinal wave, and Eq. (4) shows the propagation of trans-

verse wave in structures, and 1C  and 2C  quantities are longitudinal and shear wave velocities in 

medium, respectively. Since Lame constants in viscoelastic material are complex numbers and a 

function of frequency, wave velocities are also complex numbers and a function of frequency. 

Using Cartesian coordinate system, the potential vector, H , can be defined as the Eq. (5): 

 

 x y zH H Hx y zH e e e   (5) 

 

Since this problem is assumed as a plain strain, then the equation 0zu z  should be sat-

isfied. This happens when xH  and yH  components equal zero and only zH  remains. The scalar 

potential function, , should also be a function of x  and y . 

The solutions of Eqs. (3) and (4) for a harmonic wave propagates along the positive x  direction, 

are assumed as Eqs. (6) and (7): 
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In Eqs. (6) and (7), k  and  are wave number and angular frequency, respectively. 

Substituting Eqs. (6) and (7) in Eqs. (3) and (4) and taking into consideration that the two 

components of vector potential function are equal to zero, and after solving the differential equa-

tions, the solutions are obtained as: 
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2
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2
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The solutions of Eqs. (8) and (9) are known as the partial waves solution. The four terms ob-

tained from Eqs. (8) and (9) show the longitudinal waves propagation, L , and transverse waves 

propagation, S , upwards and downwards the layer. Constant values show the amplitude of propa-

gated waves; for instance, ( )LA  shows the longitudinal wave amplitude propagates towards the 

bottom of the layer. 

Substituting vector and scalar potential functions from Eqs. (8) and (9) in Eq. (2), the displace-

ment field in adhesive joint is obtained in terms of unknown constants of the shear and longitudinal 

wave amplitudes:  
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 0zu   (12) 

 

Eqs. (10) and (11) can also be expressed as Eqs. (13) and (14): 

 

 
( )i kx t

x xu U e   (13) 

 
( )i kx t

y yu U e   (14) 

 

In Eqs. (13) and (14), xU  and yU  are unattenuated displacement amplitudes. 

Using Hooke and strain-displacement relations, stresses in the adhesive joint can be obtained in 

terms of the unknown constants of shear and longitudinal wave amplitudes: 
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In order to obtain Lamb waves dispersion curves for elastic-viscoelastic three-layer adhesive 

joint, continuity and boundary conditions should be applied. 

 

3 FORMULATION OF CONTINUITY AND BOUNDARY CONDITIOND USING GLOBAL MATRIX METHOD 

Global matrix method is a suitable method for formulation of problems concerning multi-layers. 

Continuity and boundary conditions are needed for this formulation. Using this method, continuity 

and boundary conditions can be shown as matrices and vectors. This method can simultaneously 

consider effects of material damping and wave leakage to the environment. In this method a global 

matrix is used to describe all the continuity and boundary conditions, and when it comes to numer-

ical stability, it is better than other matrix methods (Lowe, 1995). 

Figure 2 shows the boundary conditions of a three-layer adhesive joint including stress and dis-

placement continuity in layers interfaces and traction-free conditions in up and bottom surfaces of 

the elastic-viscoelastic three-layer adhesive joint. 

The bond between layers is perfect, and there’s no shear and normal stress on free-surfaces at 

the top and bottom of the three-layer. This condition is shown in vector Eq. (20). Continuity of 

interfaces conditions include continuity of displacement components, and shear and normal stresses 

components. As an example, continuity between m and m+1 layers are shown by vector Eq. (21). 
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Figure 2: Continuity and boundary conditions in an elastic-viscoelastic three-layer adhesive joint. 

 

 

Before applying continuity and boundary conditions, a vector relation for displacement and 

stress in each layer is necessary which is obtained using Eqs. (10), (11), (16), and (18) and is shown 

by vector Eq. (22): 
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In which D  is the layer matrix and is expressed as Eq. (23): 
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Before applying continuity and boundary conditions using Eq. (22), layer matrix in interfaces of 

each layer is calculated. This is achieved from Eq. (23), by substituting 2y h  for layer top 
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interface, and 2y h  for layer bottom interface. These two new layer matrices are shown by tD  

and bD , respectively, in which the subscripts t  and b  show the top and bottom interfaces of layer, 

respectively. Local coordinate system is used to derive these matrices, which are shown in Figure 2, 

and therefore can be derived for all layers by substituting material properties and thickness.  

Now, we express three-layer joint continuity and boundary conditions in the form of a global 

matrix which is shown in Eq. (24). mA and 0  vectors in this matrix are shown by Eq. (25): 
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In Eq. (24) the subscript 34 shows the rows 3 and 4 of the layer matrix. 

Global matrix method is a 4 4n n  system of equations, in which n is number of layers, and the 

global matrix for an elastic-viscoelastic three-layer is 12 12 . In order to the nontrivial solution to 

exist, the determinant of global matrix should become zero. This is shown by Eq. (26), which is 

called characteristic or dispersion equation of Lamb waves. With the aid of the roots of this equa-

tion, attenuation and phase velocity dispersion curves are plotted in terms of frequency. 
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  (26) 

 

4 NUMERICAL SOLUTION METHOD OF CHARACTERISTIC EQUATION 

Characteristic equation roots in the three-layer adhesive joint are obtained using numerical solution 

method. In characteristic equation, frequency, , is the independent variable, and wave number, k , 

is the dependent variable. The wave number in a desired frequency is obtained by solving this equa-

tion. To find characteristic equation roots, computer code is written in Matlab software. These 

roots are shown by curves called dispersion curves.  

Finding complex roots of a characteristic equation concerning a three-layer adhesive joint of 

which at least one layer is viscoelastic, is a difficult task. In linear viscoelasticity, if harmonic wave 

propagation is desired, transverse and longitudinal velocities, and Lame constants of viscoelastic 

layer, are complex and a function of frequency. The transverse and longitudinal velocities are calcu-

lated from Eqs. (27) and (28) (Christensen, 2010): 
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In Eqs. (27) and (28), 1c  and 2c  are bulk velocities of longitudinal and transverse waves, and 1  

and 2  are bulk attenuations of longitudinal and transverse waves of viscoelastic layer. Bulk atten-

uation and velocity values for viscoelastic material can be calculated in terms of frequency, using 

experimental test such as ultrasonic test (Barshinger and Rose, 2004). 

Before introducing a method for finding the attenuation and phase velocity numerical results, 

wave number should be defined in terms of imaginary and real parts. Eq. (29) shows the wave 

number as complex (Blanc, 1993): 
 

 R I I
ph

k k ik ik
c

  (29) 

 

Eq. (29) enables us to solve the viscoelastic characteristic equation in terms of attenuation, Ik , 

and phase velocity, phc , instead of wave number, k . In this case, the attenuation and phase veloci-

ty dispersion curves are obtained directly. 

One solution method for finding the viscoelastic characteristic equation roots is taking into con-

sideration the minimum of characteristic equation absolute value. In this case, the problem becomes 

three dimensions in which the characteristic equation absolute value is a function in terms of the 

attenuation and phase velocity. In this method we seek to find minimum value of this function. The 

main issue in this method is finding all the roots. 

Figure 3 shows a minimization process of characteristic equation absolute value in order to find 

characteristic equation complex roots. 
 

 
Figure 3: The process of minimization in order to find characteristic equation complex roots. 
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Using the process shown in Figure 3, a computer code can be written to find characteristic equa-

tion roots. This process can be applied for all desired frequencies, and attenuation and phase veloci-

ty can be obtained in terms of frequency. Attenuation constant can be converted to attenuation in 

decibel per length unit, using Eq. (30). This conversion magnifies the attenuation values. 
 

 
1000( )-1

0 10(dBm ) 20log
kIe   (30) 

 

5 THEORETICAL MODELING OF LAMB WAVE MODE GENERATION 

Different methods exist to generate and receive ultrasonic guided waves. Viktorov (1967) was the 

first to evaluate the dispersive properties of Lamb wave he also investigated generation methods of 

Lamb waves. He investigated four methods to generate Lamb waves in plates. These methods can 

also be used in other structures. 

One method to generate Lamb wave is using a longitudinal wave transducer on a plexiglass 

wedge, which is also called angle beam transducer. Figure 4 shows the Lamb wave generation 

method in an elastic-viscoelastic three-layer adhesive joint using an angle beam transducer. In this 

method, according to Snell’s law transducer incidence angle depend on wedge velocity and Lamb 

wave phase velocity. Eq. (31) shows Snell’s law, in which i  is the plexiglass wedge angle, plexic  is 

the longitudinal wave velocity of the wedge, and phc  is the Lamb wave phase velocity in adhesive 

joint.  
 

 1sin ( )plexi
i

ph

c

c
  (31) 

 

In order to theoretical modeling of the Lamb wave generation, at first attenuation and phase ve-

locity in the joint are obtained, then a combination of modes and frequencies which have low atten-

uation are selected, and finally the suitable incidence angle for generation is calculated using Snell’s 

law and phase velocity of these modes. These angles are used in inspections. 

 

 
Figure 4: Lamb wave generation with an angle beam transducer. 

 

6 DISCUSSION OF RESULTS FOR A SPECIFIC APPLICATION 

Solving the characteristic equation by a computer code for a three-layer adhesive joint, including an 

aluminum repair patch bonded to the aircraft aluminum skin with a viscoelastic epoxy adhesive 
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layer, the attenuation intensity plot and phase velocity dispersion curves in high and low frequen-

cies for this specific application are generated. Also, acceptable attenuation level is calculated for 

ultrasonic inspection using a single transducer of the adhesive joint with 200 mm length and suita-

ble modes are selected. Geometric and acoustic properties of elastic-viscoelastic three-layer adhesive 

joint can be seen in Table 1. Aluminum and Mereco Epoxy 303 acoustic properties are picked up 

from (Barshinger and Rose, 2004). 

Wave structure for a mode in two different frequencies is plotted to validate numerical solution 

results. Finally, transducer incidence angle is plotted in terms of frequency for different modes, and 

suitable wedge angles are selected to generate low-attenuation Lamb wave modes in the adhesive 

joint with 200 mm length. 

 

h  

(mm)  

 
-3(gcm )  

2  
-1(s km )  

2c  
-1(kms )  

1  
-1(s km )  

1c  
-1(kms )  Material Layer 

1.6 2.7 - 3.13 - 6.35 Aluminum 1 

0.66 1.08 0.0201 0.99 0.0070 2.39 Mereco 303 Epoxy 2 

3.175 2.7 - 3.13 - 6.35 Aluminum 3 
 

Table 1: Geometric and acoustic properties of an elastic-viscoelastic three-layer adhesive joint. 

 

6.1 Phase velocity dispersion curves and attenuation intensity plot 

Figure 5 shows the phase velocity dispersion curves in terms of frequency for different modes in the 

elastic-viscoelastic three-layer adhesive joint, the properties of which are shown in Table 1. The 

lamb wave modes are identified with M and numbers in Figure 5. Investigating this curve it can be 

seen that in the frequency intervals of 150 kHz to 250 kHz only three modes of M1, M2, and M3 

propagate, and other modes don’t propagate in these low frequencies. 250 kHz frequency is cutoff 

frequency of M4 mode; because, M4 mode doesn’t propagate in frequencies lower than this frequen-

cy. Also, in the frequency intervals of 275 kHz to 575 kHz only four modes of M1, M2, M3, and M4 

propagate, and 575 kHz is the cutoff frequency of M5 mode. 

The attenuation is shown superimposed on the Lamb wave dispersion curves with the intensity 

plot in Figure 6. In this paper, acceptable range of attenuation is calculated for ultrasonic inspection 

of the adhesive joint with 200 mm length using a single transducer. The suitable range of attenua-

tion depends on wave propagation distance in a wave round-trip to transducer and on the signal to 

noise ratio (SNR). In inspection with guided waves, SNR is a measure for detecting small defects 

and is the ratio of reflected signal from defects to return signal from grains (as noise) to transducer. 

Minimum identifiable SNR in guided wave test is 6 dB (Barshinger and Rose, 2004). In guided 

wave test, defect signal is usually 20 dB higher than the noise signal; therefore, a 14 dB signal can 

be lost because of the guided wave mode attenuation, and if attenuation is more than which, defects 

are not detectable. The distance that a wave travels in a round-trip to transducer is twice the 

length of the plate and equal to 400 mm, and maximum attenuation that the wave can have in a 

round-trip equals -14 dB / 0.4 m or -35 dB m-1; therefore, the suitable range of attenuation is from 

0 to -35 dB m-1. 
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Figure 5: Phase velocity dispersion curves in terms of frequency in the three-layer adhesive joint: aluminum-epoxy-

aluminum. 

 

The modes with acceptable attenuation level (0 to -35 dB m-1) are selected for inspection in high 

and low frequencies. Generating these modes, adhesive joint inspection can be carried out to find 

the defects. From curves in Figure 6, it can be seen that M1 mode in frequency range of 150 kHz to 

500 kHz has a suitable attenuation level for inspection, and in frequencies higher than 500 kHz, a 

sudden and excessive increase can be seen in attenuation. This mode in high frequencies is not suit-

able for inspection. Attenuation in M2 mode in low frequencies, in the range of 150 kHz to 250 kHz 

increases extremely, and has a sudden and excessive increase in frequencies higher than 800 kHz. 

M2 Mode in frequency range of 325 kHz to 800 kHz and M3 mode in frequency ranges of 150 kHz 

to 675 kHz and 1.2 MHz to 1.775 MHz have suitable attenuation levels for inspection of the adhe-

sive joint with 200 mm length. M3 mode in 500 kHz has an attenuation equal to -5.1 dB m-1 which 

is the lowest attenuation level in frequency range of 0 to 3 MHz. M5 mode has a suitable attenua-

tion level in high frequencies and is suitable for inspection in 1.9 MHz to 3 MHz frequency range, 

and it also has negligible attenuation about -0.27 dB m-1 in frequencies near 3 MHz. 

 

6.2 Validation of numerical solution results 

One method to validate the numerical solution results of characteristic equation, which are the 

same as attenuation and phase velocity, is the investigation of the interfacial continuity equations 

and boundary conditions in the adhesive joint. The wave structure of propagated modes in the 

three-layer adhesive joint is plotted to validate whether interfacial continuity equations and bound-

ary conditions are satisfied. Wave structure curves are the same as stress and displacement ampli-

tudes across three-layer adhesive joint thickness. 
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Figure 6: Variation of the attenuation superimposed over the Lamb wave dispersion curves for the three-layer adhe-

sive joint: aluminum-epoxy-aluminum. 

 

The curve in Figure 7 is the M2 mode wave structure in 500 kHz frequency with an attenuation 

of -13.5 dB m-1. As the Figure 7 shows, shear and normal stresses don’t exist in free surfaces at the 

top and bottom of the three layers; also, interfacial continuity conditions including continuity of 

shear and normal stresses and displacement components, are satisfied. M2 mode wave structure in 

1.25 MHz frequency with the attenuation of -222.8 dB m-1 is also plotted in the curves of Figure 8, 

in which continuity and boundary conditions are also satisfied. Because attenuation level is high in 

wave structure curve of Figure 8, most of the displacement exists in the viscoelastic layer. 

 

6.3 Transducer incidence angles to generate low-attenuation Lamb wave modes 

In this section, at first the transducer incidence angle curves in terms of frequency for generating 

lamb wave modes in the three-layer adhesive joint is plotted using Eq. (31) and phase velocity val-

ues, these curves are shown in Figure 9. Then the suitable incidence angles are specified to generate 

low-attenuation modes by transducer. Investigating Figure 9 it can be seen that the incidence an-

gles for generating some modes such as M1 mode don’t exist, the generation of which is impossible 

by the transducer for all the frequency ranges. M2 mode has a low attenuation level and a suitable 

incidence angle for inspection in 150 kHz to 200 kHz and 650 kHz to 800 kHz frequency ranges. To 

generate this mode in 200 kHz frequency with low attenuation level of -7.34 dB m-1, the transducer 

incidence angle should be 32.4 degree. Simultaneously investigating the attenuation values and 

transducer incidence angle it can be seen that M3 mode in 150 kHz to 675 kHz frequency range, M4 

mode in 300 kHz to 725 kHz frequency range, and M5 mode in 875 kHz to 1.075 MHz and 1.9 MHz 

to 3 MHz frequency ranges have low attenuation level and suitable incidence angle for the genera-
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tion of Lamb wave. Transducer incidence angle should be 30.6 degree to generate M3 mode in 500 

kHz frequency and low attenuation level of -5.1 dB m-1, and 66 degree to generate M5 mode in 3 

MHz frequency and negligible attenuation level of -0.27 dB m-1. 

 

 
Figure 7: M2 mode wave structure in 500 kHz frequency with the attenuation of -13.5 dB m-1 in a three-layer 

adhesive joint (a) normalized displacement wave structure (b) normalized stress wave structure. 

 

 
Figure 8: M2 mode wave structure in 1.25 MHz frequency with the attenuation of -222.8 dB m-1in a three-layer 

adhesive joint (a) normalized displacement wave structure (b) normalized stress wave structure. 
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Figure 9: Transducer incidence angle curves in terms of frequency for generating Lamb wave modes in the three-

layer adhesive joint: aluminum-epoxy-aluminum. 

 

7 CONCLUSIONS 

The obtained results of Lamb wave theoretical modeling in three-layer adhesive joint with a viscoe-

lastic adhesive can be used in inspections using ultrasonic guided waves in three-layer structures. 

The results of the present paper can be summarized as: 

1. Lamb waves have many modes, some of which don’t propagate in frequencies lower than the 

cutoff frequency.  

2. Some modes, such as M1, M2, and M3, have an acceptable attenuation level for inspection 

with guided waves in low frequencies and some others, such as M5, in high frequencies. 

3. Investigating the wave structure curves it can be seen that the interfacial continuity and 

boundary conditions is satisfied in adhesive joint. This result validates the numerical solution re-

sults of characteristic equation.  

4. Transducer incidence angle obtained from theoretical modeling of Lamb wave mode genera-

tion can be used to inspect adhesive joints and generate Lamb wave with low attenuation level in 

joints. 
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