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Abstract

A straight fold model with partly inside and partly outside folding in axisymmetric crush-
ing of thin metallic frusta has been presented. The first fold of the model ends at the mean
diameter and all subsequent folds initiate and end at the mean diameter. Some parameters
have been introduced for making the expressions valid for all the folds. Existing total outside
fold model of frusta and partly inside and partly outside fold model of tube can be derived
from the present model. The relations for obtaining the inside and outside fold lengths in
tubes are derived. Different values of yield stress of the material in compression and tension
have been taken in the analysis. The variation of circumferential strain during the formation
of a fold has been taken into account for the purpose of computing the variation of crush-
ing load. The results have been compared with experiments and good agreement has been
observed.
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1 Introduction

The collapse behaviour of tubes and frusta has been studied in the past [1–10, 12–15] for their
application in the design of crash energy absorbing devices. The pioneering work in this direction
was done by Alexander [6] who gave an analysis for axisymmetric crushing of cylindrical tubes
by the formation of straight folds with energy absorption in bending localized at the hinges
formed at the junctions of the limbs of folds. He obtained expressions for the fold length and
the mean crushing load by minimizing the total energy absorbed in bending and circumferential
deformation. This analysis formed the basis of many later studies [1–5,7–10,12–15].

The mechanics of crushing phenomenon is quite complex and not amenable to complete an-
alytical solution. It has been observed in experiments that when tubes deform in axisymmetric
mode, the fold formed is partly inside and partly outside the initial tube diameter [9, 10, 14],
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whereas, frusta deforms in axisymmetric mode by outside folding [8]. Analytical solutions avail-
able are not many and those available have made several simplifying assumptions which include
the deformation to be inextensional and the fold to be only outside [4] or inside [2,3] the initial
diameter of the tube. These analyses only determined the mean collapse load for which mean
circumferential strain was enough. It is because the circumferential strain varies with the rota-
tion of Analysis available [13,14], which considered inside/outside folding in tubes assumed that
both parts are equal in length. Experiments have shown that this is not true and the inner fold
is smaller than the outer fold in tubes [1,7,9,10,13]. The upper limb of first fold connects with
initial line of the tube only for the total outside and total inside fold models. Whereas for the
models in which the folding is partly inside and partly outside, the upper limb of the first fold
does not connect with the initial line of the tube. In the present paper, a third partial limb is
introduced to address this problem.

In the present paper, an analytical straight fold model with three limbs is presented for
axisymmetric crushing of frusta with partly inside and partly outside folding based on energy
considerations. The model developed considers the variation of circumferential strain during the
formation of a fold and the difference in yield strength of material in tension and compression.
The existing total outside fold model of frusta [8] and the partly inside and partly outside fold
models [10] have been derived from the proposed model. The mean and the variation of crushing
load for frusta and tubes have been computed. The results have been compared with experiments
and reasonably good agreement has been observed. The results are of help in understanding the
phenomenon of actual fold formation.

2 Analysis of frusta

We consider a thin frustum of thickness t, smaller end radius R1, and angle of taper α, as
shown in Fig. 1. The axisymmetric crushing of the frustum is also shown in this figure, by the
formation of partly inside and partly outside straight folding. The folding model adopted in the
present analysis is shown in Fig. 1. It can be seen from Fig. 1 that there are three limbs in the
model instead of two taken in the earlier model [11]. After the completion of the second fold,
the first limb of second fold gets in line with the third limb of the first fold thus the hinge at
their junction located at the initial line of the frusta gets eliminated.

The bottom portion of frustum a’-b’-c’-d’-e’-f’ in undeformed state assumes the shape a-b-
c-d-e-f after axisymmetric crushing. In the first fold, the length of first and second limbs are
h1 and h2 respectively out of which mh1, mh2 are inside the initial line of frustum for first and
second limbs respectively, where m is the folding parameter. The length of third limb is mh1,
which is inside the initial line of the tube. In the second and other subsequent folds, the length
of first limb is (1-m)h1, second is h2 and the third is mh1. The relationship between the lengths
of the limbs can be obtained from the geometry in complete crushed state:

h1 = Kh2 (1)
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 Figure 1: Axial crushing model of frusta

where,

K =
1 + sinα

1− sinα
(2)

The total vertical crushed length of first fold is (1+m)h1 + h2 and its value for other folds is
h1 + h2 as shown in Fig. 1. The angle of inclination of the limbs of the fold, θ1, θ2 and θ3 have
been measured from the initial line of the frustum, thus their initial value in the undeformed
state is zero and their maximum value after complete crushing is (π/2-α), (π/2+α) and (π/2-α)
respectively. It is seen from geometry that the angle θ3 is equal to angle θ1. In the present
analysis, complete crushing of the fold has been assumed because the consideration of effective
crushing distance [3] is coupled with the reduction in the energy dissipation. The yield strength of
the material of the frustum in compression and tension has been taken as fyc and fyt respectively,
and r = fyc/fyt.

The plastic moment of resistance of the material of the frustum has been taken as Mp =
1

2
√

3
fytt

2
0.
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2.1 Energy absorption in crushing

The radii of the points a, b, c, d, e and f in the deformed state of the frustum (Fig. 1) are given
by:

Ra = R1 + mh1 {sinα− sin (θ1 + α)} (3)

Rb = R1 + mh1 sinα (4)

Rc = R1 + h1 {m sinα + (1−m) sin (θ1 + α)} (5)

Rd = R1 + {h1 + (1−m) h2} sinα (6)

Re = R1 + {h1 + (1−m) h2} sinα−mh2 sin (θ2 − α) (7)

Rf = R1 + {h1 + h2 + mh3} sinα (8)

Also,
Rd = R1 + h1 {m sinα + (1−m) sin (θ1 + α)} − (1−m) h2 sin (θ2 − α) (9)

which gives relation between the two angles:

θ2 = sin−1 [K sin(θ1 + α)− (K + 1) sinα]− α (10)

For the second fold, the above radii will be such that the new value of R1 is R1+(h1 + h2 + mh3) sin α.
The energy dissipation in flexure has been assumed to be localized at the hinges which is

in the form of rotation at lower, upper and intermediate plastic hinges. The energy dissipated
in plastic bending Wbθ, in the rotation of the first and third limb upto angle θ1 and the second
limb upto angle θ2 is given by:

Wbθ = 2πMp




a2

θ1∫

0

Rfdθ1

︸ ︷︷ ︸
(Hinge-4)

+ a2

θ1∫

0

Redθ1 +

θ2∫

0

Redθ2

︸ ︷︷ ︸
(Hinge-3)

+

θ2∫

0

Rcdθ2 +

θ2∫

0

Rcdθ1

︸ ︷︷ ︸
(Hinge-2)

+ a1

θ1∫

0

Rbdθ1

︸ ︷︷ ︸
(Hinge-1)




= 2πMp




θ3∫

0

a2 (Rf + Re) dθ3 +

θ2∫

0

(Rc + Re) dθ2 +

θ1∫

0

(a1Rb + Rc) dθ1




(11)

During the formation of first fold, lower hinge does not exist, whereas it exists in subsequent
folds. It has been incorporated in the above expression by introducing a constant, a1. Its value
will be zero (i.e. a1= 0) for first and unity (i.e. a1= 1) for rest of the folds. For total outside
fold model, third limb does not exist, which has been incorporated by introducing a parameter
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a2 in the above expression. The parameter a2 will be zero for the total outside fold model (i.e.
m=0) else it will be unity. Evaluating the integrals, Wbθ is obtained as

Wbθ = 2πMp



{(a1 + 2a2 + 1) θ1 + 2θ2}R1 + mKh2 (a1 + 2a2 + 1) θ1 sinα

+Kh2 (1−m−ma2) {cos (θ1 + α)− cosα}+ (1− 2m) h2 cosα

+2h2 {(1 + K) (a2θ1 + θ2)−mθ2} sinα− (1− 2m) h2 cos (θ2 − α)


 (12)

putting, θ1 = π
2 − α and θ2 = π

2 + α in the above equation gives the total energy absorbed in
flexure during complete crushing of the fold:

Wb = 2πMph2X (13)

where,

X =




(a1 + 2a2 + 1)
(

π
2 − α

) (
R1
h2

+ mK sinα
)

+ cos α

+ {(1 + K) {a2 (π − 2α) + (π + 2α)}} sinα− 2m cosα

+ (π + 2α)
(

R1
h2
−m sinα

)
+ K (1−m−ma2) cos α


 (14)

which for m= 0 and a2 = 0 converts to the total outside fold model of frusta [14]:

Wb = 2πMp

[{
(a1 + 3)

π

2
− α (a1 − 1)

}
R1 + h2 (1 + K) {(π + 2α) sin α + cosα}

]
(15)

and for αg 0, a2 = 1 and h1 = h2 = h (say), converts to the partly inside and partly outside
model of cylinder of radius R1 [12]:

Wb = 2πMp

[
(a1 + 5)

π

2
R1 + 2h (1− 2m)

]
(16)

The energy dissipated in circumferential stretching for the portion of the fold going inside the
initial diameter of the frustum and circumferential compression for the portion of the fold going
outside and rotation upto an angle θ1 for first and third limbs and θ2 for the second limb of the
fold, Wcθ, can be calculated by:

Wcθ =

θ1∫

0

(
dWc1

dθ1

)
dθ1

︸ ︷︷ ︸
(First Limb)

+

θ2∫

0

(
dWc2

dθ2

)
dθ2

︸ ︷︷ ︸
(Second Limb)

+

θ1∫

0

(
dWc3

dθ1

)
dθ1

︸ ︷︷ ︸
(Third Limb)

(17)

Considering an element of width dy1 at a distance y1 from point b in the portion of the
first limb going inside and another element of width dy2 at a distance y2 from point b in the
portion of the first limb going outside. It is to be noted here that the portion of limb going
inside the initial line of frusta does not exist in the second and subsequent folds, which has been
incorporated for introducing a parameter a3 in the expressions of energy dissipation. Its value
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will be unity for the first fold and zero for other folds. The energy dissipated in circumferential
deformation can be calculated as follows:

dWc1

dθ1
= a3

mh1∫

0

fyt0

(∣∣∣∣
dε1

dθ1

∣∣∣∣
)

dA1 +

(1−m)h1∫

0

fyt0

(∣∣∣∣
dε2

dθ1

∣∣∣∣
)

dA2 (18)

where, dA1 and dA2 are the area of elemental rings, given by

dA1 = 2π {Rb − y1 sin (θ1 + α)} dy1 and dA2 = 2π {Rb + y2 sin (θ1 + α))} dy2 (19)

and ε1 and ε2 are the circumferential strains in the two elements, given by

ε1 =
2π [{Rb − y1 sin (θ1 + α)}]− (Rb − y1 sinα)

2π (Rb − y1 sinα)
(20)

ε2 =
2π [{Rb + y2 sin (θ1 + α)}]− (Rb + y2 sinα)

2π (Rb + y2 sinα)
(21)

Differentiating the above two equations, we get,

dε1

dθ1
= −y1 cos(θ1 + α)

Rb − y1 sinα
(22)

dε2

dθ1
=

y2 cos (θ1 + α)
Rb + y2 sinα

(23)

Using Eq. (19), (22) and (23), Eq. (18) gives,

dWc1

dθ1
= 2πfyt0

(
Rb

sinα

)2




{
− ln (Ara3B) + (1−m− rma3) h1 sin α

Rb

}
cos (θ1 + α)

+

{
2 ln (Ara3B) + ra3A

2 + B2 − (1 + ra3)
−4 (1−m− rma3) h1 sin α

Rb

}
sin 2(θ1+α)

4 sin α


 (24)

where,

A = 1− mh1 sinα

Rb
and B = 1 +

(1−m) h1 sinα

Rb
(25)

Considering an element of width dy3 at a distance y3 from point d in the portion of the
second limb going inside and another element of width dy4 at a distance y4 from point d in the
portion of the second limb going outside, the energy dissipated in circumferential deformation
can be calculated as follows:

dWc2

dθ2
=

(1−m)h2∫

0

fyt0

(∣∣∣∣
dε3

dθ2

∣∣∣∣
)

dA3 +

mh2∫

0

fyt0

(∣∣∣∣
dε4

dθ2

∣∣∣∣
)

dA4 (26)
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where,

dA3 = 2π {Rd + y3 sin (θ2 − α)} dy3 and dA4 = 2π {Rd − y4 sin (θ2 − α)} dy4 (27)

ε3 =
2π [{Rd + y3 sin (θ2 − α)}]− (Rd − y3 sinα)

2π (Rd − y3 sinα)
(28)

ε4 =
2π [{Rd − y4 sin (θ2 − α)}]− (Rd + y4 sinα)

2π (Rd + y4 sinα)
(29)

Differentiating the above two equations, we get,

dε3

dθ2
=

y3 cos (θ2 − α)
Rd − y3 sinα

(30)

dε4

dθ2
= −y4 cos (θ2 − α)

Rd + y4 sinα
(31)

Using Eq. (27), (30) and (31), Eq. (26) gives,

dWc2

dθ2
= −2πfyt0

(
Rd

sinα

)2




{
ln (CrD) + (1−m− rm) h2 sin α

Rd

}
cos (θ2 − α)

+

{
2 ln (CrD) + rC2 + D2 − (1 + r)
+4 (1−m− rm) h2 sin α

Rd

}
sin 2(θ2−α)

4 sin α


 (32)

where,

C = 1− (1−m) h2 sinα

Rd
and D = 1 +

mh2 sinα

Rd
(33)

Considering an element of width dy5 at a distance y5 from point f in the third limb, the
energy dissipated in circumferential compression can be calculated as follows:

dWc3

dθ1
=

mh3∫

0

fyt0

(∣∣∣∣
dε5

dθ1

∣∣∣∣
)

dA5 (34)

where,
dA5 = 2π {Rf − y5 sin (θ1 + α)} dy5 (35)

ε5 =
2π [{Rf − y5 sin (θ1 + α)}]− (Rf − y5 sinα)

2π (Rf − y5 sinα)
(36)

Differentiating the above equation, gives

dε5

dθ1
= −y5 cos (θ1 + α)

Rf − y5 sinα
(37)
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Using Eq. (35) and (37), Eq. (34) gives,

dWc3

dθ1
= 2πfyt0

(
Rf

sinα

)2




{
ln (Er) + rmh1 sin α

Rf

}
cos (θ1 + α)

+

{
2 ln (Er) + rE2 − r

+4rmh1 sin α
Rf

}
sin 2(θ1+α)

4 sin α


 (38)

where,

E = 1− mh1 sinα

Rf
(39)

Using Eqs. (24), (32) and (38), Eq. (17) gives the energy absorbed in circumferential
deformation during the rotation of first and third limb upto θ1 and second limb upto θ2:

WCθ = 2πfyt0

(
Rb

sinα

)2




{
− ln (Ara3B) + (1−m− rma3) h1 sin α

Rb

}
{sin (θ1 + α)− sinα}

+

{
2 ln (Ara3B) + ra3A

2 + B2 − (1 + ra3)
−4 (1−m− rma3) h1 sin α

Rb

}{
cos 2α−cos 2(θ1+α)

8 sin α

}




− 2πfyt0

(
Rd

sinα

)2




{
ln (CrD) + (1−m− rm) h2 sin α

Rd

}
{sin (θ2 − α)− sinα}

+

{
2 ln (CrD) + rC2 + D2 − (1 + r)
+4 (1−m− rm) h2 sin α

Rd

}{
cos 2α−cos 2(θ2−α)

8 sin α

}




+ 2πfyt0

(
Rf

sinα

)2




{
ln (Er) + rmh1 sin α

Rf

}
{sin (θ1 + α)− sinα}

+

{
2 ln (Er) + rE2 − r

+4rmh1 sin α
Rf

}{
cos 2α−cos 2(θ1+α)

8 sin α

}




(40)

putting, θ1 = π
2 − α and θ2 = π

2 + α in the above equation gives the total energy absorbed
in circumferential deformation during complete crushing of the fold:

Wc = 2πfyt0
1− sinα

sin2 α
[Y + Z] (41)

where,
Y = R2

bA1 −R2
dA2 + R2

fA3 (42)

Z =
1 + sinα

4 sin α

{
R2

bB1 −R2
dB2 + R2

fB3

}
(43)

A1 = − ln (Ara3B) + (1−m−mra3)Kh2
sinα

Rb
(44)

A2 = ln (CrD) + (1−m−mr) h2
sinα

Rd
(45)

A3 = ln (Er) + rmKh2
sinα

Rf
(46)
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B1 = − (1 + ra3) + B2 + ra3A
2 + 2 ln (Ara3B)− 4 (1−m−mra3) Kh2

sinα

Rb
(47)

B2 = − (1 + r) + D2 + rC2 + 2 ln (CrD) + 4 (1−m−mr) h2
sinα

Rd
(48)

B3 = −r + rE2 + 2 ln (Er) + 4rmKh2
sinα

Rf
(49)

which for total outside fold model (i.e. m=0) converts to the expression given in Ref. [8]. Eq.
(40) is not valid for αg 0, for which, we get,

Wc = πfytt0h
2

[
(a3 + 2) rm2

(
1− mh

3R1

)
+ 2 (1−m)2

{
1 +

(1−m) h

3R1

}]
(50)

which is same as that given in Ref. [12] for cylinder of radius R1 and size of fold, h.

2.2 Average crushing load

Assuming that the energy dissipation in the axisymmetric axial crushing of frusta takes place in
the form of flexural and circumferential deformations, therefore, the external work done can be
equated to the energy absorbed in bending and circumferential stretching. The average crushing
load, Pm, can, therefore, be calculated:

Pm =
Wb + Wc

{1 + K (1 + a4m)}h2 cosα
(51)

where, parameter a4 will be unity for first fold and zero for other folds; Wb is given by Eq. (13)
and Wc is given by Eq. (41) for frusta and Eq. (50) for tubes. For frusta, Eq. (51) converts to:

Pm =
πfyt

2
0X√

3 {1 + K (1 + a4m)} cosα
+

2πfyt0
h2 {1 + K (1 + a4m)}

1− sinα

sin2 α cosα
[Y + Z] (52)

and for tube, Eq. (51) gives:

Pm =
πfyt

2
0

[
R1 (a1 + 2a2 + 3) π

2 + h (2− 3m−ma2)
]

√
3h {1 + K (1 + a4m)} cosα

+
πfyt0h

[
(a3 + 2) rm2

(
1− mh

3R1

)
+ 2 (1−m)2

{
1 + (1−m)h

3R1

}]

{1 + K (1 + a4m)} cosα

(53)

2.3 Size of fold and folding parameter, m

Determination of the size of fold, h1 and h2, and the folding parameter, m, requires the mini-
mization of external work done for crushing unit length of frusta during the fold formation or
the minimization of average crushing load of the fold i.e.

∂Pm

∂h2
= 0 (54)
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and
∂Pm

∂m
= 0 (55)

where, Pm is given by Eq. (52) for frusta. Putting the value of Pm from Eq. (52), Eq. (54)
converts to:

t0√
3

∂X

∂h2
+

2 (1− sinα)
sin2 α

∂

∂h2

[
Y + Z

h2

]
= 0 (56)

where,
∂X

∂h2
= −

[
(a1 + 2a2 + 1)

(π

2
− α

)
+ (π + 2α)

] R1

h2
2

(57)

∂

∂h2

[
Y

h2

]
=

1
h2

[
− Y

h2
+ R2

b

dA1

dh2
−R2

d

dA2

dh2
+ R2

f

dA3

dh2

]
(58)

∂

∂h2

[
Z

h2

]
=

1
h2

[
− Z

h2
+

1 + sinα

4 sinα

(
R2

b

dB1

dh2
−R2

d

dB2

dh2
+ R2

f

dB3

dh2

)]
(59)

dA1

dh2
= −

[
ra3B

dA

dh2
+ A

dB

dh2

]
1

AB
+ (1−m−mra3) K

sinα

Rb
(60)

dA2

dh2
=

[
rD

dC

dh2
+ C

dD

dh2

]
1

CD
+ (1−m−mr)

sinα

Rd
(61)

dA3

dh2
=

[
r

dE

dh2

]
1
E

+ rmK
sinα

Rf
(62)

dB1

dh2
= 2

[
ra3

(
A +

1
A

)
dA

dh2
+

(
B +

1
B

)
dB

dh2
− 2 (1−m−mra3) K

sinα

Rb

]
(63)

dB2

dh2
= 2

[
r

(
C +

1
C

)
dC

dh2
+

(
D +

1
D

)
dD

dh2
+ 2 (1−m−mr)

sinα

Rd

]
(64)

dB3

dh2
= 2r

[
E +

1
E

+ 2mK
sinα

Rf

]
(65)

dA

dh2
= −mK

sinα

Rb
,

dB

dh2
= (1−m) K

sinα

Rb
,

dC

dh2
= − (1−m)

sinα

Rd
(66)

dD

dh2
= m

sinα

Rd
,

dE

dh2
= −mK

sinα

Rf
(67)

Putting the value of Pm from Eq. (52) for frusta, Eq. (57) converts to:

t0√
3

d

dm

[
X

1 + K (1 + a4m)

]
+

2 (1− sinα)
h2 sin2 α

d

dm

[
Y + Z

1 + K (1 + a4m)

]
= 0 (68)

d

dm

[
X

1 + K (1 + a4m)

]
=

1
[1 + K (1 + a4m)]2

[
{1 + K (1 + a4m)} dX

dm
− a4KX

]
(69)
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d

dm

[
Y + Z

1 + K (1 + a4m)

]
=

1
[1 + K (1 + a4m)]2

[
{1 + K (1 + a4m)} d (Y + Z)

dm
− a4KY Z

]
(70)

∂X

∂m
= h2

[
K (a1 + 2a2 + 1)

(
π
2 − α

)
sinα− 2 cos α

− (π + 2α) sin α−K (1 + a2) cosα

]
(71)

∂Y

∂m
= R2

b

dA1

dm
−R2

d

dA2

dm
+ R2

f

dA3

dm
(72)

∂Z

∂m
=

1 + sinα

4 sin α

[
R2

b

dB1

dm
−R2

d

dB2

dm
+ R2

f

dB3

dm

]
(73)

dA1

dm
= −

[
ra3

A
+

1
B
− (1 + ra3)

]
dA

dm
(74)

dA2

dm
=

[
r

C
+

1
D
− (1 + r)

]
dC

dm
(75)

dA3

dm
= −rh2

[
1
E

+ 1
]

K
sinα

Rf
(76)

dB1

dm
= 2

[
ra3

A
+

1
B

+ ra3A + B − 2 (1 + ra3)
]

dB

dm
(77)

dB2

dm
= 2

[
r

C
+

1
D

+ rC + D − 2 (1 + r)
]

dC

dm
(78)

dB3

dm
= −2rh2

[
1
E

+ E + 2
]

K
sinα

Rf
(79)

dA

dm
=

dB

dm
= −Kh2

sinα

Rb
,

dC

dm
=

dD

dm
= h2

sinα

Rd
(80)

2.4 Variation of crushing load

The variation of crushing load can now be found from the following relation:

Pθ =
d(Wbθ + Wcθ)

dz
=

d
dθ1

(Wbθ + Wcθ)
dz
dθ1

(81)

where, Wbθ and Wcθ are the work done in bending and circumferential stretching in rotation of
first and third limbs of fold upto θ1 and second limb upto θ2 given by Eqs. (12) and (40); and
z is the crushing distance in the direction of the load which is given by:

z = h2 [{1 + K (1 + a4m)} cosα−K (1 + a4m) cos (θ1 + α)− cos (θ2 − α)] (82)

therefore,
dz

dθ1
= h2

[
K (1 + a4m) sin (θ1 + α) + sin (θ2 − α)

dθ2

dθ1

]
= ż (say) (83)
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where,
dθ2

dθ1
=

K cos(θ1 + α)
cos(θ2 − α)

(84)

Using Eqs. (12), (40) and (83), Eq. (81) gives:

Pθ =
πfyt

2
0√

3ż

[
(a1 + 2a2 + 1) (R1 + mh2 sinα) + Kh2 (1−m−ma2) sin (θ1 + α) + 2a2h2 sinα

+dθ2
dθ1

{2R1 + h2 {2 (1−m + K) sin α + (1− 2m) sin (θ2 − α)}}+ 2a2Kh2 sinα

]

− 2πfyt0

ż sin2 α




{
R2

bA1 + R2
fA3

}
cos (θ1 + α)−

{
R2

bB1 + R2
fB3

}
sin 2(θ1+α)

2 sin α

−R2
d

{
−A2 cos (θ2 − α) + B2

sin(θ2−α)
2 sin α

}
K cos(θ1+α)
cos(θ2−α)




(85)

3 Comparison with experimental observations

An Aluminium frustum, 1.85 mm thick, 130.3 mm long, and with end diameters of 43.9 and
57.5 mm, tested in axial compression [8] has been taken for experimental validation. The value
of yield strength of the material of the frustum was found to be 92.0 MPa. The crushing load
variation obtained experimentally for first fold has been plotted in Fig. 2. The values of size of
fold was first determined numerically by minimizing the mean crushing load and this value was
then used for finding out the variation of crushing load Pθ/P0, where, P0 = π (R1 + R2) tfyt,
R1 and R2 are the end radii of frustum. The variation of crushing load for first fold taking r =
1.0 has also been plotted in Fig. 2. The analytical load-deformation curve does not start from
zero load level due to the neglect of the elastic deformation in the beginning. The post peak
experimental curve is found to be close to the analytical curve.
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Figure 2: Load deformation curves for frustum

A steel cylindrical tube of 24.05 mm diameter and 1.01 mm thick tested in axial compression
[12] has been used in the validation of the analysis presented in earlier sections. The value of
yield strength of the material of the frustum was found to be 160.0 MPa. The values of size of
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fold and folding parameter were first determined numerically by minimizing the mean crushing
load and these values were then used for finding out the variation of crushing load. The crushing
load variation obtained experimentally and analytically for the first fold taking r = 1.0 have
been plotted in Fig. 3. The post peak experimental curve is found to be close to the analytical
curve.
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Figure 3: Load deformation curve of a steel tube

The influence of folding parameter on the non-dimensional mean crushing has been studied
by plotting its variation in Fig. 4 for the first fold of the steel tube considered above. Each
point on this curve corresponds to an optimal size of fold whose variation is also plotted in
this figure. It is observed from this figure that the mean crushing load is maximum for total
outside folding (i.e. m = 0) which reduces with increase in the value of m and after reaching an
optimal value, it increases but the mean crushing load for the total outside folding (i.e. m = 1)
is less than that of the total outside. The mean crushing load of the tube has two components,
one due to bending and the other due to circumferential deformation. The variation of these
two components has also been plotted in this figure. It is observed from their variation that
for smaller values of folding parameter (m < 0.5), the energy absorption in bending is more
than that in circumferential deformation but for larger values of folding parameter (m > 0.5),
it is the vice versa. At the optimal point where folding parameter is slightly more than 0.5
(m = 0.62 for the tube considered here), the energy absorption in bending is slightly more than
the circumferential deformation which for practical purposes may be taken to be almost equal.

A parametric study has also been carried out for studying the influence of the difference
in the compressive and tensile strength of the material by taking the value of parameter r as
1.0, 1.5 and 2.0 for the steel tube considered above. The variation of mean crushing load with
folding parameter for these values of r is plotted in Fig. 5. The value of the size of fold was
first determined numerically by minimizing the mean crushing load, which was then used for
finding out the mean crushing load. All the three curves in this figure start from the same mean
crushing load at m = 0 because for this case of total outside folding, there is only extensional
circumferential deformation and thus the value of r has no role to play. For the values of m > 0,
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Figure 4: Variation of non-dimensional crushing load with folding parameter for steel tube with
r = 1

the increase in the parameter r results in increase in the mean crushing load and decrease in
the optimal value of folding parameter which is because of the material becoming stronger in
compression thus the fold goes less inside the initial line.
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Figure 5: Variation of non-dimensional crushing load with folding parameter for steel tube with
different values of r

4 Conclusions

An improved version of partly inside and partly outside straight fold model is developed for
the axisymmetric axial crushing analysis of thin walled frusta. The existing total outside fold
model of frusta and partly inside and partly outside fold model of tube can be derived from
this model. The difference in the first and the subsequent folds has been highlighted and the
same has been incorporated in the analysis. All the variables involved in the analysis have been
computed mathematically. The variation in crushing load and the mean collapse load have been
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computed.
The results have been compared with experiments and reasonably good agreement has been

observed. The results are of help in understanding the phenomenon of actual fold formation.
For smaller values of folding parameter, the energy absorption in bending is more than that
in circumferential deformation but for larger values of folding parameter, it is the vice versa.
For optimal value of folding parameter, the energy absorption in bending is slightly more than
the circumferential deformation, which for practical purposes may be taken to be almost equal.
The consideration of material being stronger in compression as compared to tension results in
increase in the mean crushing load and decrease in the optimal value of folding parameter.
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