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Abstract 
In this paper, dynamic material constants of 2-parameter 
Mooney-Rivlin model for elastomeric components are identified 
in broad frequency range. To consider more practical case, an 
elastomeric engine mount is used as the case study. Finite ele-
ment model updating technique using Radial Basis Function 
neural networks is implemented to predict the dynamic material 
constants. Material constants of 2-parameter Mooney-Rivlin 
model are obtained by curve fitting on uni-axial stress-strain 
curve. The initial estimations of the material constants are 
achieved by using uni-axial tension test data. To ensure of the 
consistency of dynamic response of a real component, frequency 
response function of three similar engine mounts are extracted 
from experimental modal data and average of them used in the 
procedure. The results showed that this technique can success-
fully predict dynamic material constants of Mooney-Rivlin mod-
el for elastomeric components.  
 
Keywords 
Mooney-Rivlin model, Dynamic Material Constants, Frequency 
response function, Radial Basis Function Neural Networks, Elas-
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Abstract 
Here goes the abstract. For instance, one can write that this work 
intends to introduce a probabilistic approach for the crack propa-
gation analysis. It presents a methodology that is based on the 
distribution of the initial flaw size a0. Departing from fatigue test 
results for specific structural components, an estimation of the 
initial flaw distribution is obtained, and from this distribution it 
becomes possible to establish the appropriate initial flaw size for 
crack propagation analysis for the chosen statistical distribution, 
such as Weibull or Log-normal. 
 
Keywords 
Here goes the keywords chosen by the authors, e.g. fatigue, damage 
tolerance, Weibull distribution. 
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1 INTRODUCTION 

Elastomeric materials are widely used in noise and vibration isolation mechanisms at different in-
dustries such as automotive, aerospace, building and so on. Substantial improvement in isolator 
performance requires the construction of large quantity of samples and experimental tests that is 
very time consuming process. Proper use of finite element models can reduce the number of samples 
and experimental tests. Comparing metallic components, the mechanical properties of elastomers 
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are not well known and depend on many ambient and working conditions such as temperature, 
frequency and dynamic amplitude, etc (Rendek and Lion, 2010, Hofer and Lion, 2009). Therefore, 
using appropriate models for elastomers with proper material constants to achieve more realistic 
and accurate results is crucial in any finite element code. There exist some constitutive models 
(such as Mooney-Rivlin, Ogden, Neo-Hookean, Polynomial Form, Arruda-Boyce, Yeoh,…) that can 
simulate hyperelastic behavior of the elastomers. The Mooney-Rivlin constitutive model will be 
discussed in more details in this paper.  
 Usually elastomeric components experience both shock loads (that exert large deformations on 
the elastomer in low frequency) and vibration loads (that excite the component in low amplitude 
deformation and high frequency). In most of the published works, the static (or low frequency) ten-
sion /or compression tests have been conducted on the samples and using curve-fitting techniques, 
the material constants of Mooney-Rivlin model have been extracted. Guo and Sluys (2006) dis-
cussed different static tension test methods to extract the material constants and used these results 
to verify their proposed constitutive model. Cristopherson and Jazar (2006) used Mooney-Rivlin 
model in FE modeling of a passive hydraulic engine mount and determined the Mooney-Rivlin con-
stants by curve fitting on uniaxial experimental stress-strain data. Khalilollahi et al. (2002) investi-
gated the static behavior of elastic materials using Mooney-Rivlin model. The material coefficients 
of the model were achieved using experimental tests. Silva and Bittencourt (2008) used Mooney-
Rivlin hyperelastic model in shape optimization of elastomeric media of an engine mount. Pereira 
and Bittencourt (2010) used the 2 parameter Mooney-Rivlin constitutive  model in topological sen-
sitivity analysis. Pearson and Pickering (2001) obtained the constants of Mooney-Rivlin model us-
ing axial tensile test and showed that using these constants, the static behavior of the elastomeric 
material is predicted well. Korochkina et al. (2008) investigated the applicability of various consti-
tutive models to predict the nonlinear stress–strain behavior of silicone rubber pads. To determine 
the material parameters, they used uni-axial tension and pure shear test data. The material param-
eters were determined through a least-squares-fit procedure, which minimizes the relative error in 
stress. 
 To determine the dynamic mechanical characteristics of elastomers, in most of the documented 
methods the elastic and storage moduli (or elastic modulus and loss factor) have been used as mate-
rial properties where, these properties extracted from resonant tests (Gupta et al., 1999, Jahani and 
Nobari, 2010, Wismer and Gade, 1997). However, there are a few publications about dynamic mate-
rial constants of the hyperelastic models for elastomers at broad frequency range. For instance, Kim 
et al. (2004) formulated a new constitutive model by using Mooney-Rivlin constants to predict the 
dynamic characteristic of rubbers superimposed to large static deformation but, they only presented 
results for frequencies below 30 Hz.  
 In the present paper, dynamic material constants of 2-parameter Mooney-Rivlin model for an 
elastomeric engine mount are identified in the broad frequency range. At first, the correctness of the 
model in predicting the non linear force-displacement relationship of the component is shown 
through comparing the results of static test and finite element model. Radial Basis Function Neural 
Networks method (RBFNN) is implemented to derive the dynamic material parameters from FE 
and experimental modal data. Frequency response function data of the updated 3-D FE model are 
used as training sets in identification process.  
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2 EXPERIMENTS AND TEST SAMPLES 

2.1 Samples 

To consider a more practical case in the present work, an elastomeric engine mount is investigated 
that is illustrated in Figure 1. The component includes upper and lower steel brackets and elasto-
meric media in the middle. The engine mount is a flat type and elastomeric media approximately 
has cubic shape. 
 
 

 
 
 

Figure 1: Investigated elastomeric engine mount. 

2.2 Tests 

2.2.1 Tension Test 

To obtain Mooney-Rivlin constants, present method rely only on the 3-D FE  model of the elasto-
meric sample and experimental FRF(Frequency response function) data and is independent of ex-
perimental stress-strain curves , however to have initial estimation of Mooney-Rivlin constants, the 
sample was stretched in the vertical direction(z-direction). Using the graph of stress-strain obtained 
from tension test and implementing curve fitting, the initial static coefficients of the material model 
were obtained. A schematic of tensile test rig is presented in Figure 2. The stress-strain graph of the 
investigated sample and curve fitted graph have been shown in Figure 3. Mooney-Rivlin material 
constants for the investigated engine mount that extracted from curve fitting procedure are: 
c!"! = 2621676    and c!"! = −1851093 (brief explanations of these material constants are presented 
in section 3.2). 
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Figure 2: Schematic of tensile test rig. 

 
 

 
Figure 3: The stress-strain graph of the sample and fitted graph. 

 
 

2 .2.2 Modal tests of the samples  

Experimental FRF data of the engine mount is obtained by impact hammer test and modal analy-
sis. A schematic of the modal test train is presented in Figure 4. Specifications of Test tools and 
instruments used in this study are presented in Table 1. Tests are done in vertical or z- direction in 
free-free condition. Atmospheric conditions of the lab during the tests were as following: Relative 
humidity=50%; Temperature=26°C. In order to ensure of the reliability and repeatability of the 
test results, 3 similar samples are tested. For instance, FRFs of the samples in z-direction are plot-
ted with together in Figure 5. The natural frequencies of three samples are presented In Table 2. 
  
 

Item  Mark and Type 
Data logger  and  signal analyzer unit B&K  2035 

Impact hammer B&K  8202 
Accelerometer B&K  4395 

Tension test machine MTS 
 

Table 1: Test tools and instruments. 
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 Natural Frequency (Hz) 

 Sample1 Sample2 Sample3 
 212 193 192 
 394 381 379 
 576 576 570 
 762 702 691 

 

Table 2: Natural frequencies of the engine mounts in vertical (z) direction in free-free condition. 
 
 
 

 
Figure 4: Schematic of Modal test train. 

 
 

 
Figure 5: FRFs of the samples in z-direction. 
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2.2.3 Modal test of metall ic parts of the sample.  

Each of the samples has two metallic parts namely lower bracket assembly and upper bracket as-
sembly. For the purpose of model updating task (see section 3.1.), the brackets of one of the inves-
tigated  engine mounts separated from elastomeric  part and cleaned then FRFs of these metallic 
parts are obtained  using impact hammer test in free-free condition. In Table 3, the natural fre-
quencies of the brackets are presented. 
 

Natural frequencies [Hz] 

 z- direction  y-direction 
Upper bracket 540  - 
Lower  bracket 636  293                504 

 

Table 3: Natural frequencies of the investigated engine mount's brackets in z-direction. 
. 

3 FE MODEL 

The brackets are modeled using shell elements (shell 281) and elastomeric media is modeled using 3-
D solid elements (8 nodes brick elements namely solid185) and 2- parameter Mooney-Rivlin model 
is selected as the material model in Ansys software. FE model of the sample is illustrated in Figure 
6.  
 

 
Figure 6: FE model of the sample. 

 
3.1 Model updating of metal parts of the engine mounting 

In order to ensure that any deviation between dynamic response of the sample and its FE model is 
due to inaccuracies in initial estimation of material constants of elastomeric region, it is necessary to 
model the other parts (metallic sections) correctly. It is expected that using shell elements with 
proper material properties, FE model can present accurate dynamic behavior of the steel brackets. 
Here, these material properties (elastic Young's modulus, Poisson's ratio and mass density) are ob-
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tained through model updating processes. At first, the experimental FRFs of the metal parts are 
obtained by implementing impact hammer test. Then it is tried to identify the material properties 
of the components to give the best correlation between the FRFs obtained from the test and FE 
models. For example, the experimental and updated FE FRFs of upper bracket in z-direction are 
illustrated in Figure 7. The updated material properties for the brackets are presented in Table 4. 
 

 Young' modulus 
[GPa]  Poisson's ratio  Mass density 

[kg/mm!] 
Upper bracket 208  0.29  7800 

Lower  bracket 220  0.29  7800 
 

Table 4: Updated material properties of the brackets. 
 

 
Figure 7: FRFs of updated FE model and test for upper bracket. 

 
3.2.Mooney-Rivlin material model 

Mooney–Rivlin material model that describe the rubber like materials behavior, has the variants of 
2, 3, 5, and 9 terms material constants (Mooney, 1940, Rivlin, 1948). The strain energy potential 
function, E, of an isotropic material is customarily formulated in terms of three invariants of the 
stretch ratios. These are generally taken to be the principle invariants, I1, I2 and I3 of the right 
Cauchy-Green deformation tensor (Blatz et.al, 1973). The strain energy potential functions are usu-
ally assumed to have polynomial or reduced polynomial forms. Considering Mooney-Rivlin material 
models, the polynomial form for an incompressible elastomeric material can be expressed as follow-
ing: 

E = Cij (I 1 !3)
i (I 2 !3)

j
i + j =1

N
"  (1) 

Where 
I 1 = !1

2 +!2
2 +!3

2   

I 2 = !1
2!2

2 +!2
2!3

2 +!1
2!3

2   
 λ1 and λ2are the principal stretches.  
For incompressible materials, it is considered that. 
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I 3 = !1
2!2

2!3
2 =1                                                                           

Depending on the value of N, different variants of Mooney-Rivlin model will be formed. For exam-
ple, N=3 constructs 9-parameter Mooney-Rivlin model (the material parameters are c01, c10, c11, 
c02, c20, c21, c12, c30, c03) and N=1 stands for 2-parameter Mooney-Rivlin model. In later case, 
considering Eqn.1, the strain energy potential function is expressed as following 
 

E =C10 (I 1 !3)+C01(I 2 !3)     (2) 
 

Where, c10, c01 are the material constants. 
 
3.3 Studying the static performance of the sample  

To ensure that the elastomeric engine mount is modeled correctly and the static coefficient of 
Mooney-Rivlin material model is estimated properly, first the static performance of the sample is 
investigated. The results of static analysis with together the experimental results that was achieved 
in section 2.2.1, are presented in Figure 8.  This figure shows that the prediction of the static be-
havior of the component is acceptable. 

 
Figure 8: Comparing force-displacement curves of the static test and FE analysis for the investigated component. 

 
4 RADIAL BASES FUNCTION NEURAL NETWORKS  

For sake of the completeness, the radial basis function neural network (RBFNN) is described briefly 
here. Architecture of a RBFNN is shown in Figure 9. A RBFNN consist of two layers, the first con-
taining RBF neurons and the second containing linear neurons.  
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Figure 9: Architecture of a radial basis function neural network. 

 
The overall response characteristic of an RBFN is presented in Eqn. (3) (More details can be found 
in (Atalla and Inman, 1998). 
 

f i = bj + Wi j!( x{ }! ci{ } ,sc )i =1

n
"     (3) 

 

Where, x{ }  is the value of input vector, ci{ }  is the center of the ith RBF neuron, sc is the spread 

constant of the network (the same for every neuron),  represents the Euclidean norm (2-

norm).φ!   is the radial basis function of the network (the same for every neuron) , f i  f! is the 
output of the jth linear neuron and wij  is the weight between the ith RBF neuron and jth linear 

neuron and n is the number of RBF neurons. 
 There are two types of data that can be used for identification of dynamic characteristics of an 
elastomeric component, namely FRF data and Modal data. In the present work, the FRF data will 
be implemented.  
 The RBFN is trained with data obtained from solving the direct problem N times where, N is 
the number of training sets. To train an RBFNN, it is necessary to set every network parameter, 
i.e., every RBF center, all the weights and biases of the linear neuron and the spread constant. The 
centers of an RBFNN should be spread out over the range of the input space occupied by the input 
vectors. In the present work all of the input vectors are chosen as centers.  
 Training a RBFNN comprises the following steps: 
 1- The distance between each column of the input matrix X  and each neuron in the hidden layer 
(represented by its centre c) is measured, resulting in the matrix D of distances. The element d!" of 
this matrix is the distance between the ith column of X and the center of the jth neuron in the hid-
den layer.  
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 2- The output of the hidden layer is calculated by.h j ,i = e
!d j ,i /sc  The elements of  H, which 

measure how much the ith input vector resembles the centre of the jth neuron, range between zero 
and one.  
 3- The network output Y is calculated by a linear combination of the elements of H, 
 

Y =W *H     (4) 
 

 Training a RBFNN, means finding the weight matrix W the only unknown of the problem. Solv-
ing the equation above for W yields  
 

*W Y H +=     (5) 
 

 Where H + is the pseudo-inverse of H. Once it has been trained, the network can be used to 
estimate model parameters based on new input vectors. 
4- The network generalization characteristics should be verified before implementing it. Generaliza-
tion is the behavior of the network output when presented with an input vector not used to train 
the network. 
 
5 IDENTIFICATION OF THE MATERIAL CONSTANTS OF THE MOONEY-RIVLIN 

MODEL IN LOW AMPLITUDE  HIGH FREQUENCY RANGE 

Here, it is tried to identify the material coefficients ( 10 01,c c  ) using FRF data. Identification pro-
cess is conducted using RBFNN. The training sets of the RBFNN consist of sensitive bands of 
FRFs (frequency bands around peaks) as inputs and material constants coefficients as targets. Usu-
ally, elastomers show frequency and amplitude dependent behavior and in most cases the stiffness of 
elastomers will increase with increasing the frequencies. So here, to generate input FRFs, the mate-
rial properties are changed gradually (from the values derived from static tension test until the 
twice of them) as Eqn. 6. 
 

c10 = c10
0 (1+0.1!!)&c01 = c01

0 (1+0.1!!),! = 0,1,...,N     (6) 
 

Where, c!"!  and c!"!  are the material constants that derived from static tension test. 
 Using each set of these material constants, transient analysis (with considering material damping 
coefficient) is conducted due to impulse excitation on the FE model of the investigated component. 
Then by doing FFT analysis, corresponding FRF graphs are derived. For instance, The FRFs re-
sulting from three different values of β and the average FRF of the three test samples for z-
direction are plotted in Figure 10 with distinct sensitive frequency bands. Fortunately considering 
these separate bands, it is evident that resonant frequencies show high sensitivity to material prop-
erties changes therefore, in the present work the resonant frequencies are used to training the 
RBFNNs in each frequency band.  
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Figure 10: FRFs that are achieved from three different values of β are compared with the test counterpart. 

 
Appropriate RBFNN for each of the frequency bands is constructed using resonant frequencies. For 
example training sets for the Band2 is presented in Table 5. Many points of a FRF graphs in each 
frequency band can be used in identification process using artificial neural networks. Even though 
this strategy may lead to more accurate identified values however, it also needs many training sets. 
Location of Table 5. 
 After training the corresponding RBFNN of a specified frequency band, the measured frequency 
response function (here the resonant frequency) in the same frequency band is fed to the network 
and value of corresponding β is determined. Then using equation 6, the material constants of the 2-
parameter Mooney-Rivlin model, namely  c!" and  c!", are identified. The flowchart of the identifi-
cation process is illustrated in Figure 11. The predicted material constants using this procedure for 
the investigated engine mount is presented in Figure 12. Also using these predicted material con-
stants in z-direction, the stress-strain curves at different frequencies are plotted in Figure 13. Con-
sidering these results, it is evident that the elastomeric component shows frequency dependent be-
havior and also, there is deviation from isotropic assumption in a real elastomeric component. 
 
 

  Training set / No.  1  2  3  4 

  Input: Resonant frequency  
328 

 
369 

 
391 

 
402 

Target:      β  0  3  5  6 
 

Table 5: Training set for Band2 in z-direction. 
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Figure 11: Flowchart of the identification procedure. 

 

 
Figure 12: Predicted material constants of the 2-parameter Mooney-Rivlin model 

for elastomeric media of the elastomer-ic engine mount  _______ c!" ;--------    c!" 
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Figure 13: Stress-strain diagram at different frequencies in z- direction for the investigated engine mount. 

 
 

6 IDENTIFICATION OF THE MATERIAL CONSTANTS OF THE MOONEY-RIVLIN 

MODEL IN HIGH AMPLITUDE LOW FREQUENCY RANGE 

Here, in order to investigate the effect of deflection amplitude on the coefficients of 2-parameter 
Mooney-Rivlin model, a new test setup is implemented in low frequency range. This test setup is 
shown in Figure 13. In current setup, different weights (namely with masses of 2.5, 7.5 and 25 kg) 
are added on the top of engine mount and the mount is fixed from the bottom brackets to a heavy 
rigid block. It is obvious that this kind of boundary condition allows moderate deflection of the 
sample comparing to the low deflection in Free-Free condition. Addition of weight on the sample 
extremely reduces the natural frequencies of the system. For instance, time response on the top of 
the engine mount using 2.5Kg weight is presented in Figure 14.  
 Identification process was carried out similar to high frequency state using neural network 
(RBFNN). Similar to previous section, natural frequencies were used as target in FBFNN. The pre-
dicted coefficients of 2-parameter Mooney-Rivlin model (using the natural frequencies of bounce 
mode with different added weights where the deflection of elastomeric media is in upward and 
downward) are compared with low amplitude high frequency results in Figures 15 and 16. These 
results show that the material constants of elastomeric media depend not only to the frequency of 
excitation but also to the amplitude of the deflections. The magnitudes of identified values for ma-
terial constants in both dynamic low and high amplitude cases are greater than the static test re-
sults. 
 
 



1996    K. Jahani and H. Mahmoodzade / Predicting dynamic material constants of Mooney-Rivlin model in broad frequency for elastomeric components 

Latin American Journal of Solids and Structures 11 (2014) 1983-1998 

 

 
Figure 13: Low-Frequency test setup. 

 
 

 
Figure 14: Time response on the top of the engine mount using 2.5Kg weight. 
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Figure 15: Predicted material constants of the 2-parameter Mooney-Rivlin model for elastomeric media of the elas-

tomeric engine mount, c!" in:  ______ low-frequency range and - - - - High-frequency range. 
 

 
Figure 16: Predicted material constants of the 2-parameter Mooney-Rivlin model for elastomeric media 
of the elastomeric engine mount, c!" in:  ______ low-frequency range and - - - - High-frequency range. 

 
 
7 CONCLUSION 

In the present work, a procedure to determine the broad band frequency dependent material con-
stants of 2-parameter Mooney-Rivlin model for elastomeric components (here, the elastomeric en-
gine mount) was developed. It is found that Radial Basis Function Neural Network and banded 
FRF data can be used successfully in prediction process on real components. The results showed 
that in dimensionally compact elastomeric components, instead of using many points of the banded 
FRF graph and natural frequency in training the networks, the only natural frequency can lead to 
acceptable results. The results showed that the Mooney Rivlin material constants for incompressible 
elastomeric components are frequency and deflection amplitude dependent. Finally, the proposed 
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procedure is general and can be applied to identify dynamic material constants of the other consti-
tutive models such as Ogden, Neo-Hookean, etc for elastomers. 
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