
2227 

Abstract  
Analysis for general closed form solution of the thermoelastic 
waves in anisotropic heat conducting materials is obtained by 
using the solution technique for the biquadratic equation in the 
framework of the generalized theory of thermoelasticity. Obtained 
results are general in nature and can be applied to the materials of 
higher symmetry classes such as transvesely isotropic, cubic, and 
isotropic materials. Uncoupled and coupled thermoelasticity are 
the particular cases of the obtained results. Numerical computa-
tions are carried out on a fiber reinforced heat conducting compo-
site plate modeled as a transversely isotropic media. The two 
dimensional slowness curves corresponding to different thermal 
relaxations are presented graphically and characteristics displayed 
are analyzed with thermal relaxations. 
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1 INTRODUCTION 

Most materials experience volumetric variations when are subjected to temperature variations 
and the consequent thermal stresses developed due to temperature gradient in the surface vicinity 
results in micro-crack and others imperfection development at the surface of anisotropic materi-
als. Thus owing to anisotropic material’s applications in aeronautics, astronautics, plasma phys-
ics, nuclear reactors and high-energy particle and in various others engineering sciences, theory of 
thermoelasticity has aroused intense attention in our challenge to understand the nature of the 
interaction between temperature and strain fields. Main characteristics of the waves when they 
propagate within an anisotropic media are: phase and group velocities depend on direction – ani-
sotropy, there is a difference between the phase velocity (propagation of the wave) and the group 
velocity (propagation of energy), occur shear wave splitting. Since the last century generation of 
waves in thermoelasticity is already known by chopping the sunlight coming onto a heat conduct-

K.L. Verma
 
 
Department of  Mathematics, 
Government Post Graduate College 
Hamirpur, (H.P.) 177005 INDIA  
email: klverma@netscape.net 
 

 

 

 

Received 07.05.2014 
In revised form 29.06.2014  
Accepted 15.08.2014 
Available online 26.09.2014 
 



2228         K. L. Verma / Thermoelastic slowness surfaces in anisotropic media with thermal relaxation 

 

Latin American Journal of Solids and Structures  11 (2014) 2227-2240 
 

ing metallic pate. The advent of pulsed lasers has allowed practical implementation of these ideas 
for the generation of energy at the surfaces of solid. The major difficulty which is inherent to 
thermoelastic problems comes from the fact that it is mixed elasticity problem, and for that rea-
son complete description of the problem necessitates using the coupled wave equations of the-
moelasticity. Since thermal waves are highly damped at ambient temperature, and in most cases 
one does not necessitate to take them into account which is not true in case of thin specimens for 
which thermal waves are often present.  

Theory of thermoelasticity when applied to stationary problems allows one to predict the na-
ture and distribution of stress fields due to thermal fields and serve a basic tool in manufacturing 
engineering involving the use of temperature gradients during fabrication processes. The use of 
this theory in general to dynamical problems is not a trivial matter, but has been extensively 
described, at least for isotropic solids, by several authors Chandrasekharaiah (1986, 1998). 

A large variety of wave propagation problems generated by impact execution and character-
ized by discontinuities of strains and thermal stresses at their front surfaces. The phase velocity 
or its inverse called the slowness describes the propagation of plane waves and is directed along 
the wave normal. Thus the notion of slowness is the reciprocal of speed (or velocity). Acoustic 
wave propagation in elastic media is characterized by the slowness surface. The slowness surface 
consists of four sheets associated with four modes of wave propagation and the two outer sheets 
can have zero-curvature locally. It is shown that the outmost sheet can admit extraordinary zero-
curvature and the slowness curve can appear as a straight line locally. Using the perturbation 
method, the conditions for the extraordinary zero-curvature are derived analytically without vio-
lating the thermodynamic condition for elastic media. The results can be applied to crystals with 
higher symmetry and to the study of phonon focusing and surface waves. For the purposes of 
thermoelastic elastic wave propagation in anisotropic media, it is often practical to use the "slow-
ness" of the wave instead the velocity.  
 Slowness is defined as the ratio between propagation time and propagation distance, i. e., it is 
simply the inverse of velocity. Slowness surface, defined by the Christoffel equation for the bulk 
wave propagation in anisotropic elastic media, exhibits many interesting features as in Musgrave 
(1970); Auld (1973). Love (1927) added  another  interface  in  order  to simulate  a  finite  
thickness layer  and  attempted  to solve  the  simplest  case  of  wave  interaction  with  it, 
namely that  of  a  horizontally  polarized  SH  wave. Studies  of  elastic  waves  in  such simple  
and  mostly  isotropic  systems  are  widely  available  in  the  books Ewing, et al. (1957); 
Achenbach 1975); Ting (1996); Graff (1975). 
Theory of thermoelasticity in which the temperature field is coupled with the elastic strain fields 
has been widely applied in the book by Nowacki (1986). The classical theory of thermoelasticity 
has an unrealistic property of the diffusion type heat equation is that a swift change in tempera-
ture made at some position in the solid will be instantaneously transmitted everywhere, giving 
rise to an infinite propagation speed. This feature requires a modification of the Fourier law by 
adding a supplementary term. Lord and Shulman (1967) and Green and Lindsay (1972) extended 
the coupled theory of thermoelasticity by introducing the thermal relaxation time in the constitu-
tive equations to eliminate the paradox of infinite velocity of heat propagation, thus are called 
generalized theories of thermoelasticity. While dealing with heat conducting anisotropic solids, the 
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physics involved is much more intricate as three quasi-elastic waves modes are coupled to the 
quasi-thermal wave mode. Nevertheless, the problem is not formally intractable and has been 
extended and solved by various Dhaliwal and Sherief (1980) and Banerjee and Pao (1974). Many 
problems in generalized thermoelasticity are considered and solved by Verma (1997); Verma 
(2001, 2002, 2012); Bajeet(2012); Verma and Hasebe (2002);Verma and Hasebe (2004). Chiriţă 
(2013) studied the Rayleigh surface waves on an anisotropic homogeneous thermoelastic 
half space. Kumar et al. (2014) studied the propagation of Lamb waves in micropolar generalized 
thermoelastic solids with two temperatures bordered with layers or half-spaces of inviscid liquid 
subjected to stress-free boundary conditions in the context of generalized theory of thermoelasticity 
with thermal relaxation. Sura  and Kanoria, (2014) studied he thermo-visco-elastic interaction due 
to step input of temperature on the stress free boundaries of a homogeneous visco-elastic isotropic 
spherical shell in the context of a new consideration of heat conduction with fractional order ge-
neralized thermoelasticity. 

In general, in a heat conducting materials, four types of waves are possible in a given direc-
tion. These are associated with the directions of the particle displacement vectors and tempera-
ture. For a given wave normal in thermoelastic medium, there exists four slowness’s correspond-
ing to wave propagation along the wave normal. Considering all possible directions extending 
outward from a centre or origin, the set of allowable wave slowness’s defines a four-sheeted slow-
ness surface produces a centered slowness surfaces which are Centro-symmetric. These are also 
referred to as having different polarizations. Pure modes can be defined in different ways, but in 
references Wang and Li  (1998) and Nayfeh (1995)define them as modes where either pure modes 
are defined as being modes which are either normal to (mode is longitudinal)  or parallel (mode is 
shear)  with the direction of propagation and the thermal mode. In coupled thermoelasticity 
modes are not pure but are skewed. Skew is defined as a measure of how far any particular mode 
deviates from this ideal. If the mode is pure, skew will be zero. For other modes, the skew is the 
angle between the polarization vector and the direction of propagation (for quasi-longitudinal 
modes) or the normal to the direction of propagation (for Quasi-shear modes) and for quasi-
thermal modes. It is possible to compute the eigenvalues and the eigenvectors associate to such 
secular equation numerically, and it has been done for various classes of symmetry where the 
determinantal equation reduces to simper forms Banerjee and Pao (1974) and thus produce 
graphs for the slowness, velocity and wave surfaces and it is shown that slowness surface thermoe-
lastic waves dependent on the frequency. Sharma (2007) studied the propagation of inhomogene-
ous waves, in a generalized thermoelastic anisotropic bounded medium. The slowness surfaces are 
identified for the waves reflected (decaying away) from the boundary. A further study on the 
slowness surfaces in thermoelasticity is made by Bernard Castagnede and Berthelot(1992) consid-
ering the equations of thermoelasticity. In all these study no attempt has been made to study the 
slowness surfaces with the thermal relaxation time and no further exclusive investigation has been 
made or available in the literature on heat conducting anisotropic media in the context of the 
equations of generalized theory of dynamic thermoelasticity, which motivated to carry out the 
present work to observe the behavior of slowness surfaces with thermal relaxation. 
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In this paper Analysis for general closed form solution of the thermoelastic waves in aniso-
tropic heat conducting materials using the solution technique for the biquadratic equation in the 
framework of the generalized theory of thermoelasticity is obtained. Obtained results are general 
in nature and can be applied to the materials of higher symmetry classes such as transversely 
isotropic, cubic, and isotropic materials. Uncoupled and coupled thermoelasticity are the particu-
lar cases of the obtained results. Numerical computations are carried out on a heat conducting 
plate modeled as a transversely isotropic media. The two dimensional slowness curves correspond-
ing to different thermal relaxations are presented graphically and characteristics displayed with 
thermal relaxations. 
 
 
2 FORMULATION 

Consider a set of Cartesian coordinate system  1 2 3, ,ix x x x and the basic field equations of 

generalized thermoelasticity for an infinite generally anisotropic thermoelastic medium at uniform 
temperature T0 in the absence of body forces and heat sources are Verma (2002) 

 

, ,ij j iu    (1)

, 0 0 , 0 ,ij ij e ij i j i jK T C T T T u u               (2)

 ij ijkl klC 
 (3)

ijK
 
and 

ij are the  thermal conductivities and thermoelastic coupling  tensors respectively, kl ,

0,  and eC  are the  linear thermal expansion, density, thermal relaxation time and specific heat 

at  constant strain of  the material. Comma notation is used for spatial derivatives and super-
posed dot represents differentiation with respect to time.  
Strain-displacement relation   
 

2,,  ijjiij uue . (4)

 

3 ANALYSIS 

Assume that solutions to the equations (1) and (2) are expressed by 
 

  1 1 2 2 3 3, ( , ) exp[ ( ), 1, 2, 3.j ju T U i v x v x v x vt j       (5)

 
where   is the wave number, v is the phase velocity ( = 


),   is the circular frequency, jU  

and   are the constants related to the amplitudes of displacement and temperature, kv , k = 1, 

2, 3  are the components of the unit vector giving the direction of propagation. 



        K. L. Verma / Thermoelastic slowness surfaces in anisotropic media with thermal relaxation      2231 

 

Latin American Journal of Solids and Structures  11 (2014) 2227-2240 
 

Substituting equation (5) into equations (1) and (2), we have  
 

2 1
i( ) 0i k k k i j jv U i v v       

, (6) 

2( ) 0ij j i ij i j n ei vT v U K v v C v       
,
 (7) 

 
where   = +-1i 0 , ik

 is the Kronecker delta, and ik  are the Christofied stiffness as follows: 
 

ik ki ijkl j lC v v  
.
 

(8) 

The equations (6) and (7) provide a non-trivial solution for jU and  if the determinant of their 

coefficients vanishes. This leads to 
 

2 2 1 2 2 2
i i 0 idet[ ] { det[ ] det[ ]} 0k ik e k ik k ikv v i KC v v v                  , (9) 

where 
i j j lK K v v ,  

i i 0 / ( )k k ip kq p q eT v v C       (10) 

are the isothermal acoustical tensor, the effective thermal conductivity for linear heat flow in the 

direction of  1 2 3, ,v v v  and the isentropic acoustical tensor respectively. Clearly (9) represents an 

eigenvalue problem, where the phase velocities v  are the eigenvalues, and the jU vectors (polari-

zation vectors) are the eigenvectors. In general, there will be four phase velocities, accompanied 
by three polarization vectors and thermal variation. These phase velocities and polarizations de-
fine a single (quasi)longitudinal and two (quasi)shear and a thermal modes. Explicitly, the eigen-
value problem is as follow 

2
11 12 13

2 2
21 22 23

2
31 32 33

det[ ]
n

ik

A v A A

A v I A A v A

A A A v


 




  


 (11) 

where ik ikA  or ik . 

Specializing, the above equations for heat conducting orthorhombic materials, the characteristic 
equation of the eigenvalue problem defined in above equation becomes for orthorhombic sym-
metry, the determinant    
     

 det 0,ijM 
  

, 1, 2, 3, 4.i j  (12) 

where 
2 2 2 2

11 11 1 66 2 55 3 12 12 66 1 2

13 13 55 3 1 14 1

2 2 2 2
22 66 1 22 2 44 3 23 23 44 2 3

2 2 2 2
33 55 1 44 2 33 3 24 2 2 34 3 3

2 2
41 1 1 42 2 2

43

, ( )

( ) ,

, ( )

, ,

, ,

M c v c v c v v M c c v v

M c c v v M v

M c v c v c v v M c c v v

M c v c v c v v M v M v

M v v M v v

M





  

       



 

     
  

     

     

 

 2 2 2 2 2
3 3 44 1 1 2 1 3 3,v v M K v K v K v v        
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Relationship describing the wave surfaces in each plane can be derived from (12). Here we are 
considering X2-X3 plane:   
 

2 2
44 66( sin cos )tv c c    (13) 

 

and 
 ,  ql qtv v  and 

q Tv  are roots of   

6 4 2
1 2 3 0eC v A v A v A    

 
(14) 
 

2 2 2 2 2
1 11 55 33 55 3 1

2 2
1 3

( ) cos ( ) sin (cos sin )

     cos sin

( ) eA c c c c C G

K K

     

 

     

 
 

 
4 2 2 2 4

2 11 55 13 55 13 11 33 33 55

4 2 2 2
55 11 3 13 55 3 33

2 4 2 2 2 2
55 3 1 1 3 11 55 33 55

( cos (2 )cos sin sin )

        + - cos 2( ) cos sin

       sin cos sin )cos ( )sin

[ ( )
] ( )( )

A c c c c c c c c c F

c c c c c

c G K K c c c c

   

    

     

     

    

     

 

 
4 2 2 2 4 2 2

3 11 55 13 55 13 11 33 33 55 1 3cos (2 )cos sin sin cos sin( )( )A c c c c c c c c c K K            

 
The angle   is measured from to i jX X such that < i j . 

 

G   , 11  F c  , 11

1

ec C

k
   , 

2
1 0

11 e

T

c C





 , 2

2
1

  , 3
3

1

  ,

0 /i   

(15) 
 

  
Similar relationship describing the wave surfaces in X1-X2 and X1-X3 planes can be obtained and 
discussed.   

 

4  UNCOUPLED AND COUPLED THERMOELASTICITY 

If the thermal relaxation time is taken zero i.e. 0 0  , then the analysis in section 2 reduces 

to the definition of classical coupled thermoelasticity.   Similarly, if the coupling constant is 
taken zero i.e., 0  , then the analysis reduces to the definition of uncoupled generalized 
thermo elasticity. 
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5 NUMERICAL COMPUTATION RESULTS AND DISCUSSION 

The numerical computation is carried out over a cobalt plate. 
Physical data for this material are given as:  

 

0T  298 0K 1  6 2 17.040 10 degNm   

  3 38.836 10  kg m  2  6 2 16.900 10 degNm   

11C  11 23.071 10 Nm  eC  2 1 14.270 10 degJkg    

12C  11 21.650 10 Nm  1K  2 1 10.6900 10 degWm   

13C  11 21.027 10 Nm  3K 2 1 10.6900 10 degWm   

33C  11 23.581 10 Nm    0.129  

44C  11 20.7550 10 Nm   12 11.880 10 s  
 

Table 1: Physical data for a single crystal of cobalt. 
 

Figures 1-3 depict the slowness surfaces for the thermoelastic single crystal of cobalt whose physi-
cal data is given in Table-1. Each figure exhibit the four surfaces one for quasi-longitudinal, two 
for quasi-shear and one for quasi-thermal. Figure 1-3 represent the slowness surfaces for when 
thermal relaxation time increases from 131 10 sec s  to 111 10 sec s . From the figures it is observed 
that on increasing the thermal relaxation time slowness surfaces for quasi-shear modes have no 
effect on varying the thermal relaxation time, whereas quasi-longitudinal and quasi-thermal 
modes are highly affected by the thermal relaxation variations. The inner two curves correspond 
to the quasi-longitudinal and quasi-thermal wave modes whereas the outer two curves correspond 
to the two quasi-shear wave modes. Shapes of all the four slowness curves are circular or ellipti-
cal. 

The innermost curve corresponds to the quasi-thermal (qT) wave mode, next from the inner is 
the quasi-longitudinal(qL) mode the one with dimples to the quasi-shear (qSV) wave, and the 
outer elliptical surface to the quasi-shear (qSH) wave. In slowness space, the four slowness surfac-
es for the qT, ql, qSV, and qSH waves are from innermost to outermost are obtained. 

 

 
Figure 1: Thermoelastic slowness surfaces for crystal of cobalt when thermal relaxation time is 131 10 sec s . 
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Figure 2: Thermoelastic Slowness surfaces for crystal of cobalt when thermal relaxation time is 121 10 sec s . 
 
 
 

 
 

Figure 3: Thermoelastic Slowness surfaces for crystal of cobalt when thermal relaxation time is 111 10 sec s . 

 
 

 
Figure 4: Thermoelastic Slowness surfaces for crystal of cobalt when thermal relaxation time is equalto zero. 
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Results for possessing transverse isotropy, whose x1 axis is normal to the plane of isotropy, can be 
easily obtained by noting the additional conditions imposed by symmetry, namely 

 

33 22 13 12 55 66 44 22 23

33 22 13 12 55 66 44 22 23

,  ,  ,  2

, ,  , 2

c c c c c c c c c

        
    
    

 

And for cubic symmetry  
 

11 22 33 12 13 23 44 55 66,    ,  c c c c c c c c c       and 11 22 33     

Finally, for the isotropic case 
11 22 33 12 13 232 ,    c c c c c c          

44 55 66 , , ,  ( 1, 2,3.)j jc c c K K j         
For thermoelastic isotropic solids, the wave-velocity surfaces are concentric spheres in the same 
way as in corresponding elastic media, where transverse (t) and quasi-transverse (qt) surfaces 
coincide and all waves are pure mode. In generalized thermoelasticity all waves are not in pure 
mode, longitudinal and a thermal wave-velocity surface are coupled, and exists as quasi- longitu-
dinal (ql ) and quasi-thermal ( qth ) mode. Shear wave mode decoupled and is not affected by the 

thermal fields. Figures 5-8 exhibit polar diagrams of phase velocity (m/s) for an isotropic alumi-
num material with different thermal relaxation times. Whereas Figure 9 shows polar diagrams of 
phase velocity (m/s) for an isotropic aluminum material when coupling constant is zero  

In Figure 5, wave-velocity surface corresponding to quasi-longitudinal mode ( ql ) is a sphere with 

greater radius than quasi-thermal (qth )mode wave-velocity surface are drawn, when thermal re-

laxation time 13
0 1.363 10   ,, and they are in the order ql t qth  , this shows that longitudi-

nal wave velocity will exceed thermal wave velocity, and the wave velocity of transverse wave 
velocity lies between longitudinal and thermal wave velocities. When 13

0 1.379 10   , ( )ql t qth  , 

longitudinal wave velocity exceed thermal wave velocity, and transverse wave velocity become 
equal to thermal wave velocities is shown in Figure 6. 

 

Figure 5: Polar diagram of phase velocity (m/s) for an isotropic aluminum 
material when coupling constant 13

0 1.363 10 s   . 
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Figure 6: Polar diagram of phase velocity (m/s) for an isotropic aluminum 
material when coupling constant 13

0 1.379 10   . 

 
 
 

 
 

Figure 7: Polar diagram of phase velocity (m/s) for an isotropic aluminum 
material when coupling constant 14

0 1 .0 10 s   . 
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0 2.293 10   ,  ( )ql qth t  ,  and  at 14

0 2.21 10   , quasi-longitudinal and quasi-thermal 

mode conversion take place is shown in Figure 7. 
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Figure 8: Polar diagram of phase velocity (m/s) for an isotropic aluminum 
material when coupling constant 14

0 2.293 10 s   . 
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Figure 9: Polar diagram of phase velocity (m/s) for an isotropic aluminum 
material when coupling constant is zero. 
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From the above discussion it is observed that thermo-mechanical stability requires that thermalvq ,
5 5

thermal2.938.10 ( / )  7.208.10 ( / )m s vq m s  , while thermal relaxation time 14 13
02.293 10 sec 1.379 10 secs s     , Thus 

,   l thq q and t  surfaces cannot cross in the thermo isotropic–solid case, for mechanical stability 

requires that lv  exceed 4 / 3tv . Thus  l  and t surfaces cannot cross in the isotropic–solid case. 

Quasi-longitudinal and quasi-thermal surfaces mean that a transverse wave velocity will exceed a 
longitudinal wave velocity. A longitudinal- transverse mode conversion means that both longitu-
dinal and transverse modes exit on the wave surfaces. 
 

6 CONCLUSIONS 

In this article analysis for general closed form solution of the thermoelastic waves in anisotropic 
heat conducting materials is obtained and the solution technique for the secular equation in the 
framework of the generalized theory of thermoelasticity is employed. Obtained results are general 
in nature and can be applied to the materials of higher symmetry classes such as transversely 
isotropic, cubic, and isotropic materials. Uncoupled and coupled thermoelasticity are the particu-
lar cases of the obtained results. Numerical computations are carried out for a crystal of cobalt 
modeled as a transversely isotropic media. The two dimensional slowness curves corresponding to 
different thermal relaxations are presented graphically and characteristics displayed are analyzed 
with thermal relaxations. Slowness surfaces for the thermoelastic single crystal of cobalt are ob-
tained at different values of thermal relaxation time. Each figure exhibit the four surfaces one for 
quasi-longitudinal, two for quasi-shear and one for quasi-thermal. It is also observed that on in-
creasing the thermal relaxation time, there is no effect of thermal relaxation time on slowness 
surfaces for quasi-shear modes, whereas quasi-longitudinal and quasi-thermal modes are highly 
affected by the thermal relaxation variations. Further inner two curves correspond to the quasi-
longitudinal and quasi-thermal wave modes whereas the outer two curves correspond to the two 
quasi-shear wave modes and the shapes of all the four slowness curves are circular or elliptical. 

For thermo elastic isotropic solids, the wave-velocity surfaces are concentric spheres in the 
same way as in its counterpart elastic media, where transverse (t) and quasi-transverse (qt) surfa-
ces coincide and all waves are pure mode. In generalized thermoelasticity all waves are not in 
pure mode, longitudinal and a thermal wave-velocity surface are coupled, and exists as quasi-
longitudinal (ql ) and quasi-thermal (qth ) mode. Shear wave mode decoupled and is not affected 

by the thermal fields. It is observed that thermo-mechanical stability in the case isotropic mate-
rial requires that quasi-longitudinal velocity mode should exceed 4 / 3  times the quasi-transverse 

velocity. It is observed that for thermo-mechanical stability in case of quasi-thermal requires,
5 52.938.10 ( / ) quasi-thermal  7.208.10 ( / )m s m s  , and  thermal relaxation time should be in the range 

14 13
02.293 10 sec 1.379 10 secs s     . Further studies using the above equations and results can be made 

by varying other thermal fields. 
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