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Size-dependent vibrations of post-buckled functionally
graded Mindlin rectangular microplates
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mixture of metal and ceramic are considered whose volume frac-
tion of components is expressed by a power law function. By
means of Hamilton’s principle, the nonlinear governing equations
and associated boundary conditions are derived for FG micro-

plates in the postbuckling domain. The governing equations and * .
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boundary conditions are then discretized by using the generalized
differential quadrature (GDQ) method before solving numerically
by the pseudo-arclength continuation technique. In the solution
procedure, the postbuckling problem of microplates is investigated
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1 INTRODUCTION

Functionally graded (FG) materials are increasingly being used in microstructures because of their
potentiality in acquiring desired performance. Hence, many researchers have intensified their efforts
to employ them in micro-electromechanical systems (MEMS) and atomic force microscopes (Lii et
al. 2009a; Lii et al. 2009b; Mahmud et al. 2008; Hasanyan et al. 2008; Witvrouw et al. 2005).
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Of all the basic microstructures, microbeams and microplates are broadly used in MEMS. There are
several micro-torsion and micro-bending experiments which have reported the size-dependent de-
formation behavior in microbeams. Hence, considering the size effect is essential in the study of FG
micro- and nano- structures. Since the conventional continuum mechanics theory is incapable of
considering the size effect in micro and nano structures, different attempts have been made to de-
velop several successful size-dependent theories (Mindlin and Tiersten 1962; Eringen 1972; Lam et
al. 2003). These theories and their modified forms have been efficiently used in different studies
(Wang 2010; Ansari et al. 2011; Claeyssen et al. 2013; Ansari et al. 2012; Chang 2013; Ramezani
2012; Wang and Feng 2007; Ghayesh et al. 2013; Farokhi et al. 2013).

The classical couple stress theory established by Mindlin and Tiersten (1962) and Toupin
(1962) comprises two classical and two additional material constants for isotropic elastic materials.
The modified form of this theory (MCST) was proposed by Yang et al. (2002); they considered only
one additional material length scale parameter besides two classical material constants and facilitat-
ed incorporating the size effect. This theory has been employed to develop several size-dependent
microbeams and microplates. In this direction, the static and dynamic behavior of size-dependent
Kirchhoff microplates is investigated analytically in several papers (Tsiatas 2009; Yin et al. 2010;
Jomehzadeh et al. 2011). In another study, free vibration behavior of Mindlin microplates is exam-
ined based on the MCST (Ke et al. 2012a). The free vibration of FG microbeams is studied by As-
ghari et al. (2010) in the context of the Bernoulli-Euler beam theory. Also, in another work, they
examined the static bending and free vibration of cantilever and simply-supported FG microbeams
based on the MCST (Asghari et al. 2011). The dynamic stability of FG microbeams is also studied
by Ke and Wang (2011) based on the MCST and the Timoshenko beam theories. Based on the
MCST, the nonlinear free vibration of size-dependent FG microbeams is investigated by Ke et al.
(2011). Ke et al. (2012b) studied the bending, buckling and free vibration of annular FG micro-
plates based on the MCST and Mindlin plate theory.

Microplates are usually subjected to forces which can cause buckling and postbuckling. In this
paper, the free vibration behavior of post-buckled FG Mindlin rectangular microplates is investigat-
ed. To this end, firstly, the MCST and Hamilton’s principle are used to obtain the nonlinear gov-
erning equations and associated boundary conditions of FG microplates in the postbuckling configu-
ration. Then, the GDQ method and the pseudo-arclength continuation technique are employed to
discretize and solve the governing equations and boundary conditions.

2 GOVERNING EQUATIONS OF SIZE-DEPENDET FG MINDLIN RECTANGULAT MICROPLATES

Based on the MCST (Yang et al. 2002), the strain energy of a continuum elastic medium taking up
region ) can be expressed by a function of strain tensor and gradient of the rotation vector as

1 :
Um=5£(c:s+m.x)dv (1)

wheree is the Cauchy stress tensor;€ denotes the infinitesimal strain tensor;y’ is the symmetric

rotation gradient tensor and m stands for the deviatoric part of the couple stress tensor defined for
a linear isotropic elastic material. Following are the definitions of mentioned tensors (Timoshenko
and Goodier 1970; Kovalenko 1969; Ke et al. 2010)
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8=%(VU+(VU)T +(VU)(VU)T); &ij :%(ui,j +uj,i +ui,iuiai )’ (2a)
£ =2(V0+(VO) ): 1, =2 (6, +6,,). 6 =(curl(u) (2b)

2 > Aij 2 i,j Ji)? | 2 i’
6 =tr (g)I+2pe, m=2ul’y". (2¢)

in whichuis the displacement vector and@ is the rotation vector. Lame’s constants are denoted
byA=E V/((l + V)(l— ZV)) and g = E/2(1 +V) ; where v and E are Poisson’s ratio and Young’s

modulus, respectively. | represents a material length scale parameter whose value can be specified
via micro-torsion tests of slim cylinders or micro-bending tests of thin beams.

A schematic of an FG microplate with the length a, width b and thickness h made of a mixture of
ceramics and metals is illustrated in figure 1.
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Figure 1: Schematic of a microplate: kinematic parameters, coordinate system, geometry and loading

The materials of the FG microplate at bottom surface (z= — h/2)and top surface (z= h/2)

are supposed to be metal-rich and ceramic-rich, respectively. The effective material properties of the
FG microplate, namely Young’s modulus, Poisson’s ratio and mass density can be approximated by

E(z)=E\V,+E_V,, v(z)=v.V.+v, V., p(z)=p. V. +p,V,. (3)

m ' m?

in which V  denotes the volume fraction of the phase materials; the subscripts m and ¢ symbolize
metal and ceramic phases, respectively. To express the volume fraction of FG microplate's compo-
nents, the power law function is used as (Fares et al. 2009)
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Vc(z):(%+§jn : Vm(z):l—(%+§jn (4)

in which n denotes the volume fraction exponent.

Based on the first-order shear deformation plate theory, the in-plane displacements can be stated as
linear functions of the plate thickness and the transverse displacement is considered to be un-
changed through the plate thickness; considering these assumptions, the displacement field in a
Mindlin plate can be described as

u, ZU(t,X,Y)_Z\VX (taXaY)a uy = V(taXaY)_Z\Vy(taXa Y)a u, :W(t,X, Y) (5)

in which t is the time, x, y, z denote the coordinates of Cartesian coordinate system andu(t,x,y)
andV(t,X,y) are mid-plane displacements, and W(t, X,y)represents the lateral deflection of the

microplate. Using Eq. (5) and Eq. (2a) leads to the nonzero components of the strain-displacement
equations as follows

8xx :¢0 _Z¢l’ 8yy :(P(] _Z(Pl’ 8xy :Syx :(KO _ZKI)/z’SXZ :gzx :’Yl/z’ 8yz :Szy :’Y2/2 (6)

where

1 2 1 2
¢0 :u,x +_W,x > ¢1 =V,x> P :V,y +_W,y P, :wy,y’
2 2
KO :u,y +V’X +W’XW’y , KI :wx,y +\Vy,x’ 'Yl :W,x —\IIX, 'YZ :W,y _\Vy'

in which comma denotes partial differentiation with respect to the coordinates.
By inserting Eq. (5) into Eq.(2b), the rotations of material elements within the microplate are in-
troduced as

Gx =%(W,y +Wy)’ ey - _%(W,x +Wx)’ eZ = l(v,x —U,y )_E(\l’y’x _\llx’y). (8)

Also, by substituting 0,,0, and 0, into Eq. (2b) the components of symmetric rotation gradient

tensor are expressed by

s 1 s 1 s !
Xxx :E(W Xy 'Hlly,x)’ Kyy =_5(W Xy —HV”)’ Kaz =5(\Vx’y _Wy’x)’
. s 1
Xxy - Z(W Yy _W,xx +\|]y,y _\Ijx,x )9 sz = Z(V XX _u,xY)+§(\ljxaxy _\VYJ‘X)’ (9)

|
Xyz :Z(V,xy _u,yy)+§(\|]x,yy _‘“I]y,xy)'

By inserting the classical strain and symmetric rotation gradient tensors according to Egs. (6) and

(9) into Eq. (2c), the classical stress tensor 6 and the couple stresses m® are achieved.
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By considering I as the strain energy related to the classical theory and Il as the strain energy

related to the modified couple stress theory, respectively, the total strain energy of FG microplates
can be written as Il =II. +1II., where

1 1 1
I, :EI{NXX (uﬂx +5Wij—|\/| wVex N, (v,y +5W’ZVJ_M wVyy
A

(10a)
+N Xy (u,y TV TW W, )_ M Xy (\Ijx,y +\|]Y’X)+Qx (W,X _\VX)+QV (W,y _\VY)}dA
1¢|Y Y Y
1_[NC _E_A[{%(W Xy +\|]y,x)_%(w Xy +\|Ix,y)+ 52 (\Vx,y _Wy,x)
Y
LW =W =V ), ) (10b)

H H,
+%(\vw —V, )+ Ty(\vx,yy —y, )}dA

Nyy, ny), moment resultants(M Myy,Mxy), trans-

in which the in-plane force resultants(N

XX ? XX 2

verse force resultants(QX,Qy), couple moments(Y sz) and higher-order cou-

XX ?

Y,.Y,.Y,.Y

7z% T Xy? T xz?

ple moments(H Hyz) are obtained as

Xxz?

NXX h/2 O-XX MXX h/2 XX Q h/2 o
X Xz
N=.N,, :,[ oy 10z, M=1M, :I Oy ZdZ’Q:{Q }:KS I{ }dz’ (11a)
ny -h/2 ny Mxy -h/2 » y -h/2 yz
h/2
— _ s s s s s s
Y_{Yxx’YyyﬂYzzﬂnyﬂsz9sz}_ J. {mxx9myy9mzz9mxy9mxz9myz}dz7
-h/2
h2 (11b)
H={H, H, }= J. {mjz,mjz}zdz,
-h/2

in which the parameter K¢ denotes the shear correction factor.

Now, by defining the following parameters

h/2 E (l—V) i
A, ,B, D, = — ] d
{ 11> D11 11} h/2(1+V)(1—2V){ »Z,Z } Z,

h/2 Ev
A..B.,,D, = —1 24
{ 12> P12 12} _}‘1[/2(1+V)(1—2V){ »Z,Z } z, (12)
A..,B..,D I —E 1 2t
{ 555 D555 55}__}'!./22(1+V){ »Z,Z } z,
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the force resultants and moment resultants based on Eq. (11) can be written in terms of displace-

ments as following
L 1
Nxx =IAII u,x +§W X +A12 V,y +§W,y _Bll\llx,x _Blzwy,y’

1 1
Nyy = A11 (V,y +EW 2;/ +A12 (U,x +EW i j_Bll\IIy,y _B12Wx,x9

)
N,, =A (u,y +V EWW )—Bss( Xy "'\l’y»x)’
M _ =B, (U,X +%W i j"' B, (V R +%W 2y j_D”W"’X ~Duvy,
M, =B, |V, +%W M )+B12 [U,X +%W X j—Dn‘l’y,y ~DiViy
w

N b
Y, =Aul (v, -, ). Y, = A52512 (W, =W+, =W, ),
. =ASTSIZ( T B52512 (Wyy =Wy )
Y, A52512( . —uyy)+B52512 (nyy Wyxy)
H,, = B52512 (Vo —u )+ D52512 (Wyny =Wy )
H, =2 ) By )

0
XX 2

The work Mg due to the in-plane forces N N(;y and Ngy can be achieved as

m, = % j (NOw 2 +2NOw  w +NOw 2 )dA,
A

Also, for the kinematic energy one can write the following relation

h/2

I, %H (=297, ) +(v ~29, ) 4002 dza

A-h/2

= [{1o (0 v 4w *) =21, (g, +v7, )+ 1, (47 +y; )} dA
A
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in which the overdot symbolizes differentiation with respect to time; p and A are the density and
area occupied by the mid-plane of the microplate, respectively and

h/2

{1,1,L} = [ p(z) {27’} dz. (16)

-h/2

In the following, Hamilton’s principle is employed to derive the governing equations of motion and
corresponding boundary conditions. Hamilton’s principle can be mathematically defined as

csjz(nT —I1, +11,, )dt =0, (17)

To this end, first by taking the variation of UV W i, and vy, then by performing integration by
parts, and finally, by setting the coefficients of U,V ,0W ,0y, and 5(//y equal to zero, one can

achieve to the following expressions for the governing equations of motion and the boundary condi-

tions
1 .
N XX ,X +ny,y +E(Y Xz ,Xy +Y yz,yy)= IOu _Ill//xa (18a)
1 L
N Xy ,X +N yy.y _E(Y XZ XX +Y yz,xy): IOV _Ilv/yﬂ (18b)
1Y I Y Y 1Y N N
Qx,x +Qy,y +5 Xy XX +Z( yyxy xx,xy)_z Xy ,yy +( xxW,x ),x +( yyW,y ),y
(18c)
0 0 0 ..
+(nyw,y )’X +(nyw,X )’y +N, W +Nyw  +2N, w =1 W,
1 . ..
Myx + M, —Q, +E(Y wy Yoy Yoy HH L HH )=, — 1, (18d)
1 . ..
M Xy ,X +M yy.y _Qy +E(Yzz,x _Yxx,x _ny,y _sz,xx _Hyz,xy): Izl//y _IIV’ (186)
1 1 1
ou=0 or | N, +ZY“’V n, +| N, +Zsz,x +5sz,y n, =0,
v (180)
ou, =0 or %)ny =0, ou, =0 or [%jnx{ ;jny =0,
1 1 1
ov =0 or N, —Esz,x _ZYVZ’V n,+| N, _ZYV” n, =0,
Y Y Y (18g)
&N,=0or |—2|n +|—==|n, =0, & =0 or |—=|n, =0,
’ 2 4 | +
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W :Oor(Qx +%ny,x +%(\(W,y Yy )H (N NS (N +N S )w,yjnx
+(Qy —%ny’y +%(Y o Y on )F(N G +N O W+ (N +N Y )w,x)ny =0, (15n)
o, =0 or (%nyJnx +(@]ny =0,

Yy YV 1
ow,=0or | ———|n + =Y, |n, =0.
’ 4 2

ny 1 Yyy _Yzz 1 1 .
oy, =00r M, + > JFZHXZ,y n, + Mxy+—+EHyz,y+Zsz,x n,=0, (18i)

2

1 ! !
Sy, , =0 or (ZH“jny =0, oy, , =0 or (ZH”jnx J{EHyzjny =0.

YooY, 1 1 1 1
5l/ly =00r(|\/| Xy +—2 _EHXZ,X _ZHyz’anx +(M vy —EYXY _ZHyZ’XJny :0,
0

1 1 1
5V/y,x =0 or (Eszjnx +(ZHijny =0, 51/jy,y =0 or (ZHyzjnx =0.

Eqgs. (18f)—(18j) provide different possible boundary conditions for the size-dependent FG rectangu-
lar microplate. For example, the boundary conditions related to FG microplates with all clamped

edges (CCCC) are as

u=v=w=y, =y =v _=w_ =y, =0; atedgesx =0,a.

1
u=v=w=y =y =u =w =y  =0; atedgesy =0,b. (19)
and for FG microplates with fully simply supported edges (SSSS):
1 1
u=v=w=M_+-Y +-H_ =0,
XX 2 Xy 4 XZ,y ( )
20a,
Y -Y 1 1
" "’%_EHXZ,X _ZHYZ’Y =Y,, =Y, =H_, =0; atedges x =0,a.
Y. -Y
u=v=w=M +u+%HyZ,y +inz,x =0,
i ! (20Db)
M,, —5 Yy _ZH}’ZaX =Y, =Y,,=H, =0; atedges y=0,b.
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By introducing the following non-dimensional parameters

X y a b a t (A
x=—,y==, (u,v,w)—(hu,hv,hw),(n,, =l—,— |, k=—,1=—
Y=y (W) )-(n-m2) (hhj b a\ 1,
A, A A B B B
(all’a12’a55): 11 , 33 , 55 ’(b119b129b55):( 11 , 12 , 55 ,
Ay A A A b A h Ajgh
D D D - 1 | 1
(dipdyndss) = 1ilz’ 1;2’ 5;2 (1. 1.L) =] =, 1h’ ;2 ’
Ay Ay Ay Lyy Tooh I
1 N Ngx N0 2 70 ; fz
EZH s NXX :A—’ny :A_y’N}’y :—Ayy 5 :F
110 110 110 m,

where A, and |, are the values A, and |, of a homogeneous metal microplate,One can ex-

press the nonlinear governing equations as follows

2 2
a'1 Iu,xx +K aSSu,yy + K(3'12 + a'55 ) V,Xy - bll\vx,xx —K bSSWx,yy —K (b12 + b55 ) \lly,xy

4 2
- ﬂ(K (aSSu,yyyy - bSSWx,yyyy ) +K (aSSu,xxyy - bSS\VX,Xny ) - K(aSSV,Xxxy - b55\|jy,xxxy ))

+ 'HK3 (aSSV,nyy - b55wyaxyyy ) +Z,= Tou - lex s

2 2
K(3'12 + a55 )u,xy +K allv,yy + aSSV,XX - K(b12 +b55 )Wx,xy —K bll\lly,_yy _b55\|]y,XX

2
- ﬂ ((aSSV,XXXX - b55\|jy,XXXX ) +K (aSSV,Xxyy - bSSWy,Xxyy ) —K (aSSu,XXXy - bSS\Vx,Xxxy ))

+ px’ (assu,xyyy —DssV ) +7Z,= TOV" _Tl\‘[lyi

2 2 4
ksaSS (W,XX +K W,yy _nlwx,x _anWy,y>_a55ﬂ(w,xxxx + 2K W,Xxyy +K W,yyyy)

2 3
- a’SSﬂnl (\llx,xxx +K \ljx,xyy + Wy,xxy +K Wy,yyy )

NG 0 0,2 T
+ N W +2N xw  + N k'w , +Z, =W,

2 2
—b,u,, —byK u, K (blz +bys ) VT d v, . tx dSS\Ijx,yy +xK (dss +d, ) Yy«

3 2
+ ﬂ <_K (bSSV,XXXy - dSS\I]y,XXXy ) —K (bSSV,nyy - dSS\Vy,nyy ) +K (bSSu,Xxyy - dSSWX,Xny ))

4 2
+ ﬂ(K (b55u,yyyy - dSSWx,yyyy ) + assm (W,xxx +K W,xyy ))
3k

4 wy,xy ) + KSaSSTII (W,x - nl\Vx ) + Z4 = TZ“I”X _iﬁ’

1
+ 2‘55(2 (Z wx,xx + KZ\VX,yy -

(22a)

(22b)

(22¢)

(22d)
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(b12 +bgs)u ) bllK Vo bSSV,xx +K (dss +d, )‘Vx,xy + szll\vy,yy + dSS\Vy,xx
+IB (_K (b55u,xxxy - dSSWx,xxxy ) - K3 (b55u,xyyy - dSS\IIx,nyy ) + (bSSV,XXXX - dSS\lly,xxxx ) )

K2 ( SSV xvyy SSWy,XXy!/ ) + aSSKnl (W,Xxy + sz,yyy )) (226)
3K Kz T .. T ..
+355€2£ 4 Vi TV T\Vy,yyj—'_KSaSSnl (Kw,y _n1‘|fy)+zs =LY, — V0.

where

_ 2 2

Z = (a“wyxw’m +(a12 +a55)1< W, W, Ta,K W,XW,W)/T]“ (23a)
. 3

Z,= (allK WoyWoyy * (a, +ay) KW W o Ta55KW W ) /M, (23b)

Z, = (NXXWM + 2KNXyW,Xy + Kzﬁyywﬁw )/n1

— — — _ (23c)
+ (NXX,XW,X +kN, W, +kN w +K’N w, )/111 ,
Z,=(b,w, w_, +(b,+by )W, w_, +b’w w, )/n, (23d)
Zs = (bllK}W,yw,w + (blz +bys ) KW W, +bskw W, ) /s (23e)
NXX = all {u,x +LW,2X j _bllwx,x + alZK[V,y +L6W,2y j _bIZKWy,y’ (23f>
27, 27,
_ 5 2
Nyy = auK[Vy +anyJ bllwy,y t+a,, [u ‘ +2—rl1w v] by, . (23g)
— K
N, =ag|xu, +v, +ﬂ_W’XW’y —b; (K\Vw +\|Iy’x). (23h)
1

3 SOLUTION STRATEGY

Prior to go through the free vibration of buckled FG microplates, the postbuckling behavior must
be investigated. To approach this purpose, we solve the nonlinear governing equations in the ab-
sence of time-dependent terms. To discretize the governing equations along with boundary condi-
tions, the GDQ (Shu et al. 2000) method, an efficient method to solve the set of nonlinear partial

Latin American Journal of Solids and Structures 11 (2014) 2351-2378
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differential equations, is used. According to this method, a variable function, f(X), on the do-
main[x,...,x;] is defined of which rth-order derivative of f (X) at a given point X, can be ap-
proximated by

d'f S (r
S 200 (x), (24)

in which D(ér) stands for the weighting coefficients of rth-order derivative and is defined as

D) = W], i,j=12...N and r=0,2.,N -1 (25a)
I r=0
P(x
V\{J@: i i,j= 1,....,Nand i#jand r=1 (25D)
(x-x%)P(x;)
(1)
el 2]
X—X .
,j=1...,Nand r>2
N
- 2w i=]

N
where P()q)z H (Xi —Xk) and Iis a NxN identity matrix.

k=1; i=k
To accommodate the GDQ technique to a two-dimensional case, the Kronecker tensor product indi-
cated by ® is used to approximate the partial derivative of a two variable function f(X, Y ) defined
on [X,...,x] and [¥,...,4,]. Therefore, the second order partial derivative of f(X, y) with re-
spect to x and y can be written as

2
ofx.y) 2(‘2 :4) =(p} @D )T. (26)
X0y
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where f is a column vector introduced as

£ =[E06 %) T ) E 88 ) F s ) T ) T 4] (27)

In order to generate grid points in the X and Y directions, the shifted Chebyshev—Gauss-Lobatto
grid points can be employed

(28)

Considering postbuckling problem, the external forces are Nix =—y1P,Ngy =—y,P and Ngy =0.

Neglecting the time-dependent terms in the governing equations and writing the discretized forms
result in following equation

(K-PK,)X,+R(X,)=0 (29)

T
in which X = {l_lS,VS,V_VS,\TIXs ,\les} ,R(XS) Z{RI,RZ, R3,R4,R5}T and the column vectors of
the displacement variables in the postbuckling region includingﬁs,VS,Ws,\TIxs and
y, with NM elements are defined as

T

U, =00 )5 UG YU, ), W 2 )55 U, By )y UK )] (30a)

Vo = [V Y )s s VX B V(X 18 ) os V(X5 5 s V(s By o Vs )] 5 (30b)

W, = (WO Yooy WO ) WXL B )y s W 2 Do s WO ) W k)] 5 (300)

U = [V () W (K B W (K 1) W (X5 1) W (X B s W (s )]

T
H

(30d)

— T
v, =[\|fy(Aq,a),-.-, wy(xN,yi),wy(&,yz),.--,WY(XN,yZ),-.-,\Vy(xl,m),.--,WY(XN,%A)] (30e)
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Also,

_Kn K, K; K, KIS_
K, K, K, K, K,

K=K, K, K; K; K/
K, K, K; K, K
Ky Ky, Ky Ky Ky
0 0 0 0 0 (31)
0 0 0 0 0

K,=0 0 (1,®D7}y,+*(DY®1 )y, 0 0
0 0 0 0 0
00 0 0 0

where 1 ,and I are M xM and N xN identity tensors, respectively.The definitions of the com-
ponents of stiffness matrix K can be found in appendix A. Also, in appendix B, R,R,,R,,R,
and R;including the nonlinear terms are represented. If the nonlinear terms vanish, Eq. (29) de-
clines to an eigenvalue problem as [K—PKg]XS =0 which gives the critical buckling load of FG
microplate and corresponding mode shapes. Eq. (29) can be written in the form of a system of pa-
rameterized nonlinear equations as

F(X,,P)=KX_ -PK,X +R(X,)=0. (32)

To find the solution of this parameterized problem, one can employ the Pseudo-arclength continua-
tion (Keller 1977). With regards to this method, via an iterative solver, an additional constraint is
added to the system of nonlinear equations to find a point at the given pseudo-arclength. The re-
sulting augmented system can be written as

{ F(X.,P)=0

X, (X, —X, )+, (P-P))=As’ (33)

Where(XO,PO) is the initial solution and (XO,PO) is the tangent vector of the solution path at

(XO,PO) . As represents the step-size used in predicting the next points. The next points are select-

ed in a step As along the tangent vector at the current point. Afterwards, to improve the point
predicted in the first stage, by supposing the initial guess as the linear solution of the system and
using the Newton method, the above nonlinear system can be solved. Eq. (33) leads to a square
Jacobian as
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J=|| X, ¢ 00X, oP ¢ .

%] h

(34)

. [0 X
Considering JV = {1}, the tangent vector V ={ PS} related to the subsequent steps can be ob-

tained.
So as to investigate the free vibration of the microplate around the buckled configuration, we need

to introduce a small disturbance depending on time. The displacement vector

T
X= {ﬁ, Vv, V_V,\Tlx,\TIy} includes both the buckled configuration and the dynamic disturbance (Li et

al. 2004; Li et al. 2007)
X=X +dX,. (35)

By employing Eq. (35), the discretized nonlinear governing equations including the time-dependent
terms can be written as

F(X,P)=KX-PK,X+R(X)+MX=0. (36)
in which X is the second derivative of X with respect to time and
L(1,01,) 0 0 -L,(1,®1,) 0 |
0 L(1,®1,) 0 0 -1,(1,®1,)
M = 0 0 L(1,®1,) 0 0 (37)
-1 (L, ®L,) 0 0 L(1,®1,) 0
0 -1(1,®1,) 0 0 L(1,®1,)
Considering Eq. (35) and Eq. (36), and using Taylor’s expansion about X gives
F(X,+dX ,A)= F(Xs,x)+2—F dX, +HO.T=0. (38)
XX

Given the dynamic disturbances are negligible compared to the postbuckling configuration, the

higher order terms H.O.T can be neglected. So, using Egs. (36) and (38) gives

F(Xs+dXd,P)=2—§

JR

S
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By considering dX, = {6 0.0 _0 5 } ¢, where mis the non-dimensional natural frequency,

uUvVOW g

and assuming g“, Oy, 8w,6w and Sw as column vectors of NM elements representing the associated
X y

mode shapes, equation (36) can be expressed as

(K-o’M)X, =0. (40)

where X, = {656 0 5 } and

UCVOW Y

oR, OR, ©OR, OR, 0R,
ou, ov, ow, oy, Oy,
oR, OR, OR, OR, OR,
ou, ov, ow, oy, Oy,
OR OR |OR;, OR, OR; OR; OR;
6ij’ oX_ | ou, ov, ow, oy, o, (41)

/R, OR, OR, OJR, OR,
ou,  ov, ow, Oy, Oy,
oR, OR, OR, OR, 0R,
gu, ov, ow, oy_ Oy,

K=—2= [K PK_ +

It is noteworthy to mention that the stiffness matrix achieved corresponding to the free vibration of
the buckled microplate is equal to the first block of Jacobian matrix in Eq. (39) with the converged
displacement, which was used in dealing with the postbuckling problem. Edge conditions can be
imposed directly by inserting all the boundary conditions into Eq. (40). In order to convert the
governing equations given by (40) to a generalized eigenvalue problem, let define the following dis-
placement vectorsX; and X, as

(42)

in which the subscripts b and d represent the boundary and domain grid points, respectively. Ac-
cordingly, Eq. (40) can be simplified as

Ku K |[[Xg — o M, M, ||x, (13)
K., K, ||x, 0 0 X, '
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Now, the eigenvalue problem in the domain can be obtained from this relation as
K, x, =-0’M,X,. (44)
where
K, =Ky _deKbb_led’Mn =M, _Mdebb_led' (45)

Solving Eq. (45) gives the natural frequencies of the microplate for each applied load and the asso-
ciated buckled mode.

4 RESULTS AND DISCUSSION

In this part, the numerical results obtained from the MCST for the size-dependent vibration analy-
sis of post-buckled FG Mindlin microplates with various edge supports are represented.
In order to ensure the accuracy and validity of the proposed numerical scheme, the buckling load

parameters FTCr = F’cra2 / (7[2D ); in whichD = (/1 +2 y) h* /12, for the isotropic square Mindlin
microplates with various boundary conditions and subjected to equal biaxial in-plane compressive

loads are calculated and compared with the results given by Zhang et al. (2013) in Table 1. The
material properties are chosen asE =1.44GPa,v =0.38, p=1220kg /m’ andl =17.6 um . Ac-

cording to this table, it can be observed that the results generated through the present solution are
in good agreement with the ones reported in the literature.

Bour'ld'ary Sources Classic h/l=1 h/l=2 h/l=5 h/1 =10
conditions
ccce Present 5.2602 27.8230 10.1557 6.0499 5.4624
Zhang et al.(2013) 5.2535 27.7034 10.1659 6.0617 5.4725
SS9 Present 1.9955 9.3415 3.8499 2.2921 2.0416
Zhang et al.(2013) 1.9928 9.3383 3.8366 2.2886 2.0669
S0SC Present 3.8057 17.9008 7.3469 4.3761 3.9511
Zhang et al.(2013) 3.8015 17.8973 7.3582 4.3857 3.9589

Table 1: Comparisons of buckling load parameter for isotropic homogeneous microplates with various boundary

conditions and subjected to equal biaxial in-plane compressive loads (a/ h = 50)

Afterward, the effects of the length scale parameter h / | , gradient index n, and length-to-thickness
ratio a/ h on the free vibration characteristics of postbuckled FG microplates are discussed in detail.
It is considered that the microplates made of two materials including aluminum (Al) and ceramic
(SiC) are considered with the material properties E_=70GPa  andv_ =0.3, for Al
andE_ =427 GPaand v_ =0.17for SiC. In this paper, FG microplates with three boundary

conditions, including fully simply supported edges (SSSS), two opposite sides simply supported and
two others clamped edges (SCSC), and fully clamped edges (CCCC) end supports are investigated.
The effect of the length scale parameter on the postbuckling deflection of FG microplates with dif-
ferent boundary conditions predicted by the MCST is illustrated in figure 2. An increase in the
Latin American Journal of Solids and Structures 11 (2014) 2351-2378
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value of non-dimensional length scale parameter shifts the postbuckling curves to the left-hand side,
resulting in lower critical applied loads and higher non-dimensional deflections. In other words, the
CT theory underestimates and overestimates the non-dimensional axial load and non-dimensional
deflection, respectively. Given that the distance between postbuckling paths is comparatively large
at microplates with CCCC edge supports, the importance of using the size-dependent MCST gets
more pronounced in these microplates.

(a) cccc (b) SSSS
2 : : :
18 Lap
1.6 w2t
S 14 s
3 12 3
8 1 % 08
1S
§ 08 -§ 0.6
c c
S 06 ; S 04
0.4} : !
0.2 I’ 0.2
. ]
0 H I | | | | | I | 0 Hl | | I
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25
Non.Dim Applied Load Non.Dim Applied Load
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c
2 12 hi =7 |
i.ﬂ .......... Classic
T 1 1
)
£ 08 |
a
S 06 ]
2 I
0.4 I |
o
0.2 ] |
]
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HLI | 1
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0 005 01 015 02 025 03 035 04
Non.Dim Applied Load

Figure 2: Effect of non-dimensional length scale parameter on non-dimensional postbuckling

deflection of FG microplate for different boundary conditions(n =0.2,a /h=b/h= 12)

Depicted in figures 3 is the effect of the length scale parameter on frequency-response curves of FG
microplates with different boundary conditions around the undeflected and the first buckled config-
urations. It is seen that while microplate is in unbuckled configuration, an increase in the non-
dimensional applied load decreases the non-dimensional frequency; but, when the non-dimensional
axial load exceeds the critical applied load, the non-dimensional frequency grows. As long as the FG
microplate is in undeflected region, an increase in the non-dimensional length scale parameter gives
lower non-dimensional frequency; while, in the buckled configuration, this increment leads to the
opposite result and higher non-dimensional natural frequencies.
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Figure 3: Non-dimensional fundamental natural frequency of the FG microplate around the undeflected

and the first buckled configurations versus non-dimensional applied load for different

non-dimensional length scale paramters (n =0.2,a/h=b/h= 12)

The effect of the material gradient index n on the postbuckling deflection of FG microplates with
CCCC, CSCS and SSSS boundary conditions is shown in figure 4. With the rise of the material
gradient index, the critical applied load declines and large postbuckled deflections are induced.

Moreover, it can be deduced that microplates with CCCC edge supports are more affected by the

variation of material gradient index compared to other counterparts.
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Figure 4: Effect of material gradient index on nondimensional postbuckling deflection

of FG microplate for different boundary conditions (h /1 = 2,a /h=b/h= 12)

Figure 5 illustrates the variation of the non-dimensional natural frequency with the non-dimensional
axial load for FG microplates with different material gradient indexes. With the increase of the
material gradient index, the frequency-response curves move to the left-hand side inducing lower
stability.
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Figure 5: Non-dimensional fundamental natural frequency of the FG microplate around

the undeflected and the first buckled configurations versus non-dimensional axial load
for different material gradient indices (h /= 2,a/h=b/h= 12)

Figure 6 is depicted to investigate the effect of the aspect ratio on the non-dimensional postbuckling
deflection of FG microplates with different boundary conditions. It can be seen that an increase in
the value of aspect ratio reduces the critical buckling load and induces higher buckled deflection.
The proximity of curves at microplates with SSSS edge supports indicates the pallid role of this
parameter on the postbuckling path of these types of microplates.
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Figure 6: Effect of aspect ratio on non-dimensional postbuckling deflection of FG microplate

for different boundary conditions (Il =0.5h/1=2,b/a= 1)

Shown in figure 7 is the variation of the non-dimensional natural frequency with the non-
dimensional axial load for FG microplates with different aspect ratios and various edge supports.
Similar results described in figures 5 and 3 can be drawn herein for the effect this parameters. It is
seen that frequency response of microplates is different before and after buckling, in a way that
microplates with higher aspect ratios have lower natural frequencies in prebuckled configuration

and higher frequencies in buckled region.
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Figure 7: Non-dimensional fundamental natural frequency of the FG microplate around

the undeflected and the first buckled configurations versus non-dimensional

applied load for different aspect ratios (Il =0.5, h/1= 2, b/a= 1)
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Figure 8: Non-dimensional second frequency of the FG microplate around the undeflected and the first buckledcon-

figurations versus non-dimensional applied load for different (a) non-dimensional length scale parameters

(IIZ 0.2,a/h=12, b/azl), (b) material gradient indices (h/1:2, a/h=12, b/azl)

The effects of non-dimensional length scale parameter and material gradient index on the second
frequency of clamped microplates are shown in figure 8. The results show that in an unbuckled
equilibrium configuration, the frequencies decease with the increase in the axial applied load. As
said before, the first frequency approaches zero at the critical buckling load. But, the higher fre-
quencies go to a minimum value. For the plate in a buckled state, the frequency response of micro-
plate has different behavior corresponding to each vibration modes.

5 CONCLUSION

In the current work, the free vibration behavior of post-buckled functionally graded (FG) Mindlin
rectangular microplates was investigated based on the MCST. By using Hamilton’s principle, the
nonlinear governing equations and associated boundary conditions of FG rectangular microplates in
the postbuckling domain were derived. After that, the governing equations and associated boundary
conditions were discretized and solved using the GDQ method and the pseudo-arclength continua-
tion technique, respectively. Finally, the influences of effective parameters including length scale
parameter, material gradient index, aspect ratio and boundary conditions on the postbuckling path
and frequency-response curves of FG rectangular microplates were examined and it was concluded
that:

. With the rise of the material gradient index, non-dimensional length scale parameter and
aspect ratio, more postbuckled deflections are induced so that the critical applied load declines,
indicating lower stability of microplates.

Latin American Journal of Solids and Structures 11 (2014) 2351-2378



2374 R. Ansari et al. / Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates

. The necessity of using size-dependent theory to trace the postbuckling path is more felt in
microplates with fully clamped edges. Also, this sort of microplates was seen to be more affected by
variations of material gradient index and aspect ratio.

. As the applied load increases up to the critical buckling load, the non-dimensional frequency
diminishes, while the non-dimensional frequency ascends when the microplate enters the buckled
region. Also, it was observed that with the increase of either non-dimensional length scale parame-
ter, material gradient index and aspect ratio, the non-dimensional frequency decreases for micro-
plates in the unbuckled configuration. However, the fundamental frequency grows with the rise of
aforementioned parameters in the postbuckling region.
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Appendix A

The components of stiffness matrix K are

23 31
KM:KM_—bH(Iy@D(X )by’ (D @1 )+b55,81< (DY ®1,)+b. e’ (D @DY),
K,; =K, == (b, +bg) (D) @D )-b, (D)) @D )-bpi’ (D @ D),

K, = 2a11(D(y)®I J+a.(1,®D)-a,8(1, D) api (DY ©DY),
J-bp(0) 20 -b,p (200,

Ky, =Ky, ==, (DY ®1, )by (1, ®DF ) + b, (1, @D ) + b, B’ (DY @ DY),

K, =K, = (blz +b55)(D( ®DS
y

Y X

Yy
K, =k.a, [(Iy @)+« (DY @I, )J —a, ﬂ[(ly ®D{)+2 (D)) @D ) +* (D) ®1, )}
K, =-K,; =k, (Iy ®D| ) as; fm, [(Iy ®DS))+ K’ (D(yZ) ®DS))J’

D,
5 =K, = —ksassan(D(;) ®Iy)—2155,8771 |:K(D(;) ®D£{2))+K3 (D(;) T, )},

X
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Appendix B

R, R,,R;, R, and R; including the nonlinear terms are

R, =ni(a”((1y ®p!)w,
1
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AT EN R LB

X Y . ! n
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The boundary conditions are similarly discretized.
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