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Abstract

The fracture energies GF , obtained by the work-of-fracture method, and Gf , obtained
by the size effect method, are two different material characteristics. The fracture energy
GF represents the area under the complete load-deflection curve, and the fracture energy
Gf represents the area under the initial tangent of the softening curve. It is possible to
show through numerical simulation of notched fracture specimens that, at maximum load,
the cohesive crack will never be opened enough for the tail stresses of the softening curve
to occur. Consequently, Gf determines the maximum load of most concrete structures in
practice. Nevertheless, many finite element programs request the complete softening curve
corresponding to the fracture energy GF . In this case, the ratio GF /Gf is worthy to be
investigated because the energy Gf is easier to be obtained through the experiments. In
this work, the correlation between GF and Gf is investigated. The results obtained in an
experimental program, developed at PUC-Rio in order to study the fracture properties of
high-performance concrete, are presented and compared with some results showed in the
literature. A numerical example illustrates the development of the cohesive zone during
specimen testing.

Keywords: fracture energy, fracture mechanics of concrete, concrete structures, numerical
analysis, experimental analysis

1 Introduction

The use of fracture mechanics in design can increase the safety and reliability of concrete struc-
tures, and it is no doubt especially important when these structures are manufactured with
high-strength concrete. The most important aspect of its application is the possibility of incor-
porating in design practice the influence of the size of the structure in the structural strength,
known as the size effect. Many analytical and numerical tools were developed to simulate the
fracture behavior of concrete structures, and nowadays much research effort is devoted to de-
velop experimental methods to measure the parameters entering the various numerical models.

∗Corresp. author email: einsfeld@iprj.uerj.br Received 12 April 2006; In revised form 29 May 2006



362 R. A. Einsfeld and M. S. L. Velasco

The simplest model that describes the progressive fracture process is the cohesive crack model,
which was proven useful in explaining most experimental results when testing concrete, as shown
by Hillerborg et al. [21], Bazant et al. [5], Carpinteri [12] and many other researchers in this
field.

The softening curve is the main feature of the cohesive crack model. This curve is charac-
terized by an initial portion with a steep descending slope, followed by a smooth drop when the
stress reaches a value approximately equal to 1/3 of the nominal tensile strength, and a long
tail asymptotic to the horizontal axis, as shown in Figure (1). Geometrically, the area under
the complete softening curve coincides with the fracture energy GF . However, from numerical
examples it is possible to observe that only the initial part of the softening curve is necessary to
determine the peak load for normal-sized structures. Therefore, the entire softening curve can
be replaced in the constitutive model by a straight line corresponding to the initial tangent of
the softening stress-separation curve. The fracture energy that corresponds to the area under
the initial tangent of the softening curve is denoted Gf .
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Figure 1: Softening function and initial tangent.

Most commercial programs that perform finite element analysis using cohesive crack models
request the complete softening curve corresponding to the fracture energy GF . Therefore, since
the initial fracture energy Gf is easier to be determined experimentally, the ratio GF /Gf is
worthy to be investigated, allowing GF to be estimated from Gf . In this work, the ratio
GF /Gf is obtained from experimental tests accomplished at PUC-Rio for High Performance
Concrete (HPC) and the values are compared with the results obtained by Bazant and Becq-
Giraudon [3,4]. A numerical example is performed in order to show that the energy Gf suffices
for predicting the limit load of most concrete structures.
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2 The softening function

The cohesive crack model was developed to simulate the nonlinear material behavior at the
concrete fracture process zone, where the crack is assumed to open and to extend while still
able to transfer stress from one face to the other. The fracture process zone can be described
by the discrete or the smeared approaches. In the discrete approach, as in Hillerborg’s fictitious
crack model [21], the concrete softening behavior is characterized by the tensile strength f

′
t

and the fracture energy GF . In the smeared approach, as in the Bazant’s crack band model
[6], the cracks are supposed to be distributed in a certain region of the structure and a third
parameter is necessary in order to characterize the material softening behavior, besides the two
aforementioned. This parameter relates the fracturing strain into the cracked region to the crack
opening w of the cohesive crack, and is considered as a material property. For mode I opening,
the stress transferred is normal to the crack faces and is a unique function of the crack opening,
i.e., σ = f(w).

The softening curves are determined experimentally for different mixes of concrete and are
similar in shape to the exponential curve represented in Figure (2) [8]. The curves shown
in Figure (2) are plotted nondimensionally by dividing σ by f

′
t and w by wch, where wch is

equal to GF /f
′
t . In numerical analysis, however, simplified softening functions for these curves

are used, ranging from very simple to more sophisticated equations. Some of them are also
represented in the figure. The simplest are the rectangular and linear softening curves, but both
usually overestimate the strength of normal-sized structures. The bilinear and exponential curves
provide better results when performing numerical analysis. The bilinear curve was initially
proposed by Petersson [22], followed by other curves almost coincident but with some differences
regarding the size of the tail and the location of the kink point (see for instance the works of
Roelfstra and Wittmann [25] and Rokugo et al. [26]).

The bilinear softening function is probably the most required in numerical programs. In
order to fit the experimental data, there are some methods proposed in the literature that
adjust the position of the kink point and the length of the tail. The curves proposed by the
CEB-FIP Model Code [14], for instance, depend on the maximum aggregate size of the concrete
mix. Guinea et al. [19] give in their work explicit expressions for bilinear softening using the
data relative to the stable fracture test and from the cylinder splitting test.

For not too large specimens, only the initial part of the softening curve is necessary to
compute the peak load, as shown by Guinea et al. [18] and Bazant et al. [9]. The fracture energy
corresponding to the area under the initial part of the softening curve is denoted as Gf . It
corresponds to the energy required for crack growth in an infinitely large specimen.

The total fracture energy GF is normally associated with the fictitious crack model and is
obtained computing the total area under the load-deflection diagram divided by the area of the
ligament. The values obtained by this method, called the work-of-fracture method (WFM), are
sensitive to the size and shape of the specimens. The initial fracture energy Gf is obtained by
the size effect method (SEM) and is independent of the size and the geometry of the specimens.
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Figure 2: Analytical softening curves (adapted from Bazant and Planas [8]).

The softening stress-separation curve of cohesive crack model and areas representing the total
fracture energy GF and the initial fracture energyGf are shown in Figure (3).

Through numerical simulation for normal-sized structures, it is possible to show that the
maximum load of a specimen is reached when the cohesive stress is reduced to only 50% to 75%
of f

′
t [9]. Therefore, the cohesive crack will never be opened enough for the tail stresses of the

softening curve to occur and, hence, the numerical model will provide the same maximum load
if the cohesive model is replaced by a straight line corresponding to the initial tangent of the
softening stress-separation curve. This greatly simplifies the problem, since the whole softening
curve is not needed and the energy Gf is easier to be obtained through the experiments.
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Figure 3: Softening stress-separation curve of cohesive crack model [9].
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3 Determination of GF and Gf

In order to determine the fracture energy GF , one can apply the recommendation of the Technical
Committee RILEM 50–FMC [1] to perform three-point bend tests in notched beams. The
fracture energy is defined as the amount of energy necessary to create a crack of unit surface
area projected in a plane parallel to the crack direction. As the beam is split in two halves, the
fracture energy can be determined dividing the total dissipated energy by the total surface area
of the crack:

GF =
W

b(d− a0)
(1)

where W is the total energy dissipated in the test, b is the thickness, d is the height and a0 is
the notch depth of the beam.

This method, also known as work-of-fracture method (WFM) or Hillerborg’s method [20],
delivers fracture characteristics that are size-dependent. As a consequence, different values
for the fracture energy are obtained for specimens of different sizes. In an alternative method
proposed by Bazant and Pfeiffer [7], the fracture energy is determined from the size effect law. If
geometrically similar beams are used and the load at rupture extrapolated to a beam of infinite
dimensions, the fracture energy must have one single value, regardless the type, size or shape of
the specimen. In this case, by definition, the value of the fracture energy is independent of the
size of the specimens. This procedure is known as the size effect method (SEM).

Through this asymptotic approach, the problem is now reduced to finding and applying the
correct law for the size effect. Bazant and Pfeiffer suggested the following relationship:

σN = B(1 + βk)−
1
2k (2)

where σN is the nominal stress at failure, B is a coefficient obtained through the linear regression
plot of the test results, β is the brittleness number and k is a parameter which can be optimized
for a most accurate representation of the size effect. Nevertheless, according to Bazant and
Pfeiffer, no case was found in practice in which this optimization had been necessary, and
usually the value of k = 1 is applied.

The nominal stress is obtained from the experimental tests as:

σN = Cn
Pu

bd
(3)

where Pu is the ultimate load and Cn is a coefficient introduced for convenience.
The brittleness number indicates whether the behavior of any structure is related to limit

state analysis or to linear elastic fracture mechanic (LEFM) analysis. Bazant and Pfeiffer propose
the following equation for the brittleness number:

β =
d

d0
(4)
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where d is the characteristic dimension of the structure (the specimen height in this study) and
d0 is a coefficient determined experimentally.

The value of β= 1 corresponds to the transition point between the strength approach and the
LEFM approach. For values of β ≤ 0.1, the plastic limit analysis should be used for structural
design, and for values of β ≥ 10, the LEFM should be used. For 0.1 < β < 10, the nonlinear
fracture mechanics should be used for structural design.

The coefficients B and d0 in Equations (2) and (4), respectively, are determined by linear
regression. For this purpose, Equation (2), applicable to geometrically similar specimens of
different sizes, can be algebraically rearranged to a linear regression plot Y = AX +C, in which:

Y = (1/σN )2; X = d; d0 = C/A; B = 1/
√

C (5)

Rupture of a structure of infinite size follows the LEFM theory, since the plastic region
around the concrete fracture zone is relatively small. In this case, the fracture energy Gf can
be calculated as:

Gf =
gf (α0)
AE

(6)

where E is the Young’s elastic modulus of the concrete, A is the angular coefficient of the linear
regression plot, gf (α0) is the non-dimensional energy release rate calculated according to LEFM
and found in many books as Reference [2], and α0 is the relative notch length (a0/d).

4 Experimental study

Three-point bend tests for geometrically similar notched specimens with four different sizes
were used in order to determine the fracture energy through the SEM besides the WFM [11,27].
All tests were performed at the Technological Institute at PUC (ITUC) using closed-loop servo-
controlled testing machines equipped with load cells of 25 kN and 50 kN capacity. The specimens
had depths (d) of 38.1, 76.2, 152.4 and 304.8 mm, with the same thickness (b) of 38.1 mm, lengths
equal to 2.67d, and spans equal to 2.5d, as shown in Figure (4). The results obtained for 67
specimens, classified in six Series of concrete batches (Series S1 to S6), are analyzed in this study.
A more comprehensive analysis of the investigations conducted by the authors at PUC-Rio on
the determinations of fracture parameters for high-performance concrete, including the results
presented in this paper, can be seen in Reference [16].

Series S1 to S5 contain three specimens for each of the four heights. For Series S6, six
specimens were molded for each beam height. The notch depth a0 was equal to 1/3 of the
height of the beams for the first two Series, and equal to 1/6 of the beam height for Series S3 to
S6. For Series S1 to S5, the notch was precast with an acrylic plate with the thickness of 2 mm.
For Series S6 the notches were saw-cut after curing.
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Figure 4: Geometric configuration for the specimens tested.

All the specimens were cast using high performance concrete (HPC), proportioned with a low
water-to-cimentitious materials ratio and the inclusion of microssilica to the concrete mixture.
The concrete mixes, labeled HP1, HP2 and HP3 in this work, were designed to exceed a 28-day
compressive strength of 70, 90 and 110 MPa, respectively. Along with the beam specimens, six
100 x 200 mm cylinders were cast for each Series. The average 28-day values of the compressive
stress were 84 MPa (±6.3%) for Series S1 (mix HP2), 82 MPa (±3.5%) for Series S2 (mix HP2),
78 MPa (±3.1%) for Series S3 (mix HP2), 69 MPa (±2.2%) for Series S4 (mix HP3), 78 MPa
(±3.5%) for Series S5 (mix HP1) and 88 MPa (±2.0%) for Series S6 (mix HP2). The lower
values achieved for the compressive strength in relation to the target compressive strength can
be attributed to the type of aggregate (gneiss) used in the concrete mixes and its maximum
size (9.5 mm). Differently from the normal-concrete, the compressive strength of high-strength
concrete can be limited by the aggregate strength, as pointed by Darwin et al. [15], and by the
size of the coarse aggregate, as shown in the work of Rao and Prasad [24].

For Series S1 and S2, the tests were controlled by the vertical displacement of the load
cell. The results for the beams with height equal to 304.8 mm with deeper notches happened
to be unstable under direct displacement control. For Series S3 to S6, all the specimens were
tested under crack-mouth opening displacement (CMOD) control, which allowed the acquisition
of load-CMOD and complete load-deflection curves for all specimen sizes. Table (1) shows the
values obtained for the fracture energy GF according to the work-of-fracture method.

The fracture energy obtained by the SEM, was computed as specified in RILEM TC89-
FMT [28]. The nominal stresses, computed according to Equation (3) with Cn=1 and using
the corrected maximum loads obtained from the tests, are shown in Table (2). The corrected
maximum loads were obtained by adding half the beam self-weight to the measured peak load,
in order to take the effect of the weight of the specimen into account for fracture energy de-
termination. The values denoted with an asterisk are inconsistent with the trend of the other
tests and were not considered for the determination of the fracture energy. Some beams were
not tested due to the evidence of small flaws around the beam notch, which can be attributed
to problems during the compaction and handling of the specimens.
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Table 1: Values of average GF measured for specimens tested in Series S1 to S6 (adapted from
Reference [16]).

Series
(Concrete)

f ′c
(MPa)

a0/d

Average GF (N/m)
Depth d(mm)

38.1 76.2 152.4 304.8
S1 (HP2) 84 0.333 132 170 183 NM
S2 (HP2) 82 0.333 112 168 208 NM
S3 (HP2) 78 0.167 108 123 135 145
S4 (HP3) 69 0.167 121 127 146 168
S5 (HP1) 78 0.167 NT 127 144 150
S6 (HP2) 88 0.167 140 153 185 219

NT = specimens not tested NM = values not measured

Table 2: Nominal stresses obtained from peak loads of tested specimens.

Depth d

(mm)

Nominal stress σN (MPa)
Series

S1 S2 S3 S4 S5 S6
38.1 1.02 1.03 1.44 1.48 NT 1.41 1.21

NT NT 1.37 1.57 NT 1.34 NT
NT NT 1.41 1.65 NT 1.38 NT

76.2 0.76 0.95 1.21 1.28 1.10 1.22 1.49
0.72 NT 1.31 1.31 1.10 1.38 1.27
NT NT 1.28 NT 1.07 1.41 NT

152.4 0.61 0.68 1.17 1.20 0.92* 1.20 1.08
0.56* 0.64 1.08 1.26 0.99 1.15 1.01
0.65 0.65 1.32* 1.36* 1.06 1.03 NT

304.8 0.56 0.63* 1.07* 0.92 0.75* 0.83 0.93
0.58 0.54 0.99 0.91 0.85 0.92 0.88
0.48* 0.63* 0.91 NT 0.89 0.85 NT

NT = specimens not tested.
* Values inconsistent with the trend of other tests.
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Using Equation (2), the parameters B and d0 (see Eqs. (2) and (4)) have been determined
through linear regression analysis of the experimental data. The linear regression plot and the
size-effect plot of the fit with the test data are shown in Figure (5).

The values obtained from the regression analysis for the parameter A and the fracture en-
ergy Gf are shown in Table (3). Values of gf (α0) were computed equal to 6.07 and 14.20 for
relative notch length equal to 0.167 and 0.333, respectively. The Young’s modulus of elasticity
was computed from the formula of Carrasquillo, Nilson and Slate [13] E = 3320f ′1/2

c + 6900
(MPa). As can be seen, only Series S1 and S2 do not comply entirely the standard requirements
concerning about the limiting values of the coefficient of variation of the slope of the regression
line (ωA), the coefficient of variation of the intercept of the regression line (ωC), and the relative
width of scatter-band (m). According to RILEM TC89-FMT [28], the value of ωA should not
exceed 0.10 and the values of ωC and m about 0.20. The values of ωC for Series S2, and of ωA

for Series S1 are much higher than the recommended. Nevertheless, the values found for Gf

cannot be considered inconsistent when compared with the results of the other tests.
Mixing the data from many different concretes, Bazant and Becq-Giraudon [3, 4] verified

statistically the approximated ratio GF /Gf ≈ 2.50, with a coefficient of variation equal to 40%,
which allows the calibration of the complete softening curve from the results obtained by the
SEM. From the data of the present study it was obtained the ratio GF /Gf = 2.60, with a
coefficient of variation equal to 37.5%. Considering the data of Series S1, S2, S3, and S6 (same
concrete mix) it was obtained the ratio GF /Gf = 2.88, with a coefficient of variation equal to
38.1%. These values comply with the referred statistical study, given the uncertainty of the
aforementioned ratio.

Table 3: Fracture energy obtained by the size effect method (adapted from Reference [16]).

Series f ′c (MPa) E (GPa) a0/d gf (α0) A (mm−1Mpa−2) Gf (N/m) ωA ωC m

S1 84 37.3 0.333 14.20 0.00659 57.70 0.196 0.204 0.222
S2 82 37.0 0.333 14.20 0.00979 39.23 0.138 0.361 0.213
S3 78 36.2 0.167 6.07 0.00220 76.13 0.100 0.081 0.116
S4 69 34.5 0.167 6.07 0.00285 61.71 0.076 0.119 0.118
S5 78 36.2 0.167 6.07 0.00212 78.81 0.109 0.068 0.092
S6 88 38.0 0.167 6.07 0.00293 54.41 0.086 0.116 0.191

5 Numerical simulation

Using the smeared approach, a numerical simulation was carried out for the three-point bend
notched beam shown in Figure (6). The mesh was randomly generated using a quadratic isopara-
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Figure 5: Size effect plot (left) and linear regression plot (right) constructed from experimental
results (σ) obtained for Series S1 to S6.

metric triangular element (T6). The dimensions of the beam are 800x200 mm (length x height)
with a notch of 20x50 mm (width x depth). The material parameters are: tensile strength f ′t
= 3 MPa, fracture energy GF = 75 N/m, modulus of elasticity E = 30000 MPa and Poisson’s
ratio ν = 0.2.
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Figure 5: (continued) Size effect plot (left) and linear regression plot (right) constructed from
experimental results (σ) obtained for Series S1 to S6.

The finite element analysis was performed using the program FEPARCS, developed by
Elwi [17] at the University of Alberta, Canada. The energy-based plasticity model of Pra-
mono and Willam [23] for plain concrete was used for the smeared analysis. This model has
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Figure 6: Finite element mesh for notched beam and Gauss points position for the circled element.

a unified formulation that covers the full load-response spectrum of the triaxial behavior of
concrete in tension as well as in compression. The concrete behavior is modeled through a non-
associated flow theory of plasticity, with hardening in the pre-peak regime and fracture-energy
based softening in the post-peak regime. In this example, the degradation of the tensile strength
was related to the crack opening displacement through the bilinear softening curve represented
in Figure (7), which corresponds to the bilinear curve proposed by Petersson [22]. This curve
has its kink point fixed at w = 0.8GF /f ′t and σ = 1/3f ′t and the cohesive stress becomes zero
for w = 3.6GF /f ′t.
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Figure 7: Bilinear softening curve considered in the numerical analysis.

The arc-length control was used to solve the system of equations. Due to highly localized
failure mode, only some degrees-of-freedom that presented a high deformation gradient value had
to be considered to compose the constraint equation [10]. Therefore, the indirect displacement
control was activated as soon as the strain was localized in one or more elements. When the
program identifies at least one Gauss point that shows a constitutive post-peak behavior, a flag
is activated at the end of the step. On the next step, after the first interaction, all the elements
that show softening are selected and define a plastic region. The degrees-of-freedom inside this
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region are then used for indirect displacement control during the equilibrium interactions. This
procedure was repeated in the subsequent steps. The deformed configuration (amplified by a
factor of 1000) and the stress configuration related to the maximum principal stress σ1 at peak
load are shown in Figure (8). The stress concentration at the finite element close to the notch
is evident in the figure.

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: Deformed (x1000) and stress configurations at peak load.

The load-deflection curve of the upper-center of the beam, obtained in the analysis, is pre-
sented in Figure (9). The softening stresses were analyzed for the finite element where the strain
localization initially occurs. This element is shown in detail in Figure (6). The stresses were
computed for the Gauss points 1, 2 and 3, for the loads corresponding to points A, B, C, D, E
and F in the curve.
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Figure 9: Load-deflection of the upper-center of the beam.

The results, in terms of the cohesion parameter given by the ratio σt/f
′
t (softening stress/

tensile strength), are presented in Table (4). For the Gauss point 1 its possible to see that
the softening stress is reduced to 75% of the tensile strength in point B at the peak load.

Latin American Journal of Solids and Structures 3 (2006)



374 R. A. Einsfeld and M. S. L. Velasco

Consequently, at maximum load, the cohesive crack will never be opened enough for the tail
stresses of the softening curve to occur. The strain localization follows the path of the Gauss
points 1 and 3, but only for point E there is a significant reduction of the cohesive stress.
Consequently, not only the ascending part of the curve, but also a considerably part of the
descending branch of the load-deflection curve can be obtained with the application of the linear
softening diagram corresponding to the fracture energy Gf .

Table 4: Cohesion parameters given by the ratio softening stress/tensile strength.

Gauss
Points

σt/f
′
t

Points in the load-deflection curve
A B C D E F

1 1.00 0.75 0.69 0.62 0.28 0.11
2 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 0.45 0.23

6 Conclusions

Three-point bend notched beams were tested at the Technological Institute at PUC-Rio (ITUC)
in order to study the fracture properties of HPC. The fracture energy was measured by the
WFM and by the SEM, which allowed establishing a relationship between the results obtained
by the two processes.

The SEM has the advantage of providing fracture parameters that are size and shape in-
dependent, with a lower scatter of results in comparison with the work-of-fracture method [3].
Another advantage is that the experiments are feasible with no need of a servocontrolled testing
equipment, since only the peak loads are necessary to be determined, and not the complete
load-deflection curve. As shown in the present work, only the initial part of the softening curve,
which corresponds to the fracture energy Gf determined by the SEM, is necessary to determine
the peak load when performing numerical analysis for normal-sized structures. For structures
of larger dimensions, however, the cohesive stress that corresponds to the maximum load will
be lower than the elbow of the softening curve, according to Guinea et al. [18]. In this case, the
complete stress-separation curve must be provided in the analysis. The complete load-deflection
curve is also required most of the times for commercial programs, applied to concrete constitutive
models when performing finite element analysis. Therefore, for practical purposes, it would be
of interest to establish a correlation between the fracture energy obtained by the two processes.
The main conclusions that can be drawn from this study are the following:

• The ratio GF /Gf between the fracture energy measured by the work-of-fracture method
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and the size effect method was found equal to 2.60 considering all the specimens, and 2.88
for the specimens cast with the same type of concrete, with a coefficient of variation equal
to 37.5% and 38.1%, respectively. These values comply with the statistical study carried
out by Bazant and Becq-Giraudon [3, 4].

• The numerical simulation presented in this paper shows that the cohesive stress is reduced
to only 75% of f

′
t at the peak load. For normal-sized structures, one can conclude that the

numerical model will provide the same maximum load if the cohesive model is replaced by
a straight line corresponding to the initial tangent of the softening stress-separation curve.
For larger structures, the application of the linear softening curve should be evaluated
according to the procedure presented in the work of Guinea et al. [18].

References

[1] RILEM 50-FMC. Determination of the fracture energy of mortar and concrete by means of three-
point load tests on notched beams. RILEM Draft Recommendation, 18(106):285–290, 1985.

[2] T.L. Anderson. Fracture Mechanics - Fundamentals and Applications. CRC Press, Boca Raton -
Florida - USA, 1991.

[3] Z.P. Bazant and E. Becq-Giraudon. Estimation of fracture energy from basic characteristics of
concrete. In R. de Borst, J. Mazars, G. Pijaudier-Cabot, and J.G.M. van Mier, editors, Fracture
Mechanics of Concrete Structures, pages 491–495, Paris, 2001. Balkema Publishers.

[4] Z.P. Bazant and E. Becq-Giraudon. Statistical prediction of fracture parameters of concrete and
implications for choice of testing standard. Cement and Concrete Research, 32(4):529–556, 2002.

[5] Z.P. Bazant, J.K. Kim, and P.A. Pfeiffer. Nonlinear fracture properties from size effect tests. Journal
of Structural Engineering, 112:289–387, 1986.

[6] Z.P. Bazant and B.H. Oh. Crack band theory for fracture of concrete. Materials and Structures,
16:155–177, 1983.

[7] Z.P. Bazant and P.A. Pfeiffer. Determination of fracture energy from size effect and brittleness
number. ACI Materials Journal, 84:463–480, 1987.

[8] Z.P. Bazant and J. Planas. Fracture and Size Effect in Concrete and Other Quasibrittle Materials.
CRC Press, Boca Raton - Florida - USA, 1998.

[9] Z.P. Bazant, Q. Yu, and G. Zi. Choice of standard fracture test for concrete and its statistical
evaluation. International Journal of Fracture, 118:303–337, 2002.

[10] R. De Borst. Non-linear analysis of frictional materials. PhD thesis, Delft University, Netherlands,
1986.

[11] V.S. Caland. Experimental results of fracture parameters for high-performance concrete. Master’s
thesis, Department of Civil Engineering - PUC-Rio, Rio de Janeiro - Brazil, 2001.

[12] A. Carpinteri. Cracking of strain-softening materials. Static and Dynamics Fracture Mechanics,
pages 311–365, 1994.

Latin American Journal of Solids and Structures 3 (2006)



376 R. A. Einsfeld and M. S. L. Velasco

[13] R.L. Carrasquillo, A.H. Nilson, and F.O. Slate. Properties of high strength concrete subject to
short-term loads. ACI Journal, 78(3):171–178, 1981.

[14] CEB-FIP Model Code 1990 – final draft. Bulletin d’Information du Comité Euro-International du
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