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Abstract

The existing constitutive models of concrete elasto-plasticity are generally based on an
assumed initial yield surface and on the unrealistic uniaxial stress-strain curves. In this paper,
a new expression for the loading surface has been proposed and the model has been calibrated
by using well established experimental data on failure and initial yielding of concrete. The
evolution of loading surfaces with hardening involves their expansion and shape distortion.
Analytical expressions for the plastic modulus for different choices of hardening parameter
have been derived based on realistic uniaxial stress-strain curves with limited peak axial
and lateral strains. Another distinctive feature of the approach followed is the choice of
stress components as independent variables in the incremental constitutive equations. The
empirical validity of the deduced failure criterion as well as the predicted material response
under diverse stress histories has been evaluated. The general implications of the approach
followed have also been delineated.

Keywords: concrete, hardening elasto-plasticity, loading surface, plastic modulus, stress
space

1 Introduction

Concrete is modelled as a homogeneous isotropic nonlinear inelastic solid. Time-independent
aspects of inelastic behaviour of concrete are generally modelled by assuming concrete to be a
hardening elasto-plastic solid. The general theory of elasto-plasticity is developed by assuming
initial and subsequent yield surfaces, loading-unloading criteria, flow rule and hardening rule.
In general, the failure criteria have commonly been used for predicting the ultimate resistance
of solid bodies and structures, the stress field being determined by assuming the material to
be linear elastic up to the failure stage. Of course, some attempts have indeed been made to
use failure criterion along with yield criterion to better model the evolution of loading surfaces
during hardening [5, 6]. In such cases, the failure surface is supposed to constitute the outer
bound of the loading surfaces in the stress space. These attempts include anisotropic hardening
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model of Mroz [13], hardening plasticity model of Chen and Chen [4], independent hardening
model of Murray et al. [14], non-uniform hardening plasticity model of Han and Chen [8] and
multiple hardening model of Ohtani and Chen [15], etc.

As concrete does not exhibit distinct yielding, there is a paucity of both the empirical data
and the equations for initial yield surface of concrete. Still, the classical theory of elasto-
plasticity assigns an arbitrarily chosen initial yield surface by modifying the shape as well as
size of its failure surface [4, 7, 9, 14]. In an exceptional attempt, Launay and Gachon [11] have
provided some qualitative description of the initial yield surfaces in the form of limit of crack
initiation discontinuity and elastic limit without reference to the failure surface. However, the
experimental data on the initial discontinuity curves in biaxial compression has been found to
be incompatible with the theoretical predictions [4].

Development of subsequent yield surfaces or loading surfaces is controlled by a harden-
ing function which, in turn, depends upon some hardening parameter incorporating history-
dependence. The hardening parameters chosen by different researchers include effective plastic
strain, plastic work, volumetric plastic strain, etc. One of the main assumptions of the classi-
cal elasto-plasticity theory is that the functional relation between the hardening function and
hardening parameter and so, the plastic modulus, is same for all the strain/stress histories. Any
one of the simpler load histories such as the uniaxial stress-strain curve for the material is used
to uniquely establish this functional relation. Wherever the material response under uniaxial
compressive stress has been used, it has been concluded from the available literature that the
actual stress-strain curve for concrete under uniaxial compressive stress has rarely been used for
predicting its inelastic response. In particular, the fact that concrete exhibits peak stress at a
definite limited value of axial strain has totally been ignored. This is so despite the fact that
there exists extensive experimental data and a number of equations like Madrid or Hognestad
parabola and those due to Desai and Krishnan, Saenz, Tsai, Hinton and Owen, etc., concerning
stress-strain curves for concrete under uniaxial compression [2].

The objective of the present paper is to construct the simplest hardening elasto-plasticity
theory of concrete based upon sound empirical foundations. The proposed theory presumes a
single empirically calibrated loading function incorporating strain/work hardening, associated
flow rule and plastic modulus derived from realistic expressions for strains under uniaxial com-
pressive stress test. Another distinctive feature of the proposed approach is the choice of stress
components as independent variables. The attention is focused on delineating the various impli-
cations of this theory for the general hardening elasto-plasticity theory as well as its predictions
of concrete behaviour under diverse stress histories. The scope of the paper is restricted to time-
independent small deformations and the thermodynamic considerations, post-peak softening as
well as stiffness degradation have not been incorporated.
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2 Loading function

It is generally known that concrete is a pressure-sensitive solid which exhibits different behaviour
in tension and compression. Also, the failure surface is open in the direction of the negative
I1-axis, whereas the initial yield surface as well as the loading surfaces are closed [11]. In view
of these empirical facts, the following single general expression for the loading function has been
proposed in terms of first invariant of the stress tensor I1, second invariant of the stress deviator
tensor J2 and Lode angle θ:

f(I1, J2, θ) = A
J2

(f ′c)2
+ α

√
J2

f ′c
+ B

I1

f ′c
+ C

(I1)2

(f ′c)2
− 1 = 0 (1)

where cos 3θ = 3
√

3
2

J3

J
3
2
2

, α = [Xκ cos θ + (1− κ)Y ] and C = C0(1− κ).

Here, the parameters A, B,X, Y and C0 are material constants. In the above equation, the
parameters are normalized by using the uniaxial compressive strength of concrete f

′
c. The

symbol κ denotes a hardening function of some hardening parameter like effective plastic strain,
plastic work, etc. The evolution of the loading surfaces from initial yield to failure surface is
governed by the changing value of the hardening function κ, its values at initial yield and failure
being 0.3 and 1.0 respectively. The following failure criterion can be deduced from the loading
function as a special case (κ = 1.0):

f(I1, J2, θ) = A
J2

(f ′c)2
+ X cos θ

√
J2

f ′c
+ B

I1

f ′c
− 1 = 0 (2)

For the purpose of calibration of the loading function, the parameters f
′
c and

√
J2 shall always

be taken as positive. It is well known that the tensile strength is about 10 % of its compressive
strength. Also, under equal biaxial compression, the strength of concrete is assumed to be 16 %
higher than its uniaxial compressive strength [6, 10]. The material parameters A,B and X in
equation (2) have been determined on the basis of the following three known failure states stated
in terms of principal stresses (σ1, σ2 and σ3).

1. Uniaxial compressive strength (0 / 0 / −f
′
c, θ = 60◦)

2. Uniaxial tensile strength (0.1f
′
c / 0 / 0, θ = 0◦)

3. Biaxial compression (0 / −1.16f
′
c / −1.16f

′
c, θ = 0◦)

These three states of stress at failure transform the equation (2) into the following three
linear simultaneous equations in unknowns A, B and X.

1. A +
√

3
2 X − 3B = 3

2. A + 10
√

3X + 30B = 300

Latin American Journal of Solids and Structures 3 (2006)



420 Raveendra Babu R., Gurmail S. Benipal and Arbind K. Singh

3. A + 0.8621
√

3X − 5.1724B = 2.2274

By solving the above equations, the values of the empirical parameters A, B and X are
obtained as 4.064147, 3.524653 and 10.980986 respectively.
Under uniaxial compression, concrete stress-strain curve is nearly linear elastic up to 30 % of
its strength [5]. The last data point on the initial yield surface has been chosen in view of the
fact that the concrete is linear elastic almost up to its failure in uniaxial tension. In view of this
fact, it has been assumed here that concrete is linear elastic in uniaxial tension upto 90 % of
its tensile strength. To determine the remaining material parameters C0 and Y in equation (1),
the following two stress states on initial yield surface (κ = 0.3) have been used:

4. Uniaxial compression (0 / 0 / −0.3f
′
c, θ = 60◦)

5. Uniaxial Tension (0.09f
′
c / 0 / 0, θ = 0◦)

For these two states of stress at initial yield surface, the the equation (1) transforms into the
following two linear simultaneous equations in unknowns C0 and Y .

1. C0 + 1.9245Y = 26.7824

2. C0 + 6.4148Y = 88.271

By solving, the empirical constants C0 and Y are obtained as 0.420382 and 13.698277 re-
spectively.

3 Incremental constitutive equations

In the elastic range with κ ≤ 0.3, concrete has been assumed to be an isotropic linear elastic
solid and its constitutive equation is stated in incremental form as

dεe
ij = De

ijkldσkl (3)

For κ ≥ 0.3, the material undergoes elastic as well as plastic deformations. Decomposing the
total strain increments into elastic and plastic increments, one obtains

dεij = dεe
ij + dεp

ij (4)

The elastic strain increments are obtained from the above equation (3) whereas the plastic strain
increments are obtained by using the associative flow rule as

dεp
ij = dλ

∂f

∂σij
(5)

Latin American Journal of Solids and Structures 3 (2006)



Plasticity-based constitutive model for concrete in stress space 421

where the proportionality coefficient dλ is a non-negative scalar. In general, the loading function
is also stated as

f(σij , κ) = 0 (6)

The value of dλ is determined from the following well known consistency condition:

df =
∂f

∂σij
dσij +

∂f

∂κ
dκ = 0 (7)

The hardening function κ is uniquely determined by hardening parameter p. Thus, κ = κ(p)
and dκ = Hpdp, where Hp is plastic modulus of the material. The method of determination of
Hp is given in the next section. In this paper, a new function hp relating dp and dλ is defined
as dp = hpdλ. Thus, the above consistency condition is rewritten as

df =
∂f

∂σkl
dσkl + hdλ = 0 (8)

Thus,

dλ =
−1
h

∂f

∂σkl
dσkl (9)

where h = ∂f
∂κHphp.

At any state of stress and the corresponding value of k exceeding 0.3, the stress increments
resulting in positive value of dλ constitute loading while its negative value implies unloading.
The vanishing value of dλ results in neutral loading.
In view of the above,

dεp
ij = −1

h

∂f

∂σij

∂f

∂σkl
dσkl (10)

The incremental constitutive equations can now be stated as

dεij = Dep
ijkldσkl (11)

where Dep
ijkl, the elasto-plastic compliance tensor given by Dep

ijkl = De
ijkl + Dp

ijkl

Dp
ijkl = −1

h

∂f

∂σij

∂f

∂σkl
(12)

Thus,

dεij =
[
De

ijkl −
1
h

∂f

∂σij

∂f

∂σkl

]
dσkl (13)

The newly proposed function hp depends upon the choice of the hardening parameter p. For
various choices of the hardening parameters, such as effective plastic strain εp and plastic work
Wp, the expressions for hp have been deduced below:
When p ≡ εp,

dp = dεp =
√

dεp
rsε

p
rs = dλ

√
∂f

∂σrs

∂f

∂σrs
= hpdλ
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hp =
√

∂f

∂σrs

∂f

∂σrs
(14)

When p ≡ Wp,

dp = dWp = σrsdεp
rs = σrsdλ

∂f

∂σrs
= dλhp

hp =
∂f

∂σrs
σrs (15)

For the determination of dλ, the remaining expression is written as

∂f

∂κ
=
√

J2

f ′c
(X cos θ − Y )− C0

(f ′c)2
(I1)2 (16)

The following expression for κ in terms of stress components σij will be found useful later:

κ =
A

(f ′c)2
J2 + Y

√
J2

f ′c
+ B I1

f ′c
+ C0

I2
1

(f ′c)2
− 1

C0
I2
1

(f
′
c)2
−

√
J2

f
′
c

(X cos θ − Y )
(17)

4 Hardening function and plastic modulus

The plastic modulus Hp can be expressed as

Hp =
dκ

dp
(18)

The general elasto-plasticity theory is based on the assumption that the κ − p relation is valid
for all the stress histories. This relation, and so the expression for the plastic modulus, can be
established from the known material response under some simple load history such as uniaxial
compression test. In terms of σ = −σ33, the expression for Hp can be stated as

Hp =
dκ

dp
=

dκ

dσ

dσ

dp
(19)

The state of uniaxial compressive stress (σ33 = −σ, all other stresses being absent) is charac-
terized by J2 = σ2

3 ;
√

J2 = σ√
3
; I1 = −σ; and θ = 60◦. In view of this, the loading function

given in equation (1) reduces to the following relation between σ and κ

f = f(σ, κ) =
Aσ2

3(f ′c)2
+

σ (Xκ cos 60 + (1− κ)Y )√
3f ′c

+
B(−σ)

f ′c
+

C0(1− κ)σ2

(f ′c)2
− 1 = 0 (20)

Using the numerical values of A, B, C0, X, Y and f
′
c (concrete strength is assumed as 20 MPa),

the following explicit expression for σ in terms of κ has been obtained from the above equation.

σ =
−(0.17596− 0.161075κ) +

√
0.0651− 0.08376κ + 0.02595κ2

0.01705− 0.1345κ
(21)
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On differentiating the above expression, one obtains the following expression

dκ

dσ
=

0.1759 + 0.0171σ − κ(0.161075 + 0.01354σ)
0.161075 + 0.00677σ2

(22)

For developing an analytical expression for the plastic modulus from the uniaxial compressive
stress test, an expression for dσ

dp has also to be stated in the analytical form. In this paper, the
required expression has been developed for two choices (effective plastic strain εp and plastic
work Wp) of the hardening parameter p. For this purpose, the axial strain as well as the lateral
strains have to be expressed as functions of the applied axial stress. Traditionally, the material
response under uniaxial compression is expressed in equations showing axial stress as a function
of axial strain. One of the simplest expressions is Hognestad/Madrid parabola [3] stated in the
following form

σ = f
′
c

[
2ε

ε0
− (

ε

ε0
)2

]
(23)

where σ and ε are axial compressive stress and strain respectively and ε0 denote the strain at
peak stress. As discussed above, it is more useful to express strain as function of stress as

ε

ε0
= 1±

√
1− σ

f ′c
(24)

In these different versions of the parabola, both the stress and strain have been taken to be
positive, even though they are known to be compressive, hence negative, variables. Also, the
information about the lateral tensile strain is rarely available. The lack of such information is
not felt by the researchers because of an additional assumption: Whenever the effective plastic
strain is chosen as the hardening parameter, in uniaxial compression, it is assumed to be equal to
the axial plastic strain. In the opinion of the authors of the present paper, this latter assumption
imposes a very strong restriction on the model predictions and is without any known justification.

In this paper, the experimental data obtained form concrete under uniaxial compressive stress
test have been used for evaluating the expression dσ

dεp
, but no restricting assumption like the one

above has been made. Explicitly, the axial compressive plastic strain has not been assumed
to represent the effective plastic strain in this paper. The justification for this assumption is
provided later in this paper. In line with the sign convention adopted in the rest of the paper,
the above expression is recast into the following form

ε33

ε0
= −1 +

√
1 +

σ33

f ′c
(25)

where σ33 and ε33 are the axial stress and strain respectively. It is well known that the peak strain
is more or less constant for all grades of concrete and is generally assumed to be 0.002. In the
above equation f

′
c and ε0 are positive quantities. Here, the stress-strain curve has been assumed

to be of same form given above for all grades of concrete. At the elastic limit, σ33 = −0.3f
′
c,

the equation (25) gives ε33 = −0.163ε0. Thus, the Young’s modulus of elasticity is determined
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as E0 = σ33
ε33

= 1.8405f
′
c

ε0
.

In elastic range,
εe
33

ε0
= 0.543

σ33

f ′c
(26)

In elasto-plastic range,
εp
33

ε0
=

ε33

ε0
− εe

33

ε0
(27)

Thus,
εp
33

ε0
= −

(
1 + 0.543

σ33

f ′c

)
+

√
1 +

σ33

f ′c
(28)

and

dεp
33 =

0.001086
f ′c


−1 +

0.9208103√
1 + σ33

f ′c


 dσ33 (29)

There is a scarcity of experimental data on the variation of lateral strain with axial stress
in the uniaxial compressive stress test. From the available data [6], the lateral tensile strain
ε̄ corresponding to the peak stress has been estimated to be about 0.00075. Like the axial
compressive strain ε0 at peak stress, the corresponding lateral strain ε̄0 has been assumed to
be independent of the concrete grade. However, the actual values of ε0 and ε̄0 can easily be
incorporated in the proposed model. In the absence of any lateral strain-axial stress relations in
the literature, in this paper, the variation of axial as well as lateral strains with stress has been
assumed to be of the same form. Poisson’s ratio has been assumed to be 0.2. In view of this, the
lateral strain at the elastic limit are obtained as 0.2×0.163ε0 = 0.0326×2000×10−6 = 65.2×10−6.
As in the case of axial strain, the lateral elastic strains are related to axial stress as

εe
11

ε̄0
=

εe
22

ε̄0
= −0.2896

σ33

f ′c
(30)

The axial stress-lateral strain relation is assumed to be of the form

σ

f ′c
= a

ε

ε̄0
+ b

(
ε

ε̄0

)2

(31)

The empirical constants a and b are determined from the condition that the lateral strains at
compressive stress values of 0.3f

′
c and f

′
c respectively are 65.2 × 10−6 and 0.00075. The values

of a and b are obtained as 3.68643 and −2.68643 respectively. Thus, the above equation (31) is
rewritten as

σ

f ′c
= 3.68643

ε

ε̄0
− 2.68643

(
ε

ε̄0

)2

(32)

The lateral strain is related to the axial stress by the equation

ε

ε̄0
= 0.68612

[
1−

√
1− 0.79072

σ

f ′c

]
(33)

Latin American Journal of Solids and Structures 3 (2006)



Plasticity-based constitutive model for concrete in stress space 425

In terms of ε11, ε22 and σ33, the above equation is restated as

ε11

ε̄0
=

ε22

ε̄0
= 0.68612

[
1−

√
1 + 0.79072

σ33

f ′c

]
(34)

The lateral plastic strain components are obtained below:

εp
11

ε̄0
=

εp
22

ε̄0
=

ε11

ε̄0
− 0.2896

σ33

f ′c
(35)

Using the equations (34) and (35), one obtains the following expression

dεp
11 = dεp

22 =
0.00022

f ′c


1− 0.9366865√

1 + 0.79072σ33

f ′c


 dσ33 (36)

Substituting the expressions (36) and (29) for dεp
11, dεp

22 and dεp
33 in the equation,

dεp =
√

(dεp
11)2 + (dεp

22)2 + (dεp
33)2 (37)

It is clear from the above equation that, as εp
11 and εp

22 are non-zero, the effective plastic strain εp

is always distinct from the axial plastic strain εp
33 in uniaxial compression. Thus, the assumption

to this effect made earlier in the paper stands vindicated. Using the equations (29), (36) and
(37), one obtains the following expression:

dσ

dp
=

dσ33

dεp
=

f
′
c√

1.2737× 10−6 + 8.27827×10−8

1+0.79072
σ33

f
′
c

+ 0.999999×10−6

1+
σ33

f
′
c

− 17.675×10−8r
1+0.79072

σ33

f
′
c

− 2.172×10−6r
1+

σ33

f
′
c

(38)
When plastic work Wp is chosen as the hardening parameter, the required expression for dσ

dp is
obtained by following similar procedure. In the uniaxial case,

dWp = σ33dεp
33 (39)

dσ

dp
=
−dσ33

dWp
=

−1

σ33ε0


−0.543

f ′c
+ 1

2f ′c
1r

1+
σ33

f
′
c




(40)

5 Computational algorithm

In this paper, the material response is measured in terms of strains while the stress components
are chosen to play the role of independent variables. At any stage of the loading process, the
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state of system is known in terms of the stresses and strains and it is desired to obtain the
incremental strain response to the applied stress increments. For achieving this, the following
computational algorithm is adopted:

The hardening function κ is evaluated in terms of the known stress components. If κ does
not exceed κy, i.e., the maximum value of the κ reached in the past, then the material is in the
elastic range and the elastic strain increments are obtained by using equation (3). Otherwise, the
material is in the elasto-plastic range and the response can be determined by first computing
the value of Dep

ijkl. For doing so, the required values of the expressions ∂f
∂σij

, ∂f
∂k and hp are

determined in terms of known values of σij and κ.
For quantifying the value of the plastic modulus Hp, first the expressions dk

dσ and dσ
dp have to

be evaluated. The former is known in terms of κ from expression (22) and the latter expression is
known in terms of σij and κ for the chosen hardening parameter p. Having determined the Dep

ijkl

components, the strain increments dεij can be evaluated in terms of applied stress increments
dσkl. These stress and strain increments are then used to establish the new states of stress and
strain. The same procedure is adopted for obtaining the material response to any stress history.
A MATLAB 1 program has been developed to implement the above algorithm. Derivatives of
the proposed loading function required for computational purposes have been provided in the
Appendix.

6 Discussion and interpretation

In this paper, a new expression for the loading function has been proposed for hardening elasto-
plastic behaviour of concrete. The evolution of loading surfaces from the initial yield surface to
the failure surface is governed by the load history incorporated in the equation in the form of
hardening function κ.

For the limiting case of the failure surface (κ = 1), the equation for the proposed loading
surface assumes a form similar to that of Ottosen failure criterion as can be seen from equations
(1) and (2). The deduced failure criterion is a three parameter criterion calibrated by three
known states of stress at failure. Concrete is a pressure-sensitive material, its meridians in
the Haigh-Westergaard stress-space for different values of θ are curved and its failure surface
is open in the direction of negative hydrostatic axis. As shown in figures (1), (2) and (3),
the failure criterion deduced from the proposed loading surface meets all the above general
requirements. Additionally, the deviatoric sections change from roughly triangular shape for
lower absolute values of first stress invariant to more or less circular shape for very high absolute
values [6]. Computations based upon the proposed failure criterion seem to confirm this empirical
observation. For example, for values of I1 equal to 0 and 87, the values of

√
2J2 for tension and

compression meridians turns out to be 0.56 and 0.9 respectively. The predictions of the deduced
failure criterion are in close agreement with those of the Ottosen failure criterion as shown in

1MATLAB is a registered trademark of The MathWorks, Inc.
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table (1) and figure (1).

 

Figure 1: Comparison of proposed failure criterion with Ottosen criterion

UC(σ33) UT(σ11) BC(σ22 = σ33) PS(σ11 = −σ33) HC(σm) HT(σm)
Failure Surface

Ottosen −0.9993f
′
c 0.1f

′
c −1.161f

′
c 0.0937f

′
c ∞ 0.0996f

′
c

Proposed −0.999999f
′
c 0.1f

′
c −1.160014f

′
c 0.100811f

′
c ∞ 0.09456f

′
c

Initial Yield Surface
Proposed −0.297176f

′
c 0.090213f

′
c −0.727582f

′
c 0.078319f

′
c −4.08367f

′
c 0.09241f

′
c

UC: Uniaxial Compression; UT: Uniaxial Tension; BC: Biaxial Comp.; PS: Pure Shear
HC: Hydrostatic Compression; HT: Hydrostatic Tension

Table 1: Predictions from the proposed loading surface

The proposed loading surfaces resemble in form those proposed by Han and Chen [8]. In
particular, the initial yield corresponds to a value of 0.3 of the hardening function κ. The
evolution of the loading surfaces has been traced in triaxial as well as biaxial states of stress and
compared with the data available in literature [10, 12] as shown in figures (2) and (3). It can
be observed from these figures that the inelastic zone between initial yield and failure is smaller
under predominant tension and expands as compression dominates. This is as per expectations
from this quasi-brittle solid.

The newly proposed function hp of the stresses and κ depends upon the choice of the hard-
ening parameter. The introduction of this function has made it possible to employ the same
expression (equation 9) for dλ for all choices the hardening parameter like effective plastic strain
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Figure 2: Evolution of loading surfaces

 
Figure 3: Evolution of loading surface in plane stress case
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and plastic work.
Following the common practice, universal κ− p relation is obtained from the uniaxial com-

pressive stress test. In this paper, κ is expressed as a function of σ representing absolute value
of σ33 which, in turn, is expressed as a function of p. The required expressions for the axial
as well as lateral strains in terms of axial stress have been derived from the Madrid Parabola.
The expressions for dσ

dp have been derived for different choices of hardening parameter. Also,
using the equation (22), the expression dk

dσ can be evaluated. In this manner, the corresponding
explicit analytical expressions for the plastic modulus have been derived. The variation of κ− εp

and κ−Wp as well as the corresponding variation of Hp with k has also been plotted in figures
(4) and (5).

 

Figure 4: Hardening function

It can be seen that the plastic modulus vanishes asymptotically as the failure stage is reached,
i.e., when κ → 1. Because of the fact that the parameter Hp appears in the denominator of their
expressions, the elasto-plastic compliance tensor components can be expected to attain infinitely
high values asymptotically as failure stage is approached. This implies that the corresponding
tangent elasto-plastic stiffness tensor components as well as its eigen values vanish asymptoti-
cally. This results in the loss of positive definite character of this stiffness tensor of the material
marking the onset of instability of its equilibrium states. Such a loss of material stability has
been interpreted as constituting elasto-plastic failure [1]. As such states of stress are infinitely
close to the failure surface, only the infinitely small stress increments are admissible and the
strain increments at failure are of limited magnitude only. This implies that the failure is pre-
dicted to occur at limited values of peak strain. For example, for the case of unequal biaxial
compression, the values of the principal strains at stresses very close to failure (at κ = 0.998823)
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Figure 5: Variation of plastic modulus with hardening function

are obtained as 0.00395133,−0.00080503 and −0.00249828 respectively. Obviously, such strain
values can not be termed as infinitely large.

In view of the equation (2), the failure of concrete is predicted to be stress-path independent,
even though the load path has been observed to affect the strength of concrete to a limited
extent. Even at the risk of sounding repetitive, it should be appreciated that failure of concrete
is predicted to occur as and when κ approaches unity. Since the κ − p relation is unique
and monotonic, the failure is predicted to occur as and when a maximum value of the chosen
hardening parameter is reached. Following the common practice of classifying failure criteria,
concrete can be said to obey maximum effective plastic strain criterion or maximum plastic work
criterion, etc., depending on the choice of the hardening parameter made.

Concrete, an isotropic nonlinear elasto-plastic solid, exhibits some aspects of the incremental
mechanical behaviour resembling that of isotropic nonlinear elastic solids. These aspects include
stress-induced anisotropy, coaxiality of principal stresses and strains, normal ’stress effect’, etc,.
For any general state of stress, as the values of ∂f

∂σ11
, ∂f

∂σ22
and ∂f

∂σ33
in equation (12) are different,

the tangent plastic compliance tensor components Dp
1111, D

p
2222 and Dp

3333, and so the corre-
sponding elasto-plastic compliance tensor components Dep

1111, D
ep
2222 and Dep

3333, are all different
implying stress-induced anisotropy. It has been verified that principal stresses introduce only
normal strains and no shear strains. This happens because, in such cases, the expression ∂f

∂σrs

for r 6= s vanishes. Thus, isotropic elasto-plastic solids also exhibit coincidence of principal
stress and strain axes. If two of the principal stresses are same, then the principal strains in
these two direction are also equal. However, application of any shear stress component, say σ23,
introduces normal strains in all directions in addition to the corresponding shear strain ε23 but
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other shear strains ε12 or ε31 are not introduced. The plastic Poisson’s ratio or the coefficient
of contraction under uniaxial compressive stress comes out to be the ratio of Dp

1133

Dp
3333

and it varies
with the magnitude of stress.

Using the proposed incremental constitutive equations, the material response under diverse
monotonic proportional stress histories has been obtained for two different choices of hardening
parameter. The stress histories investigated include uniaxial compression (figure 6), equal and
unequal biaxial compression (figure 7 and figure 8), triaxial compression (figure 9), uniaxial
tension (figure 10) and pure shear (figure 11). At lower values of the hardening function, higher
strains are predicted for strain hardening. The difference between strain hardening and work
hardening models is explained by the lower values of the plastic modulus in strain hardening at
lower values of κ as shown in figure (5). The theoretical predictions for uniaxial compression as
well as equal and unequal biaxial compression have been compared with Kupfer’s experimental
data [10]. It can be observed from relevant figures that theoretical predictions for all these cases
are quite satisfactory.

 
Figure 6: Uniaxial compression response (0/0/-1)

For all stress histories, as failure approaches, the stress-strain curves progressively become
more flat thus implying peak failure stress at definite strain values. As shown in the relevant
figures, under uniaxial tension and pure shear, where tensile stress dominates, the initial yielding
is predicted to occur at stress levels approaching failure. This observation confirms quasi-brittle
material response in such states of stress in contrast to those cases with dominant compression.
Experimental investigations have revealed the occurrence of dilatant behaviour in concrete under
uniaxial compression as well as equal and unequal biaxial compression. The predicted response
shown in figure (12) both for strain hardening and work hardening simulates such observed
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Figure 7: Eqi-biaxial compression response (0/-1/-1)

 

Figure 8: Unequal biaxial compression response (0/-0.52/-1)
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Figure 9: Triaxial compression response (-0.52/-0.52/-1)

 

Figure 10: Uniaxial tension response (0/0/1)

behaviour satisfactorily [5]. For example, in all these cases, the volume keeps on decreasing with
increase in stress and reaches a minimum value at stress levels varying in the range of about 80
to 90 % of the corresponding failure stress. The shape itself of the loading surfaces near failure
stage implies only dilatant incremental plastic response.

The present theory is also capable of predicting concrete response under repeated load-
ing/unloading cycles, stress reversal and non-proportional load paths. The theoretical predica-
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Figure 11: Pure shear response (0/1/-1)

 

Figure 12: Volumetric strain response

tions of concrete behaviour under repeated loading/unloading cycles under uniaxial compressive
stress has been shown in figure (13). Effect of pre-loading in uniaxial compression beyond the
initial yield surface on the behaviour under uniaxial tension and on further reloading in uniaxial
compression has been shown in figure (14). Also, the theory is shown, in figure (15), to predict
the effect of a loading/unloading cycle in uniaxial compression on the behaviour of concrete
under subsequent loading in uniaxial compression in the lateral direction. In view of the fact
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that all the loading surfaces excluding the failure surface are closed, the concrete is expected
to exhibit irreversible mechanical behaviour even under hydrostatic compression. The same has
been investigated and it has been found that the predicted plastic strains are infinitesimally
small. Thus, the material response to hydrostatic pressure is predicted to be predominantly
elastic in nature.

 
Figure 13: Loading unloading cycles in uniaxial compression

 

Figure 14: Stress reversal

As is the common practice, the loading surfaces from the initial yield to the failure are defined
in the stress space. However, in this paper, the stress components play the role of the primary
variables. Such a choice is motivated by the fact that, almost invariably, the experimental data
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Figure 15: Effect of pre-loading (σ33) on response under uniaxial compression (σ11)

concerning the failure as well as stress-strain curves of concrete is obtained by varying stress
tensor components in a monotonic proportional manner. Thus, the evolution of loading surfaces
is controlled by the chosen stress increments. The proposed numerical integration algorithm
does not demand cumbersome iterations. The chosen hardening parameter does not need to be
quantified at any stage. In contrast, in the conventional hardening elasto-plasticity theories, the
evolution of loading surface is controlled by the hardening function in turn dependent upon the
current value of the chosen hardening parameter.

As argued above, the hardening function, the chosen hardening parameter, plastic modulus
and the tangent elasto-plastic compliance tensor components all are determined uniquely by
the instantaneous state of stress. In other words, these are the state variables in the stress
space implying their stress-path independence. In contrast, the plastic strains, and so the total
strains, exhibit stress path dependence. However, the values of strains corresponding to any
specified state of stress are independent of the monotonic stress histories. Within the acceptable
computational error, this claim has been verified to be valid for different stress histories. For
example, concrete was first loaded under equal biaxial compression upto stress level of −14.45
MPa following proportional load path. Then, one of the compressive stresses was increased to
−19.58 MPa without changing the other stresses thus following a monotonic non-proportional
load path. The normal strains were obtained as 0.00054981,−0.00059634 and −0.0009463. The
same final state of stress (0/−14.45/−19.58) was attained following proportional load path and
the corresponding state of strain was obtained as 0.00057161,−0.00058937 and −0.00095971.
Similarly, the change in strains in the material associated with change from one state of stress
to another turns out to be the same for all monotonic stress paths followed. The same is true
for the plastic work, and so the total work done on the material.
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Thus, the proposed flow theory of elasto-plasticity is equivalent to a deformation theory.
In contrast to earlier research, such an equivalence is not restricted only to proportional stress
paths. Such stress-path independence of strains is also implied by the path-independence of the
hardening function κ as well as hardening parameter p and their unique determination by the
current state of stress on the current loading surface. It should be appreciated that the load-
history affects the elaso-plastic response only through its effect on the hardening parameter and
so on the hardening function. For any specified state of stress, all load histories are equivalent
in that they yield the same value of p and κ. Such path-independence in the stress space does
not imply the same in the strain space.

As is well known, the Drucker’s stability postulates are guaranteed by the convexity of the
loading surfaces and the associative flow (normality) rule. These postulates also imply continuity
and uniqueness of the material response as well as symmetry of the elasto-plastic compliance
tensor. In contrast, the use of non-associative flow rule and the asymmetric compliance tensor
imply uniqueness of strain trajectory corresponding the specified stress history [5]. In this paper,
associative flow rule has been used and so the uniqueness of the strain response for every state
of stress is achieved. It has been argued above that the material response in the present case
is independent of the monotonic stress histories. Such path-independence is restricted only to
monotonic loading because of the irreversible deformations associated with unloading.

At this point, the distinction between irreversibility of material response and its path de-
pendence or otherwise should be appreciated. The notion of irreversible or inelastic response
refers to the case when, after loading-unloading cycles, the system does not revert to its earlier
state before loading. During such closed load cycles, the inelastic material exhibits irreversible
plastic strains as well as energy dissipation. In contrast, the material response is said to be path
independent if the strain corresponding to a specified state of stress is independent of the load
(stress) history. Path independence of material response during monotonic loading is associated
with the symmetry of the tangent elasto-plastic compliance tensor, while the irreversibility dur-
ing general stress variations is due to difference in the values of compliance tensor components
during loading and unloading. As is the case with the material studied in this paper, the mate-
rial can simultaneously exhibit both irreversible and path independent response. After all, the
material response under uniaxial stress routinely used for obtaining plastic modulus is stated
without reference to any load history.

Even though, in the theories of concrete elasto-plasticity, the loading function is almost in-
variably stated in terms of stresses, the choice of the stress components as independent variables
has rarely been made [16]. This is because of compatibility of strain components as primary
variables with computational elasto-plasticity employing displacement based finite element for-
mulation. Using the proposed expressions for the loading function and the plastic modulus,
the incremental constitutive equations can easily be restated with strain components as the
primary variables [5]. Even though, in the currently dominant computational paradigm, the
strain components are preferred to play the role of independent variables for solving boundary
value problems, such a choice has the unfortunate consequence of causing conceptual confu-
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sion, e.g., concerning the distinction between irreversibility and path-dependence of material
response. It should be appreciated that while computation is important for its applications,
only the analytical approach reveals the structure of the elasto-plasticity theory.

The primary aim of the dominant contemporary elasto-plasticity theories is the successful
prediction of the observed empirical material response using any pragmatic approach. A case
in point involves three different models [4, 8, 15] of loading surfaces which have been shown to
satisfactorily predict the same empirical data. In contrast, apart from predicting the observed
material behaviour, an attempt has been made in this paper to establish the basic characteristic
features of the proposed elasto-plasticity theory.

7 Conclusions

In this paper, a new single expression for the loading function has been proposed and calibrated
with established empirical data. The loading surfaces coincide with the initial yield surface as
the inner limit surface and with the failure surface as the outer limit surface. The deduced
failure criterion has been found to predict satisfactorily the failure of concrete under diverse
states of stress. As has been argued in the paper, concrete can be said to obey maximum
effective plastic strain criterion or maximum plastic work criterion. The material failure has
been shown to occur at peak stress occurring at definite values of strain components and so to
constitute elasto-plastic failure.

The loading surfaces evolve during hardening by expansion and shape distortion. Their
evolution is controlled by the chosen stress path. Also, using uniaxial compression test data,
explicit analytical expressions have been derived for the plastic modulus for different choices of
hardening parameter. Convexity of the proposed loading surfaces along with associative flow
rule guarantees the uniqueness and stability of the material response as per Drucker’s stability
postulates.

Using the derived incremental elasto-plastic constitutive equations, the proposed theory has
been applied for predicting the material response to various stress histories involving monotonic
proportional loading, loading-unloading cycles, stress reversals and change of direction of uniax-
ial compressive stress. The predicted response has been found to be satisfactory. Also, concrete
is predicted to exhibit coaxiality of principal stresses and strains, stress-induced anisotropy,
normal stress effects, dilatancy under uniaxial and biaxial compression, predominantly elastic
behaviour under hydrostatic compression, and quasi-brittle behaviour under tension and pure
shear.

A distinctive feature of the present paper is the choice of stresses as independent variable
resulting in simpler non-iterative computational algorithm. It has been argued that the material
response including its failure is independent of monotonic stress histories. Such path indepen-
dence differs from irreversibility under general stress variations involving loading-unloading. The
cause of such path independence in stress space is the fact that the hardening function, the hard-
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ening parameter, plastic modulus and the tangent elasto-plastic compliance tensor components
are state variables in that space.

The proposed theory incorporates the basic minimal aspects of the elasto-plasticity theory
and has been calibrated by using commonly known experimental data on initial yield and fail-
ure of concrete as well as its response in the uniaxial compressive stress test. In this ’rational’
theory, no additional empirical constants or expressions have been used. In particular, unlike
the current empirical theories, no attempt has been made to force compatibility of theoretical
predictions with empirical data by using some pragmatic empirical techniques. The hardening
time-independent elasto-plasticity theories like the present one are not expected to predict stiff-
ness degradation and creep failure at sufficiently elevated stress levels exhibited by concrete.
This fact should be kept in mind while evaluating the empirical validity of such theories. In
this paper, the implications of the underlying assumptions have been worked out exposing the
strengths as well as the weaknesses of the theory. It is believed that only by proceeding in this
manner can better theories of concrete elasto-plasticity be constructed.
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Appendix: Derivatives of the proposed loading function
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∂σij
=

A

(f ′c)2
∂J2

∂σij
+

α

f ′c

∂
√

J2

∂σij
+
√

J2

f ′c

∂α

∂σij
+

B

f ′c

∂I1

∂σij
+

2CI1

(f ′c)2
∂I1

∂σij
(A.1)

∂J2

∂σij
= Sij (A.2)

∂
√

J2

∂σij
=

1
2
√

J2
Sij (A.3)

∂I1

∂σij
= δij (A.4)

− sin 3θ
∂θ

∂σij
=
√

3
2


−3

2
J3

J
5
2
2

Sij +
1

J1.5
2

(
SikSkj − 2

3
J2δij

)
 (A.5)

∂θ

∂σij
= −

√
3

2 sin 3θ

√
3

2


−3

2
J3

J
5
2
2

Sij +
1

J1.5
2

(
SikSkj − 2

3
J2δij

)
 (A.6)

∂α

∂σij
= Xκ sin θ

√
3

2 sin 3θ


−3

2
J3

J
5
2
2

Sij +
1

J1.5
2

(
SikSkj − 2

3
J2δij

)
 (A.7)

Substituting the above equations (A.2), (A.3), (A.4) and (A.7) in to equation (A.1), we have

∂f

∂σij
= PSij + Q + Rδij (A.8)
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Q = q ∗ qij (A.10)

q = −
√

3
2f ′c

Xκ sin θ
1

J2 sin 3θ
(A.11)

qij =
(

SikSkj − 2
3
J2δij

)
(A.12)

R =
[

B

f ′c
+

2C0I1

(f ′c)2

]
(A.13)

Latin American Journal of Solids and Structures 3 (2006)




