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Abstract 
In this study, static analysis of the two-dimensional rectangular 
nanoplates are investigated by the Differential Quadrature Method 
(DQM). Numerical solution procedures are proposed for deflection 
of an embedded nanoplate under distributed nanoparticles based 
on the DQM within the framework of Kirchhoff and Mindlin plate 
theories. The governing equations and the related boundary condi-
tions are derived by using nonlocal elasticity theory. The differ-
ence between the two models is discussed and bending properties 
of the nanoplate are illustrated. Consequently, the DQM has been 
successfully applied to analyze nanoplates with discontinuous 
loading and various boundary conditions for solving Kirchhoff and 
Mindlin plates with small-scale effect, which are not solvable di-
rectly. The results show that the above mentioned effects play an 
important role on the static behavior of the nanoplates. 
 
Keywords 
Nanoplate, Small-scale effect, Mindlin plate, Kirchhoff plate, Dif-
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1 INTRODUCTION 

Nanostructures have significant mechanical, electrical and thermal performances that are superior 
to the conventional structural materials. They have attracted much attention in modern science 
and technology. For example, in micro/nano electromechanical systems (MEMS/NEMS), 
nanostructures have been used in many areas, including communications, machinery, information 
technology, biotechnology technologies. 
 So far, three main methods were provided to study the mechanical behaviors of nanostructures. 
These are atomistic model (Ball, 2001; Baughman et al., 2002), semi-continuum (Li and Chou, 
2003) and continuum models (Govindjee and Sackman, 1999; He et al., 2005). However, both atom-
istic and semi-continuum models are computationally expensive and are unsuitable for analyzing 
large-scale systems. On the other hand, studying the vibration of nanostructures is important in 
nanotechnology. Understanding the static behavior of nanostructures is a key step for 
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MEMS/NEMS device design. There have been some studies on the vibration behavior and buckling 
of nanostructures using the continuum model (Kitipornchai et al., 2005; Akhavan et al., 2009). 
 The basic idea of the differential quadrature method lies in the approximation of partial deriva-
tive of a function with respect to a coordinate at a discrete point as a weighted linear sum of the 
function values at all discrete points along that coordinate direction. DQM has been found to be an 
efficient numerical technique for the solution of initial and boundary value problems. The DQ tech-
nique has been widely used for solving various dynamic and stability problems of large-scale struc-
tures (Nikkhoo et al., 2012; Nikkhoo and Kananipour, 2014) and small-scale too (Kananipour et al., 
2014; Mohammadi et al., 2013; Mohammadi et al., 2014). 
 In the present paper, the static response of an embedded nanoplate with simply-supported and 
clamped under distributed nanoparticles is studied based on the DQM. A detailed parametric study 
is conducted to study the influences of the material length scale parameter, the nonlocal elasticity 
factors, the various boundary conditions and the elastic medium constant as well as the solution 
procedures on the static responses of the nanoplate. From the literature survey, it is found that the 
effect of nonlocal elasticity on the static behavior of nano-scale plates has been investigated. Both 
Kirchhoff and Mindlin plate theories will be discussed. The effects of nonlocal parameter and trans-
verse shear deformation of the plate on the bending deflection of the plate are studied for different 
values of the plate size. 
 
 
2 PROBLEM FORMULATION 

2.1 Nonlocal elasticity 

In this investigation, a double-layered graphene sheet is modeled as a rectangular plate with thick-
ness h, length Lx and width Ly, which located on the elastic foundation. A Cartesian coordinate 
system (x, y, z) is used for nanoplate, see Figure 1, with the x, y and z axes along the length, width 
and thickness of nanoplate, respectively. 
 

 

 
 

Figure 1: Problem geometry of a double-layered graphene sheet. 
 

According to the nonlocal continuum theory (Eringen, 1972; Eringen, 1983), the stress at a refer-
ence point depends on strain at all points in the body. The nonlocal constitutive equations can be 
simplified to 
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2 2
0(1 ( ) ) ,ij ijkl kle a Cσ ε− ∇ =  (1) 

 
where σij, Cijkl and εkl are the nonlocal elasticity stress tensor, fourth order local stress tensor and 
strain tensor, respectively. The parameter e0 is estimated nonlocal elasticity constant suitable to 
each material, and a is the internal characteristic length (e.g. the C-C bond length, lattice parame-
ter and granular size). Furthermore, e0a is nonlocal parameter or distinctive length that means the 
scale coefficient which denotes the small-scale effect on the mechanical characteristics. Choice of the 
value of a parameter e0 is crucial to calibrate the nonlocal model with experimental results. Eringen 
(1972) determined a value of 0.39 for this parameter by matching the dispersion curves based on 
atomic models. Sudak (2003) used the length of C–C bond equal to 0.142 nm for carbon nanotubes 
(CNTs) stability analysis as internal characteristic length a. Wang and Hu (2005) used strain gradi-
ent method to propose an estimate of the value around e0=0.288. In the limit when e0a goes to zero, 
nonlocal elasticity will be reduced to the classical local mode. Generally, for the analysis of carbon 
nanoplates, the nonlocal scale coefficients e0a are taken in the range 0–2 nm (Wang and Wang, 
2007). Still contemporary research is going on to find the exact values of nonlocal parameters for 
various nanolevel structural problems (Murmu and Pradhan, 2009). Furthermore, 2∇  is the Lapla-

cian operator and is given by 
2 2

2
2 2( )
x y
∂ ∂

∇ = +
∂ ∂

. 

 
2.2 Mindlin plate theory 

The displacement field with the effect of the transverse shear and rotary inertia can be expressed as 
 

ux = u (x , y , z )+ z!x ,  (2.a) 
 

( , , ) ,y yu x y z zν ψ= +  (2.b) 
 

( , , ),zu w x y z=  (2.c) 
 
where ψx and ψy are the local rotations for the x and y direction, respectively. Using Eq. (1) and 
according to Hook’s law, the plane stress nonlocal constitutive relations can be expressed as 
 

2 2
0 2(1 ( ) ) ( ),

1xx xx yy
Ee a σ ε υε
υ

− ∇ = +
−

 (3.a) 

 
2 2

0 2(1 ( ) ) ( ),
1yy yy xx
Ee a σ ε υε
υ

− ∇ = +
−

 (3.b) 

 
2 2

0(1 ( ) ) 2 ,yz yze a Gσ ε− ∇ =  (3.c) 
 

2 2
0(1 ( ) ) 2 ,xz xze a Gσ ε− ∇ =  (3.d) 
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2 2
0(1 ( ) ) 2 .xy xye a Gσ ε− ∇ =  (3.e) 

 
Here E, G and υ are the Young’s modulus, shear modulus equal to E/2(1+υ) and poison’s ratio, 
respectively. Furthermore, the general strains can be expressed as 
 

,xxx
u z
x x

ψ
ε

∂∂
= +
∂ ∂

 (4.a) 

 

,yyy z
y y

ψν
ε

∂∂
= +
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0,zε =  (4.c) 
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1 ( ).
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From Eqs. (3) and (4), the nonlocal shear force and moment resultants become 
 

{ } { }
/2

/2

, , , , ,
h

T T

xx yy xy xx yy xy
h

T T T T dzσ σ σ
−

= = ∫  (5.a) 
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which leads to 
 

2 2
0(1 ( ) ) ( ),yx

xxe a M D
x y

ψψ
υ
∂∂

− ∇ = +
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 (6.a) 
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κ ψ
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where Mxx and Myy, Mxy, Tx and Ty are bending moments, twisting moment and shear forces per 
unit of length. In which D=Eh3/12(1-ν2) is flexural rigidity and κ the shear correction factor. Calcu-
lation of the shear correction coefficient can be performed by using various methods. Some ap-
proaches have been discussed in (Vlachoutsis, 1992; Rikards et al., 1994; Altenbach, 2000). Further 
in numerical examples the shear correction factor has the value 10(1+υ)/(12+11υ). The governing 
equations based on the Mindlin plate theory with external load, q(x, y), are given as (Mindlin, 
1951) 
 

,xyxx
x

MM T
x y

∂∂
+ =

∂ ∂
 (7.a) 

 

,yy xy
y
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T

y x
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2 ,yx
w b

TT q k w G w
x y

∂∂
+ = − + − ∇

∂ ∂
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where kw the Winkler foundation modulus, Gb the stiffness of the shearing layer. 
Based on Eqs. (6) and Eqs. (7), the governing equations of Mindlin plate with small-scale effect can 
be derived as 
 

22 2

2 2
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2.3 Kirchhoff plate theory 

If the shear forces and rotational effect are not considered, the results of a nonlocal Mindlin plate 
model will be reduced to the nonlocal Kirchhoff plate model, and the governing equations can be 
given as 
 

2 2 2 2 2
0(1 ( ) )( ).b wD w e a q G w k w∇ ∇ = − ∇ + ∇ −  (9) 

 
  
2.4 Boundary Conditions 

In generally, various types of support conditions are similar to table 1. 
 

Edge condition Prescribed D.O.F Natural condition 

Clamped w= θn= θp=0 None 
Simply supported w=0 Mn=0 
Free None T=Mn=Mp=0 

Mn, θn, - rotation and moment normal to edge 
Mp, θp - rotation and moment perpendicular to edge 

 

Table 1: Support conditions. 
 

We will assume simply supported and clamped boundary conditions along all the four edges of the 
graphene sheets. In Figure 2, Two types of the boundary conditions are considered. 
 
 

 

 
 

Figure 2: Simply supported and clamped boundary conditions. 
 
 
 
 
 



Hassan Kananipour / Static analysis of nanoplates based on the nonlocal Kirchhoff and Mindlin plate theories using DQM      1715 

Latin American Journal of Solids and Structures 11 (2014) 1709-1720 
 

Herein, the boundary conditions are mathematically written as 
1. For Mindlin plate model, the boundary conditions are 

- All edges simply supported (SSSS) 
 

0, 0, 0, 0,
0, 0, 0, 0,

xx y x

yy x y

w M at edges x L
w M at edges y L

ψ
ψ

= = = =
= = = =

 (10.a) 

 
- All edges clamped (CCCC) 

 
0, 0, 0, 0, 0,x y x yw at edges x L and y Lψ ψ= = = = =  (10.b) 

 
2. For Kirchhoff plate model, the boundary conditions are 

- All edges simply supported (SSSS) 
 

2

2

2

2

0, 0, 0,

0, 0, 0,

x

y

ww at edges x L
x
ww at edges y L
y

∂
= = =

∂
∂

= = =
∂

 (11.a) 

 
- All edges clamped (CCCC) 

 

0, 0, 0,

0, 0, 0,

x

y

ww at edges x L
x
ww at edges y L
y

∂
= = =

∂
∂

= = =
∂

 (11.b) 

 

3 DIFFERENTIAL QUADRATURE PROCEDURE 

Many researchers have recently suggested the application of the differential quadrature (DQ) meth-
od to the analysis of nanostructures (Khodami Maraghi et al., 2013; Farajpour et al., 2013; Ghor-
banpour Ansari et al., 2013; Mousavi et al., 2013) as an accuracy, efficiency and great potential in 
solving complicated partial differential equations. DQ is capable of calculating derivative orders of 
the field variable up to N-1 order in the case of N grid points. DQ equations based on polynomial or 
Fourier’s series expansions are computable; in this paper, DQ based on polynomials, which provides 
fine compatibility in analyzing high-order differential equations, is employed. A test function is 
required for deriving DQ equations; moreover, Shu (2000) proved the Lagrange interpolation poly-
nomials as the test function generates the best convergence. It assumed one-dimensional function, 
which w(xk) are field variables at the point xk (k=1,2,…,N). The first-order derivative for the func-
tion w(x) at the ith grid point is calculated via summing weighting-linear function values in the 
other nodes (Eq. (12)). Conveniently, nth order derivative (n=2, 3, …, N-1) at the ith grid point 
can be calculated in the same way (Eq. (13)) 
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n N
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ik kn
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where N is the number of grid points in the x-direction, (1)

ikc  and ( )n
ikc  are the weighting coefficient 

associated with the first and nth-order partial derivative of w(x) with respect to x at the discrete 
point xi. 
 Weighting coefficients for the first and nth-order derivative are obtained from the following re-
currence equations 
 

(1)
(1)

(1)

( ) , , 1,2, , ,
( ) ( )

i
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i k k

R xc i k i k N
x x R x
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n n ik
ik ii ik

i k

cc n c c i k n N i k N
x x

−
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−
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1,2, , 1, 1,2, , ,

N
n n
ii ik

k k i
c c n N i N
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= − = − =∑ K K  (16) 

 
where R(x) and R(1)(x) are defined as 
 

1 2( ) ( ).( ) ( ) ,NR x x x x x x x= − − −L  (17) 
 

(1)

1,

( ) ( ).
N

i i k
k k i

R x x x
= ≠

= −∏  (18) 

 
In which, x1, x2, …, xN  are coordinated of the grid points that might be selected as desired. Obvi-
ously, weighting coefficients of the second and higher-order derivatives is calculable via weighting 
coefficients of the first-order derivative (Eqs. (14-16)). It has proven the weighting coefficients in 
multi-dimensional cases similar to one-dimensional case are determinable separately in any direc-
tions (Shu, 1991). 
 
4 NUMERICAL RESULTS AND DISCUSSION 

In this section, numerical calculations of the bending behaviors with the small scale effects are per-
formed. The material constants used in the calculation are defined on table 2. 
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Young’s modulus (E) 1 TPa 

Poisson ratio (ν) 0.16 

Density (ρ) 2250 kg/m3 

Thickness (h) 0.34 nm 

Winkler foundation modulus (Kw) 1 kg/m2 

Stiffness of the shearing layers (Gb) 1 kg/m 

Lx=Ly Suppose 10 nm 
 

Table 2: Material properties. 
 

Moreover, the scale coefficient e0a = 0–2 nm. 
 The relation between displacement ratio and the nonlocal scale coefficients are presented in Fig-
ure 3. Similar relation can be observed, but the square nanoplate are influenced by the scale coeffi-
cient significantly. It can be concluded that the small scale effects are obvious on bending properties 
of the nanoplate. 
 

 

It can be observed that the displacements ratios decrease quickly when the width ratio (lx/ly) is 
smaller than 3. Then, all of the displacement ratios in Figure 3 tend to be three different constants 
with respective to the nonlocal scale coefficients. 
 At last, the effects of the elastic matrix are investigated. The relation between the displacement 
ratio and the width ratio (lx/ly) with the influences of the Winkler foundation modulus (kw) and the 
stiffness of the shearing layer (Gb) are shown in Figure 4. The nonlocal scale coefficient e0a=1 nm. 
It can be observed that bigger values of both the Winkler foundation modulus and the stiffness of 
the shearing layer will result in the larger displacement ratios. 
 

Figure 3: Relation between the displacement ratio and the nonlocal scale coefficients (e0a) 
for the influence of width ratios (lx/ly). 
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Figure 4: Relation between the displacement ratio and the width ratio (lx/ly) for the influence of Winkler founda-

tion modulus (kw) and stiffness of the shearing layer (Gb). 
 
Moreover, this effect is more significant for small width ratios, which is similar to Figure 4 (Wang 
and Li, 2012). 
 
5 CONCLUSIONS 

In this research work, bending behaviors of the nanoplate subjected to different in-plane loads were 
investigated on the basis of the small-scale effects which considered by the nonlocal continuum the-
ory. The governing equations and displacements for the nonlocal Mindlin and Kirchhoff plate mod-
els are derived. The influence of the plate models, scale coefficients and width ratios are discussed. 
From the results, it can be concluded that nonlocal Mindlin plate model is more proper for the 
thick nanoplate. The displacement ratio becomes larger with the Winkler foundation modulus and 
the stiffness of the shearing layer increasing. 
 Furthermore, the two-dimensional differential quadrature method (DQM) has been developed 
for the bending analysis of nonlocal Mindlin and Kirchhoff plates by integrating the domain de-
composition method with the DQ method. Consequently, this method has been successfully applied 
to the analysis of nanoplates with discontinuities in loading, geometry and boundary conditions. It 
is hoped that this work can present an effective model to design and analyze the mechanical proper-
ties of nanoscale devices. 
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