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mechanisms
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Abstract

This paper present a computing method used in the analysis of the precision of the six
links Watt and Stephenson mechanisms. It is studied the influence of the manufacturing
errors, which appear at the manufacturing of the kinematics links, on the motion law of the
output link. The mathematic model is developed on the basis of the partial derivatives of the
output parameters with respect to the manufacturing parameter of the mechanisms. These
partial derivatives are computed with the help of the input-output equation developed for
Watt and Stephenson mechanisms. The second problem presented in the paper is represented
by the mathematic modeling of the precision due to the clearances from the kinematics joints.
The mathematic model is developed on the basis of the Monte-Carlo method. The numeric
examples lead to the conclusion regarding the choice of the tolerance interval in such a way
that the precision realized by the mechanism fits in the tolerance imposed by the design.

Keywords: precision, Watt and Stephenson mechanisms

1 Introduction

The performances of the mechanisms, generally, are influenced by the manufacturing errors and
by the clearances from the kinematics joints. For the choice of the tolerance and the limit
deviations, for the linear and angular dimensions, the design applies the system of standards.
Also this system is used in the establishment of adjustments which determine the value of the
radial clearances from kinematics joints.

A first important aspect is the validation of the precision for the mechanism’s motion law,
on the basis of the choice of the limit deviations using the standards system, for kinematics
links [5].

The researches realized until now lead to the development of two types of mathematic models
for the analysis of the influence of the manufacturing errors on the motion law. The first model is
analytic [4]. With the help of this model there were analyzed the influences of the manufacturing
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2 Cezar Oprisan and Dumitru Leohchi

errors on the motion law, with numeric examples for four links mechanisms. The second model is
represented by the stochastic model, which is applied generally in the precision of the mechanisms
manufactured in series and of the mechanisms which are acted by random forces [3].

In the case of the six links Watt and Stephenson mechanisms the analysis of the derivations
influence on the motion law is studied on each loop, with five or four links. The passing from
one loop to another introduces one extra parameter (parameter which represents the position of
the input link in the loop).

The clearances have important influence in the running of mechanisms and especially in the
running of mechanisms close to the blocking zones. In this case it is imposed the study of the
deviations of the transmission angle due to the clearances from the kinematics joints. A practical
example in this way is the design of the frontal loaders.

In this paper it is presented a method for the analysis of the precision of the Watt and
Stephenson mechanisms on the basis of the study of the influence of the manufacturing errors
and of the clearances from the joints, using the input-output equation.

2 The input-output equation

It is determined for the Watt and Stephenson mechanisms presented in the “Fig. 1 and 2”,
using the method presented by [1].
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Figure 1: Watt mechanism
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   Figure 2: Stephenson mechanism

The kinematics links of the two mechanisms were numbered with number from one to six.

Latin American Journal of Solids and Structures 4 (2007)



Analysis of the influence of errors and clearances on Watt and Stephenson mechanisms 3

For both mechanisms were used the following notations: 1 – input link (AB), 5 – output link
(GF), 6 – base (AD). The other links were numbered with: 2 (BC), 3 (CD), 4 (EF), 5 (FG)
“Fig. 1 and 2”.

The links were considered oriented vectors defined by modulus (l1, l2, l3, l6, l21, l13, l4, l5)
and angular position (ϕ 1, ϕ 2, ϕ 3, ϕ 4, ϕ 5) regarding to the coordinate system Oxy. The angles
α and β are constructive parameters “Fig. 1 and 2”.

2.1 The establishment of the input-output equation for Watt mechanism

For the loop ABCDA “Fig. 1” the input- output equation is:

A · sinϕ 2 + B · cosϕ 2 + C = 0, (1)

where:
A = 2 · l1 · l2 · sinϕ1;

B = 2 · l1 · l2 · cosϕ1 − 2 · l2 · l6;
C = l21 + l22 + l26 − l23 − 2 · l 1 · l 6 · cosϕ1.

The input-output equation for the loop BEFGB is:

A1 · sinϕ 2 + B1 · cosϕ 2 + C1 = 0, (2)

where:
A1 = 2 · l13 · l21 · cos (ϕ1 − α) · sinβ − 2 · l21 · l5 · cosϕ5 · sinβ+
+ 2 · l13 · l21 · sin (ϕ1 − α) · cosβ + 2 · l21 · l5 · sinϕ5 · cosβ

B1 = 2 · l13 · l21 · cos (ϕ1 − α) · cosβ + 2 · l21 · l5 · cosϕ5 · cosβ+
+ 2 · l13 · l21 · sin (ϕ1 − α) · sinβ + 2 · l21 · l5 · sinϕ5 · sinβ

C1 = l213 + l221 + l25 − l24 + 2 · l 13 · l 5 · cos (ϕ1 − α) · cosϕ5+
+ 2 · l 13 · l 5 · sin (ϕ1 − α) · sinϕ5

By eliminating the angle ϕ2 from the “Eq. (1)” and “Eq. (2)” and using the relation

sin2 ϕ 2 + cos2 ϕ 2 = 1,

results the input-output equation for the Watt mechanism presented in “Fig. 1”:

(A1 · C −A · C1)
2 + (B · C1 −B1 · C) 2 − (A ·B1 −A1 ·B) 2 = 0. (3)
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2.2 The establishment of the input-output equation for Stephenson mechanism

In the case of Stephenson mechanism it is used the same method in the determination of the
input-output equation. These resembles the “Eq. (3)” the difference being the structure of the
computing relations for the coefficients.

For the loop ABCDA “Fig. 2” the input-output equation is:

D · sinϕ 3 + E · cosϕ 3 + F = 0,

where:
D = −2 · l1 · l3 · sinϕ1;

E = 2 · l3 · l6 − 2 · l1 · l3 · cosϕ1;

F = l26 + l23 + l21 − l22 − 2 · l 1 · l 6 · cosϕ1.

For input-output equation for the loop AGFEDA is:

D 1 · sinϕ 3 + E 1 · cosϕ 3 + F 1 = 0,

where:

D 1 = −2 · l13 · l31 · cos (ϕ1 + α) · sinβ − 2 · l 5 · l 31 · cosϕ 5 · sinβ−
-2 · l13 · l31 · sin (ϕ1 + α) · cosβ − 2 · l5 · l31 · sinϕ5 · cosβ + 2 · l4 · l31 · sinβ ;

E1 = −2 · l13 · l31 · cos (ϕ1 + α) · cosβ − 2 · l5 · l 31 · cosϕ 5 · cosβ+
+ 2 · l 4 · l 31 · cosβ + 2 · l 13 · l 31 · sin (ϕ 1 + α) · sinβ + 2 · l 5 · l 31 · sinϕ 5 · sinϕ 3

F 1 = l213 + l25 + l24 + l231 − l24 + 2 · l 5 · l 13 · cos (ϕ 1 + α) · cosϕ 5−
-2 · l 13 · l 4 · cos (ϕ 1 + α) · sinϕ 5-2 · l 4 · l 5 · cosϕ 5 + 2 · l 13 · l 5 · sin (ϕ 1 + α) · sinϕ 5 .

Repeating the computing method from subsection 2.1 it is obtained the input-output equation
for the Stephenson mechanism corresponding to the “Eq. (3)”:

(D 1 · F −D · F 1)
2 + (E · F 1 − E 1 · F ) 2 − (D · E 1 −D 1 · E) 2 = 0.

As it follows it is presented the using of this equation in the study of the precision of Watt and
Stephenson mechanisms.

3 The mathematic model of the precision of Watt and Stephenson mechanisms

In the process of designing the standards system imposes the limit deviations with respect to the
chosen precision class. For mobile systems it is necessary to determine a mathematic model to
be used to verify if the precision of the system’s motion law is included in the tolerance imposed
to it by the design.
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The respective model must offer the design the possibility of computing the maximum and
minimum values of the deviations from the given motion law, regarding to it the position of the
leading link.

On the basis of the mathematical model proposed by [4] and noting with u i, i = 1, . . . , n
the input parameters and with v j , j = 1, . . . , m the output parameters of the mechanisms, the
deviations of the output parameters can be computed with the relation:

{∆ v j} = [J ] · {∆u i} , i = 1, . . . ,n ; j = 1, . . . ,m. (4)

where {∆v j} represents the matrix of the output parameters deviations, {∆u i} the matrix of
the input parameters, and [J ] is the jacobian matrix:

[J ] =
[
∂ v j

∂ u i

]
, i = 1,...,n; j = 1,...,m. (5)

As it follows, there are applied the general “Eq. (4)” and “Eq. (5)” for the precision of the Watt
and Stephenson mechanisms. So in the first phase are established the constructive parameters
for the respective mechanisms:

- for Watt mechanism “Fig. 1”,

u = u (l 1, l 2, l 3, l 6, l 13, l 21, l 4, l 5, α, β ) ; (6)

- for Stephenson mechanism “Fig. 2”,

u = u (l 1, l 2, l 3, l 13, l 31, l 4, l 5, l 6, α, β ) . (7)

As output variable it is considered:
v ≡ ϕ 5, (8)

where ϕ 5 is the parameter which define the mechanism’s motion law and depends on the con-
structive parameters from “Eq. (6)”, “Eq. (7)”.

Noting with a i the inferior limit deviation and with a s the superior limit deviation, deviations
imposed by the standards system for constructive parameters, then in the general model given
by “Eq. (4)” are defined the following matrixes:

{∆u ia} = {a s1, a s2, a s3, a s6, a s13, a s21, a s4, a s5, asα, asβ}T , (9)

where {∆uia} is the matrix of the superior limit deviation and

{∆ u ib} = {a i1, a i2, a i3, a i6, a i13, a i21, a i4, a i5, a iα, a iβ}T . (10)

where {∆u ib} is the matrix of the inferior limit deviation.
These notations are used for both The Watt mechanism “Fig. 1” and Stephenson mechanism

“Fig. 2”.
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The limit deviations, computed for the output parameter are noted with:

{∆ v s} = {∆ϕ 5a} - superior deviation (11)

and

{∆ v i} = {∆ϕ 5b} - inferior deviation. (12)

Appling the equations “Eq. (4)”, “Eq. (8)”, “Eq. (9)”, “Eq. (10)”, “Eq. (11)” and “Eq.
(12)” for the Watt mechanism, it results:

{∆ ϕ 5a} =
[
∂ ϕ5

∂ ui

]
· {∆u ia} , i = 1, ..., 10, (13)

{∆ϕ 5b} =
[
∂ ϕ 5

∂ u i

]
· {∆ u i b} , i = 1,...,10 . (14)

The general “Eq. (13)” and “Eq. (14)” are valid for the Stephenson mechanism with the changes
that appear to the constructive parameters.

The main problem is the determination of the component elements for the jacobian matrix.
In this case we define the function F (ϕ 5, u i) , i = 1,...,10:

F
(
ϕ 5, u i

)
= (A1 · C −A · C1)

2 + (B · C1 −B1 · C) 2 − (A ·B1 −A1 ·B) 2 , (15)

and
F

(
ϕ 5, u i

)
= 0 , i = 1, ..., 10. (16)

Differentiating the “Eq. (16)” with respect to ϕ 5 and each component of the constructive
parameters array it is obtained:

d ϕ5
d u i

= −

(
∂ F
∂ ui

)

(
∂ F
∂ ϕ 5

) , i = 1, ..., 10 . (17)

“Eq. (17)” is useful in the determining the partial derivatives of the output parameter ϕ5

regarding the constructive parameters ui, i = 1, . . . , 10. It is remarked the simple mode of
obtaining the partial derivatives, using the input - output function “Eq. (15)”, “ Eq. (16)”. If it
is considered the deviation of the input parameter, then the dimension of the array u increases
with one, and the partial derivative in relation with this parameter is determined in the same
way as above. In relation with the models determined for each loop [2], this model presents the
following advantages:

• the decrease of the number of the problem’s variables by eliminating the input parameter
of the loop,
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• simplicity of computing the partial derivatives.

For lightening the understanding of the method proposed in the paper, the following notions
are defined: the tolerance realized by the mechanism, noted with Taj and the imposed toler-
ance, noted with T. The tolerance realized by the mechanism, Taj , j = 1, ..., 360, represents
the domain in which takes values the deviation of the output parameter, when the designer
imposes the standard limit deviations for the dimensions of the cinematic links. This tolerance
is computed for each position of the input parameter ϕ 1 j , j = 1,...,360. The tolerance Taj is
computed with the following equation:

Taj = |∆ϕ5a(ϕ1j)−∆ϕ5b(ϕ1j)| , j = 1, ..., 360. (18)

If the following condition is respected:

max
j

Taj ≤ T , (19)

then the standard limit deviations lead to the obtaining of a motion law in the limits imposed
by the designer. If not, then it is applied the synthesis process and there are computed the limit
deviations which respect “Eq. (19)”.

In the appendix there are presented the computing relations for the partial derivatives
∂ F
∂ ui

, i = 1, ..., 10 and ∂ F
∂ ϕ 5

, determined for the mechanism Watt from “Fig. 1”.

If the manufacturing errors are constants in relation with the time, the clearance from
the joint is a variable parameter. The cause of this dependency is the wear phenomenon.
The analysis of the clearances influence on the performances of the motion law imposes the
development of a mathematical model, used to compute the tolerance realized by the mechanism.

As it follows, it is presented the development of this mathematical model and of the com-
puting algorithm.

4 The analysis of the influence of the clearances from the joint on the motion law

The study of the influence of the clearances from the kinematics joints on the position of the
output link is presented to determine the variation interval of this parameter’s deviation.

The mathematic model is obtained by raising the mobility degree of the mechanism. This
situation is obtained by introducing in the mechanism’s kinematics scheme zero mass links, with
the length equal to the radial clearance, named “clearance link”. The clearances space represents
the existence domain of the radial clearance, noted c, and is determined by the geometry of the
surfaces, which form the joint.

By example it is used the Watt mechanism, with clearances in the kinematics joints “Fig.
3”. In addition to the notations from “Fig. 1”, appear the following notations: c: representing
the clearance vector; O: center of the circle which forms the joint on the graphical representation
of the mechanism.
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Figure 3: Watt mechanism with clearances in joints

The mechanism has eight mobility degrees: one base mobility degree, which given by the
position of the input link 1; the other seven represents the positions of the clearance link in a
ratio with Ox: ψ 1, ψ 2, ψ 3, ψ 4, ψ 5, ψ 6, ψ 21 “Fig. 3”. The dimensions of the clearance links are
noted with: c 1, c 2, c 3, c 4, c 5, c 6, c 21.

The position of the output link ϕ 5 is computed with the relations:

M = c 1 · cos ψ 1 + c 2 · cosψ2 − c 6 · cos ψ 6 − c 3 · cosψ 3;

N = c 1 · sin ψ 1 + c 2 · sin ψ2 − c 6 · sin ψ 6 − c 3 · sin ψ 3;

A ∗ = 2 · l2 · (l1 · sin ϕ1 + N) ;

B ∗ = 2 · l2 · (l1 · cos ϕ1 + l6 + M) ;

C ∗ = l21 + l22 + l26 − l23 + M 2 + N 2 − 2 · l 6 ·M+
+ 2 · l 1 ·M · cosϕ1 -2 · l 1 · l 6 · cos ϕ 1 + 2 · l 1 ·N · sin ϕ 1 ;

ϕ 2 = 2 · a tan

(
−A∗ ±√A∗2 + B ∗2 − C ∗2

C ∗ −B ∗

)
. (20)

P = −c 4 · cosψ4 + c 2 · cosψ2 + c 21 · cos ψ 21 + c 5 · cosψ5;

R = −c 4 · sin ψ 4 + c 2 · sin ψ2 + c 21 · sin ψ 21 + c 5 · sin ψ 5;

A 3 = 2 · l13 · l5 · sin (ϕ1 − α) + 2 · l21 · l5 · sin (ϕ2 + β) + 2 · l5 ·R;

B 3 = 2 · l13 · l5 · cos (ϕ1 − α) + 2 · l21 · l5 · sin (ϕ2 + β) + 2 · l5 · P ;

C 3 = l213 + l221 + l25 − l24 + P 2 + R2 + 2 · l 13 · l 21 · cos (ϕ1 − α) · cos (ϕ 2 + β) +
+ 2 · l 13 · P · cos (ϕ1 − α) + 2 · l 21 · P · cos (ϕ 2 + β)+
+ 2 · l 13 · l 2 · sin (ϕ 1 − α) · sin (ϕ 2 + β) + 2 · l 13 ·R · sin (ϕ1 − α) + 2 · l 21 ·R · sin (ϕ 2 + β) ;

ϕ 5 = 2 · a tan



−A 3 ±

√
A2

3
+ B2

3
− C2

3

C3 −B 3


 .
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Analysis of the influence of errors and clearances on Watt and Stephenson mechanisms 9

The “Eq. (20)” was obtained with the help of the projections of the vector equations of the
loops on the axes of the coordinates system “Fig. 3”.

The precision of the motion law of the mechanism is analyzed using the values of the tolerance
parameter T cj , j = 1, ..., 360, computed for each position of the input link with the relation:

Tcj = max
N

ϕ 5(ϕ 1j)−min
N

ϕ 5(ϕ 1j) , j = 1, ..., 360. (21)

In “Eq. (21)” the main problem is the determining of the extreme values for the position ϕ 5,
values due to the clearances from the kinematics joints.

For solving this problem it will be used the Monte-Carlo method. The computing algorithm
developed on the basis of this method uses the random generation of a variable x in an interval
[a,b] with the relation:

x = a + (b− a) ·R k, k = 1, . . . , N, (22)

where: R k are random numbers in the interval (0,1), generated using the uniform distribution.
Applying this algorithm to the presented problem and using the hypothesis of the continue

contact between the links of the kinematics joints, there are generated positions of the contact’s
direction in the interval [0, 2π], with the relation:

ψl = 2π ·R k , k = 1, . . . ,N, (23)

where
ψl = ψ l (ψ 1, ψ 2, ψ 3, ψ 6, ψ 21, ψ 4, ψ 5) , l = 1, ..., 6, 21

and N represents the number of generations.
In this case the algorithm of the problem is:
Step 1. It is generated the vector ψl, with the “Eq. (23)” for each position of the input

link in the interval[0, 2π].
Step 2. For each position of the input link it is determined the extreme values for the

angleϕ 5: max
N

ϕ 5, min
N

ϕ 5. It is computed the tolerance T cj , j = 1, ..., 360 with

the “Eq. (21)”. If ϕ 1 = 2π, go to Step 3.
Step 3. From the series of computed values for Tcj , max

N
ϕ 5, min

N
ϕ 5, j = 1, ..., 360 are

established max
j

T cj , max
j

max
N

ϕ 5, min
j

min
N

ϕ 5. Corresponding to these values

it is determined the positions of the clearance link ψl.
If it is wanted to compute the limit deviations of the mechanism’s motion law, then are used

the relations:

max
N

∆ϕ 5 = max
N

ϕ 5 − ϕ o
5, for the superior deviation (24)

and
min
N

∆ϕ 5 = min
N

ϕ 5 − ϕ o
5, for the inferior deviation, (25)
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where ϕ o
5 represents the nominal position, which is computed with respect to the position of

the input link ϕ 1 j , j = 1,...,360, with the “Eq. (20)”, considering M, N, P, R equal to zero.
With this algorithm the designer can verify, for a chosen clearance, if the precision realized by
the mechanism respects the tolerance imposed by the design.

The computing of the cumulate deviations. The cumulated tolerance T tj , j = 1, ..., 360
realized by the mechanism is computed with the relation:

T tj = Taj + Tcj , j = 1, ..., 360 (26)

where Taj is computed with “Eq. (18)” and Tcj with “Eq. (21)”.
In the same way there are computed the superior and inferior cumulated deviations:

∆ϕ5M (ϕ1j) = ∆ϕ5a(ϕ1j) + max
N

∆ϕ5(ϕ1j),

∆ϕ5m(ϕ1j) = ∆ϕ5b(ϕ1j) + min
N

∆ϕ5(ϕ1j), j = 1, ..., 360,
(27)

∆ϕ5M− the superior cumulated deviation and ∆ϕ5m - the inferior cumulated deviation.
In this case, “Eq. (19)” and “Eq. (21)” are transformed in:

max
j

Ttj ≤ T. (28)

If “Eq. (28)” is true, then the motion law is in the limits imposed, if not, then in the first phase
it is modified the deviations or the clearances in the joints with the maximum weight from the
cumulated value of the tolerance. If after that, “Eq. (28)” is not true, then there are modified
both components on the basis of the synthesis process using an optimization algorithm.

5 Numerical examples. Discussions

5.1 The establishment of the domain of the variation of the motion law deviation due to

the manufacturing errors

It is considered the mechanism from “Fig. 1”, with the following nominal dimensions for kine-
matics links:

l 1 = 0.090 [m], l 2 = 0.210 [m], l 3 = 0.210 [m], l 6 = 0.320 [m],

l 13 = 0.045 [m], l 21 = 0.150 [m], l 4 = 0.150 [m], l 5 = 0.150 [m],

α = 115 ◦, β = 30◦.

For these dimensions, the limit deviations imposed by the standards system are:

a 1 = ± 0.15 [mm], a 2 = ± 0.20 [mm], a 3 = ± 0.20 [mm], a 6 = ± 0.30 [mm],

Latin American Journal of Solids and Structures 4 (2007)
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a 13 = ± 0.15 [mm], a 21 = ± 0.20 [mm], a 4 = ± 0.20 [mm], a 5 = ± 0.20 [mm],

aα = ± 50 ’, aβ = ± 50 ′.

In the “Figures 4, 5 and 6” are represented the variations diagrams of the partial derivatives
regarding to the position of the input linkϕ 1.
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Figure 4: The variation of the partial
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Figure 5: The variation of the partial
derivatives
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Analyzing “Figures 4 and 5”, from the point of view of the modules for the values of the
partial derivatives, it is noticed a relative important influence of the partial derivatives which
belong to the loop ABCDA with respect to the partial derivatives from the loop BEFGB. In
“Fig. 6” can be observed an important influence of the parameter β, regarding to α and the
other parameters from “Figures 4 and 5”. 
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 Figure 7: The domain of the variation

output link deviations
∆ϕ5b − 1, ∆ϕ5a − 2
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Figure 8: The domain of the variation of the tolerance T a

It can be remarked the special influence that the angular parameters α, β and the constructive
parameters of the loop BEFGB have on the mechanism’s motion law. This is explained by the
fact that the algebraic sum of the partial derivatives with respect to the constructive parameters
of the first loop “Fig. 4” is approximately zero.

In the “Fig. 7” and “Fig. 8” there are presented the variation domains of the deviations of
the output parameter ∆ϕ5(∆ϕ5a, ∆ϕ5b) and for the tolerance Taj , realized by the mechanism.

5.2 The computing of the variation of the deviations due to the clearances from the

kinematics joints

The computing example is applied for the mechanism presented in “Fig. 3”. There are con-
sidered the same nominal dimensions as in the previous example, and the radial clearances
c k = 0.15 [mm] , k = 1, 2, 3, 4, 5, 6, 21. The number of generation is N = 10000 and applying
the algorithm presented at section 4, developed on the basis of the “Eq. (20)”, “Eq. (21)”, “Eq.
(22)” and “Eq. (23)”, it is obtained the diagram of the variation of the tolerance realized by
the mechanism “Fig. 3”, for each position of the input link.

In “Fig. 9” it is presented the variation of the tolerance T cj , j = 1, ..., 360 regarding to
the position of the input parameter. The numeric results from Table 1 show the positions
of the cinematic elements of the Watt mechanism for the maximum value of the tolerance
T cj , j = 1, ..., 360. The simulation of the maximum and minimum positions of the cinematic
elements leads to the design of a product that avoids the eventual blockage positions and respects
the conditions imposed to the motion law.

The performance of the computing algorithm is analyzed by studying the variation of the
tolerance T cj , j = 1, ..., 360 with respect to the number of generations N “Fig. 10” and the
number of the executions of the programs ne “Fig. 11”. For N = 25.000 it is observed that the
solution is stabilized near the value of 0.96◦.

Also, the maximum value of the tolerance T c depends on ne “Fig. 11”. It is observed an
equilibration of the solution near the value of 0.953◦.
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Table 1: Numeric results

ϕ 1 ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 21[˚]
[˚] [˚] [˚] [˚] [˚] [˚] [˚] [˚]

max
j

Tcj [˚] 0.96818 185 - - - - - - -

max
j

max
N

ϕ5[˚] 173.568 185 344.75 37.07 178.13 276.40 139.46 168.34 118.14

min
j

min
N

ϕ5 [˚] 172.63 185 225.0 340.34 106.91 332.26 5.32 312.55 106.28

The simplicity of this method is an important advantage with respect to the application of
the numerical methods because of the fact that it does not require an initial solution and that
it avoids the development of a complex mathematical model.
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The additive effect of the limit deviations and of the clearances from the joints is presented
in “Fig. 12”. The values of the additive tolerance T t are computed with “Eq. 26”. The validity
of the obtained motion law is imposed by “Eq. 28”.

6 Conclusion

The development of an analytic model for the study of the precision of Watt and Stephenson
mechanisms, using the input-output equation, for determining the partial derivatives regarding
to constructive parameters, offers simplicity and easiness in applying.

Regarding to the analysis of the precision on separates loop, in which is necessary the study
of the influence of the deviation of the input position of the next loop, the analyzed method is
applied for the whole mechanism using only the limit deviations of the constructive parameters,
leading to the obtaining of a high relative precision. The study of the influence of the partial
derivatives on the precision realized by the mechanism may lead the designer to the establishment
of the tolerance intervals for each constructive parameter, in such a way that the tolerance
imposed to the motion law by the design is respected.

The analysis of the influence of the deviation produced by the clearances from the kinematics
joints on the motion law of Watt and Stephenson mechanisms can be easily studied using the
Monte-Carlo method. This method is characterized by generality and can be used successfully
in any design workshop.
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Appendix

The determination of the partial derivatives for the Watt mechanism “Fig. 1”

I. The derivate of the function F (ϕ 5, u i) , i = 1,...,10 with respect to the constructive
parameters ui:

∂F
∂ui

= 2(A1C −AC1)(∂A1
∂ui

C + A1
∂C
∂ui

− C1
∂A
∂ui

−A∂C1
∂ui

) + 2(BC1 −B1C)( ∂B
∂ui

C1+
+ B ∂C1

∂ui
− C ∂B1

∂ui
−B1

∂C
∂ui

)− 2(AB1 −A1B)( ∂A
∂ui

B1 + A∂B1
∂ui

−B ∂A1
∂ui

−A1
∂B
∂ui

)

II. Partial derivatives

1. Partial derivatives with respect to parameter l1:

∂A

∂l1
= 2l2 sinϕ1

∂B

∂l1
= 2l2 cosϕ1

∂C

∂l1
= 2l1 − 2l6 cosϕ1

∂A1

∂l1
= 0

∂B1

∂l1
= 0

∂C1

∂l1
= 0

2. Partial derivatives with respect to parameter l2:

∂A

∂l2
= 2l1 sinϕ1

∂B

∂l2
= 2l1 cosϕ1 − 2l6

∂C

∂l2
= 2l2

∂A1

∂l2
= 0

∂B1

∂l2
= 0

∂C1

∂l2
= 0

3. Partial derivatives with respect to parameter l3:

∂A

∂l3
= 0

∂B

∂l3
= 0

∂C

∂l 3
= −2l3

∂A1

∂l3
= 0

∂B1

∂l3
= 0

∂C1

∂l3
= 0

4. Partial derivatives with respect to parameter l6:

∂A

∂l6
= 0

∂B

∂l6
= −2l2

∂C

∂l 6
= 2l6 − 2l1 cosϕ1

∂A1

∂l6
= 0

∂B1

∂l6
= 0

∂C1

∂l6
= 0

5. Partial derivatives with respect to parameter l13:
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∂A

∂l13
= 0

∂B

∂l13
= 0

∂C

∂l 13
= 0

∂A1

∂l13
= 2l21 sin(ϕ1 − α− β)

∂B1

∂l13
= 2l21 cos(ϕ1 − α− β)

∂C1

∂l13
= 2l13 + 2l5 cos(ϕ1 − α− β)

6. Partial derivatives with respect to parameter α :

∂A

∂α
= 0

∂B

∂α
= 0

∂C

∂α
= 0

∂A1

∂α
= −2l13l21 cos(ϕ1−α− β)

∂B1

∂α
= 2l13l21 sin(ϕ1−α− β)

∂C1

∂α
= 2l13l5 sin(ϕ1−α−ϕ5)

7. Partial derivatives with respect to parameter l4:

∂A

∂l4
= 0

∂B

∂l4
= 0

∂C

∂l4
= 0

∂A1

∂l4
= 0

∂B1

∂l4
= 0

∂C1

∂l4
= −2l4

8. Partial derivatives with respect to parameter l5:

∂A

∂l5
= 0

∂B

∂l5
= 0

∂C

∂l 5
= 0

∂A1

∂l5
= 2l21 sin(ϕ5 − β)

∂B1

∂l5
= 2l21 cos(ϕ5 − β)

∂C1

∂l5
= 2l5 + 2l13 cos(ϕ1 − α) cos β

9. Partial derivatives with respect to parameter l21:

∂A

∂l21
= 0

∂B

∂l21
= 0

∂C

∂l 21
= 0

∂A1

∂l21
= 2l13 sin(ϕ1−α−β)+2l5 sin(ϕ5−β)

∂B1

∂l21
= 2l13 cos(ϕ1−α−β)+2l5 cos(ϕ5−β)

∂C1

∂l21
= 2l21

10. Partial derivatives with respect to parameter β:

∂A

∂β
= 0

∂B

∂β
= 0

∂C

∂β
= 0

∂A1

∂β
= −2l13l21 cos(ϕ1 − α− β)− 2l21l5 cos(ϕ5 − β)

∂B1

∂β
= 2l13l21 sin(ϕ1 − α− β) + 2l21l5 sin(ϕ5 − β)

∂C1

∂β
= 0
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III. The derivative of the function F (ϕ 5, u i) , i = 1,...,10:

∂F
∂ϕ5

= 2(A1C −AC1)(∂A1
∂ϕ5

C + A1
∂C
∂ϕ5

− C1
∂A
∂ϕ5

−A∂C1
∂ϕ5

) + 2(BC1 −B1C)(∂B1
∂ϕ5

C1+
+ B ∂C1

∂ϕ5
− C ∂B1

∂ϕ5
−B1

∂C
∂ϕ5

)− 2(AB1 −A1B)( ∂A
∂ϕ5

B1 + A∂B1
∂ϕ5

−B ∂A1
∂ϕ5

−A1
∂B
∂ϕ5

)

1. Partial derivatives with respect to parameter ϕ5:

∂A

∂ϕ5
= 0

∂B

∂ϕ5
= 0

∂C

∂ϕ5
= 0

∂A1

∂ϕ5
= 2l5l21 cos(ϕ5 − β)

∂B1

∂ϕ5
= −2l5l21 sin(ϕ5 − β)

∂C1

∂ϕ5
= 2l5l13 sin(ϕ1 − α− ϕ5)
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