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Abstract 
The exact solution for the problem of damped, steady state 
response, of in-plane Timoshenko frames subjected to harmonically 
time varying external forces is here described. The solution is 
obtained by using the classical dynamic stiffness matrix (DSM), 
which is non-linear and transcendental in respect to the excitation 
frequency, and by performing the harmonic analysis using the 
Laplace transform. As an original contribution, the partial 
differential coupled governing equations, combining displacements 
and forces, are directly subjected to Laplace transforms, leading to 
the member DSM and to the equivalent load vector formulations. 
Additionally, the members may have rigid bodies attached at any 
of their ends where, optionally, internal forces can be released. 
The member matrices are then used to establish the global 
matrices that represent the dynamic equilibrium of the overall 
framed structure, preserving close similarity to the finite element 
method. Several application examples prove the certainty of the 
proposed method by comparing the model results with the ones 
available in the literature or with finite element analyses. 
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PARAMETERS NOMENCLATURE 

j  imaginary number ( 1j ) 

t  time variable        excitation circular frequency 
x  flexible span axial coordinate    y  flexible span transverse  
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Coordinate 
E  elastic modulus     G  shear modulus 
  mass density        Poisson’s ratio 

A  cross section area     SA   shear area 

I   bending inertia      P  static axial load 
m   mass per unit length     r   rotatory inertia per unit  
 

Length 

Ic  internal damping     Ec   external damping  

Aa  slope of the distributed axial load   La  slope of distributed  
 

Transverse load 

Ab   distributed axial load at 0x    Lb  distributed transverse load 

at 0x  

TL  total member length     L   member flexible span length 
 

AIp , AJp             distributed axial load at node I and at node J, respectively 

LIp , LJp         distributed lateral load at node I and at node J, respectively  

 ( Ia , Ib ), ( Ja , Jb )  dimensions of the rigid offset attached at node I and at node J, respectively 

IL , JL         length of the rigid offset attached at node I and at node J, respectively 

TIM , TJM        mass of the rigid offset attached at node I and at node J, respectively 

RIM , RJM         rotatory inertia of the rigid offset attached at node I and at node J, 

respectively 

 
FUNCTIONS NOMENCLATURE 

),( txu   axial displacement ),( txv   total deflection 

),( txvB  bending deflection ),( txvS  shear deflection ),( tx   bending  
 

Rotation 
),( txN  normal stress  ),,( tyxB  bending stress  ),( tx    shear stress 

),( txFN  normal force  ),( txFS  shear force  ),( txM B bending  
 

Moment 
 

)(xF   amplitude of any of the above functions ),( txF  

)(
~

sF   Laplace transform of )(xF  
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MATRICES NOMENCLATURE 

iQ̂ , iP̂   end displacement and end force vectors of a member flexible span, respectively  

iQ , iP   end displacement and end force vectors at member nodes, respectively  

EiP̂ , EiP   equivalent load vectors at member flexible span and at member nodes, 

respectively  

DiK , iR , iψ  member dynamic stiffness, rotation, and connection matrices, respectively  

Q , P   global vectors of nodal displacements and of nodal forces, respectively 

EP , DK  global vector of the equivalent loads and global dynamic stiffness matrix, 

respectively 

CM , CK  global matrices of the nodal concentrated masses and springs, respectively  

 
 
1 INTRODUCTION 

Many modern structures are formed by beam elements. These skeleton like structures are 
subjected to static and dynamic loads. Their beam members can be of various sizes, including 
beams with small length to beam height ratio. For the analysis of these structures, it is important 
to use a more refined beam theory, where the assumption of the cross section to remain plane is 
not enforced. Besides, harmonic loads can be of high frequency, when then it is important to keep 
in the beam model the cooperation of the rotatory inertia to the overall structure response. This 
motivates the use of the Timoshenko beam theory to obtain the damped steady state response for 
general plane frames subjected to harmonically time varying external forces.  

The study reported here concerns with an exact harmonic analysis using the classical Dynamic 
Stiffness Matrix, DSM. The problem at hand is non-linear and transcendental with respect to the 
excitation frequency [Howson and Williams (1973)]. The approach used to solve it is by the use of 
the Laplace transform.  

Focusing on the calculation of natural frequencies, Howson and Williams (2003) present a 
formulation based on the classical DSM obtained by a set of decoupled fourth order partial 
differential equations (PDE) for the unknowns deflection and rotation of the beam cross section. 
Dias and Alves (2009) also derive the DSM via the same procedure but reaches an improved 
formulation, argued to be more suitable for the eigenproblem solution. It has been noticed 
[Schanz and Antes (2002)] that the dynamic analyses of beams can be performed by decoupling 
deflection and rotation. In the study described here, the original coupled PDEs, combining 
deflection, rotation, bending moment and shear force, are directly employed in order to reach the 
DSM formulation as well as the formulation for the equivalent load vector that arises due to 
distributed loads on the beams and frames. 

We remark that, to be considered exact, a solution must adopt no assumptions other than 
those of the beam theory itself. Hence, if the mode superposition method is employed, the result 
is not exact once it is affected by series truncation error. For this reason, many good publications 
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dedicated to dynamic frame response calculation do not conform to the requirements of an exact 
solution and therefore are not considered here. Concerning the dynamic response of frames, Table 
1 compares different solution methods found in the literature [Abu-Hilal (2003), Foda and 
Albassam (2006), Gürgöze and Erol (2001), Lin (2008), Loudini et. al. (2006), Majukt (2009), 
Mehri et. al. (2009), Saeid (2011), Schanz and Antes (2002), Tang (2008)]. In the present context, 
it is imperative that the PDE representing the governing equations of a given in-plane structure 
subjected to harmonic forces has to be solved exactly. This can be achieved by using Laplace 
transform [Abu-Hilal (2003), Foda and Albassam (2006), Loudini et. al. (2006), Saeid (2011)] 
and/or Green functions [Abu-Hilal (2003), Tang (2008), Davar and  Rahmani (2009)]. Gürgöze 
and Erol (2001) use a distinct method based on a receptance matrix but cannot be considered 
exact since series solution is employed. 

As seen in Table 1, only the solutions given in (Shanz and Antes, 2002; Foda and Albassam, 
2006; Lin, 2008; Majkut, 2009; Saeid, 2001) could be generalized in order to solve models of 
arbitrary numbers of beams and boundary conditions. If further features are to be considered, e.g. 
concentrated masses and springs, these solutions would be limited to the ones developed in (Foda 
and Albassam, 2006; Majkut, 2009). Even so, these references are dedicated to solve single and/or 
in-line beams. When considering the capability to solve framed structures with the features of 
concentrated masses and springs and rigid bodies attached to the members ends, only Seeid 
(2001) can be highlighted. These features are not taken into account by Antes et al. (2004), which 
also deals with harmonic loads applied to Timoshenko frames. Mei (2008, 2012) present an 
interesting model that considers in-plane vibration of some restricted forms of frames. The 
analyses presented in these references are developed, as here, along the Timoshenko bending 
theory. In contrast, the present paper is more general inasmuch as it handles any shape of portal 
planar frame subjected to harmonic loads and it solves the equations of motion via the Laplace 
transform. 

Except for the case of transient analysis, which is beyond the scope of this study, the solution 
of the present investigation is unique in the sense that attends to all of the requisites listed in 
Table 1. Indeed, to best of the author knowledge, no other publication in the context of harmonic 
analysis pays attention to effects like rigid offset and end release. Few publications (Abu-Hilal, 
2003; Tang, 2008; Saeid, 2001) have considered distributed loads and even fewer have 
incorporated damping (Loudini, 2006; Abu-Hilal, 2003) in their analysis. 

The framed structure under consideration is composed by in-plane members, which are 
connected to each other through previously defined nodes. Each member has a flexible span, 
which obeys the Timoshenko beam theory, and may also have rigid bodies attached to its ends, 
where forces can be released. Fig. 1 depicts the internal forces and displacements for the flexible 
span, while Fig. 2 shows the end forces, end displacements, distributed loads, and attached rigid 
bodies for a typical member. Since the rigid bodies may or may not have mass, herein they are 
alternatively named rigid offsets. 
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Rerefence 

Schanz 
and 

Antes 
(2002)

Loudini 
et al. 
(2006) 

Abu-
Hilal 
(2003)

Gürgöze 
and Erol 
(2001) 

Foda and 
Albassam 

(2006) 

Lin 
(2008)

Tang 
(2008) 

Mehri 
et al. 
(2009) 

Majkut 
(2009) 

Saeid 
(2001)

METHOD           

Series solution 

Laplace transform 

Receptance matrix 

Green function 

no yes no yes no no no no no no 

yes no yes no yes no no no no yes 

no no no yes no no no no no no 

no no yes no yes no yes yes no no 

REQUISITE           

Solution 

Exact yes no yes no yes no yes yes yes yes 

Harmonic analysis yes no yes yes yes no no yes yes yes 

Transient analysis yes yes no no no yes yes no no no 

Modeling 
Generalized yes no no no yes yes no no yes yes 

Framed structure no no no no no no no no no yes 

Efect 

Shear deflection yes yes no no yes yes no yes no yes 

Rotatory inertia yes yes no no yes yes no yes no yes 

Internal damping no yes yes no no no no no no no 

External damping no yes yes no no no no no no no 

Distributed load no no yes no no no yes no no yes 

Rigid body no no no no no no no no no no 

End release no no no no no no no no no no 

Concentrated 

mass 
no yes yes no yes no no no yes no 

Concentrated 

spring 
no no yes no yes no no no yes no 

 

 

Table 1: Comparison of solution methods. 
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Figure 1: Timoshenko beam: internal forces and displacements at local coordinates. 

 

Taking into account external and internal damping effects, Section 2 is dedicated to presenting 
the basic equilibrium equations of a flexible span, in both axial and transverse directions. For the 
transverse equilibrium, the Timoshenko beam theory (Howson and Williams, 1973; Dias and 
Alves, 2009; Schanz and Antes, 2002; Loudini et al., 2006)  is applied in order to consider the 
effects of shear deflection and distributed rotatory inertia. In Section 2.2, under the assumption in 
Section 2.1 that all the excitations vary harmonically with the same frequency, the steady state 
response is formulated in terms of displacement and force amplitudes, which are then subjected to 
the Laplace transform. Although this assumption reduces the application scope, it characterizes 
the well-known harmonic analysis, useful to identify harmful vibrations due to resonance 
occurrences. On the other hand, considering that a given beam like structure is linear, the 
proposed method can be extended to a more general excitation type, with more than one distinct 
excitation frequency. 

The first order governing equations of Section 2 are a coupled PDE system that might be 
manipulated in order to obtain uncoupled PDEs for the displacements (Howson and Williams, 
1973; Foda and Albassam, 2006). However, this operation would produce fourth order PDEs that 
are less suitable for Laplace transform (Schanz and Antes, 2002). Hence, in Section 3, the 
equations of Section 2 are directly subjected to Laplace transforms such that, after some easier 
but laborious algebraic operations, decoupled results for displacements and forces could be 
obtained in the Laplace domain. 
 After applying inverse Laplace transforms to the results of Section 3, Section 4 gives the 
desirable formulations for the internal displacements and forces of the member flexible span, 
which are expanded to the model global matrices in Section 5. As it is shown there, from these 
formulations it is possible to obtain the relation between end forces and end displacements such 
that the member dynamic stiffness matrix and the member equivalent load vector can be defined. 
Then, using a similar technique to the finite element method, it is shown how these member 
matrices are employed to establish the global matrices that represent the dynamic equilibrium of 
the framed structure. 

P
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The solution of this equilibrium system directly gives the nodal displacements, from which 
easily follows member stresses. Some careful chosen examples in Section 6 illustrate the major 
features of the present method. 
 

 
Figure 2: Member properties: (a) geometry and degrees of freedom (Dofs) in local coordinates: 

  6,,2,1  Dofs at element nodes;   6̂,,2̂,1̂   Dofs at flexible span ends; 

(b) distributed axial and lateral loads 

 

2 BASIC EQUATIONS 

According to the Timoshenko beam theory (Howson and Williams, 1973; Dias and Alves, 2009; 
Schanz and Antes, 2002; Loudini et  al., 2006) and considering the internal forces and 
displacements in Fig. 1, with the distributed linear varying external forces in Fig. 2.b, the 
following equations are obtained, with the prime denoting the derivative wrt position, x , overdot 
denoting derivative wrt time, t , and all the loads varying in time with the same circular 
frequency  : 

 

Jb

y
L

Ja

Ia

Ib

x

1

2

3

4

5

6

1̂

2̂

3̂

4̂

5


6̂



Node I 

Node J 

Flexible 
Span 

Rigid 
Offset 

Rigid 
Offset 

X

Y

LJAJ pp ˆ,ˆ

y

X

Y

x

Node I 

Node J 

 

LIAI pp ,

LIAI pp ˆ,ˆ

IL

JL

LJAJ pp ,

AAA bxaxp )(ˆ : load Axial

LLL bxaxp )(ˆ : load Lateral

(a) 

(b) 
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Normal stress, σN 

( , )  [ ( , )  ( , )]N Ix t E u x t c u x ts ¢ ¢= +   (1)

         
Normal force, FN 

( , ) ( , )  [ ( , )  ( , )]N N IF x t A x t EA u x t c u x ts ¢ ¢= = +   (2)
 

          
Axial equilibrium 

tj
AAEN ebxatxumctxumtxF  )(),(),(),(    (3)

 

      
Mean shear stress, τ 

( , )  [ ( , ) ( , )]S I Sx t G v x t c v x tt ¢ ¢= - +   (4)

 
Shear force, FS 
 

( , ) ( , ) ( , ) [ ( , ) ( , )] ( , )

[ ( , ) ( , )] [ ( , ) ( , )]
S S S S I S

S I S I

F x t A x t Pv x t GA v x t c v x t Pv x t

GA x t c x t GA v x t c v v x t


 

         
      




 (5)

 
Transverse force equilibrium 
 

tj
LLES ebxatxvmctxvmtxF  )(),(),(),(    (6)

 
Bending stress, σB 
 

),(),([))],(),([ ),,( txctxyEtxvctxvyEtyx IBIBB     (7)

 
Bending moment, MB 
 

( , ) ( , ) [ ( , ) ( , )]B B IM x t y x t dA EI x t c x ts q q¢ ¢= = +ò   (8)

 
Moment equilibrium 
 

),(),(),(),(),(),(),( txrtxvPtxFtxvrtxvPtxFtxM SBSB    (9)
 

   
Here, E and G are the elastic and shear moduli, u and v are the axial and total transverse beam 
displacement, vs is the transverse displacement due to shear, A and As are the total cross-section 
and shear areas, aA and aL are the slope of the distributed axial and transverse load, bA and bL 
are the distributed axial and transverse load, m is the mass per unit length, p and P are 
distributed axial loads. 
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In these equations, the internal and external damping coefficients, Ic  and Ec , respectively, 

are defined in order to reproduce the Rayleigh formulation, where Ec  represents the mass 

proportional coefficient and Ic  the stiffness proportional coefficient. From this, by using the 

orthogonal condition of the natural modes, it is possible to establish the following expression for 
the modal damping ratio i : 

 

2/)/( iIiEi cc    (10) 
 

Meaningful values for Ic  and Ec  can be obtained whenever a pair of modal damping ratio values 

is known. Therefore, after applying Eq. (10), these damping coefficients can be computed by: 
  

)/()(2 2
1

2
2122121  Ec  (11.a) 

)/()(2 2
1

2
21122  Ic   

 

(11.b) 
 

where the natural frequencies ( 21 , ) and the damping ratios ( 21 , ), for the lowest first and 

second modes, are supposedly known. 
On the other hand, by imposing that both Rayleigh damping coefficients must be non-negative 

and that the peak frequencies pi  given by: 
 

221 iipi    (12) 
 

must be real, the following restrictions must be obeyed: 
 

 )/()/( 1212211    (13.a) 

0.707 /22, 21   (13.b) 
 

The external damping coefficient Ec  accounts for the environment viscous actions expressed by 

the forces ),( txuc  and ),( txvc  , so that: 
 

1[ ]E
c

c s
m

- =  (14.a) 

 

The internal damping coefficient Ic  accounts for the energy dissipation due to the structure 

deformation rate and can be related with the Kelvin-Voight damping coefficient VK  (Shanz and 

Antes, 2002): 
 

EKsc VI /][   (14.b) 
 

A more complete characterization of damping in dynamic structural systems can be found in 
Oliveto, and Greco (2002), where it is shown that the Rayleigh coefficients are independent of the 
boundary conditions, no matter whether the system is continuous or discrete. 
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2.1 Steady state response 

For the steady state response, all the previous defined internal forces and displacements can be 
written according to the general equation 
 

tjexFtxF  )(),(   (15)
 

with time and space being decoupled. 
Performing time derivatives in equations (1-9), the amplitudes are related by: 
 

)()1( )( xujcEAxF IN    (16.a)

)()()()( 2
AAEN bxaxujcmxF    (16.b)

)(])1( [)()1( )( xvPjcGAxjcGAxF ISISS    (16.c)

)()()()( 2
LLES bxaxvjcmxF    (16.d)

)()1( )( xjcEIxM IB    (16.e)

)()()()( 2 xrxvPxFxM SB   (16.f)
 

where, for instance, ( )v x , is the amplitude of the beam total deflection. 

 

2.2 Laplace Transform 

Applying the Laplace transform over the previous defined amplitudes:  
 

0

( ) [ ( )[( )] ( ) sxF s F x s F x e dxl
¥

= = ò  (17)

the differential equations (16) are substituted by the following simple algebraic expressions: 
 

)]0()(~)[1( )(
~

ususjcEAsF IN    (18.a)

sbsasujcmFsFs AAEN //)(~)()0()(
~ 22    (18.b)

)]0()(~][)1( [)(
~

)1( )(
~

vsvsPjcGAsjcGAsF ISISS    (18.c)

sbsasvjcmFsFs LLES //)(~)()0()(
~ 22    (18.d)

)]0()(
~

)[1( )(
~   ssjcEIsM IB  (18.e)

)(
~

)]0()(~[)(
~

)0()(
~ 2 srvsvsPsFMsMs SBB   (18.f)

 

It is adopted in the sequence, according to Fig. 2.a, the convention for the end forces and end 
displacements as 
 

1ˆ)0( qu   3ˆ)0( qv   5ˆ)0( q  (19.a)
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1ˆ)0( pFN   3ˆ)0( pFS   5ˆ)0( pM B    (19.b) 
 

Now, solving Eqs. (18.a) and (18.b) for the axial displacement results in: 
 





1

2
0 )(

~
)(~

n

n
n sAsesu  (20) 

 

with 
 

)/(1)(
~ 22

0 AssA   (21.a) 

11 q̂e   (21.b) 

)]1(/[ˆ1 Io jcEApe   (21.c) 

)]1(/[1 IA jcEAbe   (21.d) 

)]1(/[2 IA jcEAae   (21.e) 

 
where 
 

)1()/1(  IEA jcjcEAm   (22) 

 
Total deflection can be obtained after considerable algebraic manipulation of Eqs. (18.c–f), 
yielding: 
 





3

2
0 )(

~
)(~

n

n
n sLsasv  (23) 

 

with 
 

)/()/(1)(
~ 2

2
22

1
2

0   sssL  (24.a) 

33 q̂a   (24.b) 

1352 /]/ˆˆ)1[(  SI GApqjca   (24.c) 

)/()(ˆ)/(ˆ)/( 1
2

031511 EIrPqEIpGAba SL    (24.d) 

)/(ˆ)/( 10310 EIpGAaa SL    (24.e) 

)/( 101 EIba L   (24.f) 

)/( 102 EIaa L   (24.g) 
 

when adopting 
 

)]1(/[1 2
0  IS jcGAr   (25.a) 
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SI GAPwjc /11   (25.b)

2/1
323

2
112,1 )}2/(]4{[ hhhhh    (25.c)

 

and 
 

EIh 13   (26.a)
2

0
2

1 /)/1(  rPGAmjcEIh SE   (26.b)
2

02 )/1(  mjch E  (26.c)
 

Analogously, solving Eqs. 16(c-f) for the shear force and bending rotation results in: 
 





2

3
013

23 )(
~

/ˆ//)(
~

n

n
nLL sLsaspsbsasF  (27)







2

3
0132

3
23

)(
~

]ˆ)(~[

)]1(/[]/ˆ//[)(
~

n

n
n

ISLL

sLsaqsvs

jcGAspsbsas




 (28)

 
       

with 
)]1(/[)/1(2  ISE jcGAwjcm   (29)

 

The Laplace transform of the bending moment can be obtained by inserting Eq. (28) into Eq. 

(18.e). The bending moment amplitude, )(xM B , comes from Eq. (16.e) once the rotation 

amplitude, )(x , has been obtained. 

A common practice in the specialized literature is to decouple Eqs. (16) in order to obtain a  
set of differential equations involving only one unknown function. For the Timoshenko theory, 
complicated terms involving fourth order derivatives will appear, so the use of the Laplace 
transform is troublesome. To avoid this, here the Laplace transform was directly applied to the 
coupled first order Eqs. (16) by applying the transform to second order coupled equations 
involving only deflection and rotation. As a remark, Schanz and Antes (2002) also avoids to work 
with fourth order derivatives. 
 

3 INVERSE LAPLACE TRANSFORM 

By applying the inverse transform to Eq. (20) for the axial displacement and then using the result 
in Eq. (16.a) for the normal force, these corresponding amplitudes are then given, respectively, 
by:  
 





1

2

)()(
n

nn xAexu  (30)
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






1

2
1

1

2

)()1()()1()(
n

nnE
n

nnEN xAejcEAxAejcEAxF   (31) 

 

where, knowing that 
 

)()( 1 xAxA nn   for 0n   (32.a) 
 

and 
 

 
x

nn dAxA
0

1 )()(   for 0n  (32.b) 

 

it holds that 
 
1. For  .....6,4,2,0n  

)()1()( 12/ xsinxA A
n
A

n
n    (33.a) 

 
2. For  .....5,4,3,1n   

)cos()1()( 12/)1( xxA A
n
A

n
n    (33.b) 

    
3. For  ,6,4,2 n  

( 2)/2
/2 1 2 1 2

0

( ) ( 1) [ sin( ) ( 1) / (2 1)!]
n

n n k k n k
n A A A

k

A x x x kb b b
- +

- + +

=

= - - - +å  (33.c) 

 
4. For  ,4,3,1 n  

( 1)/2
(1 )/2 1 2 2 1

0

( ) ( 1) [ cos( ) ( 1) / 2 !]
n

n n k k n k
n A A A

k

A x x x kb b b
- +

- - + -

=

= - - -å  (33.d) 

As for the total deflection, it can be obtained by applying the inverse transform to Eq. (23), 
yielding 





3

2

)()(
n

nn xLaxv  (34) 

where 
 

)()( 1 xLxL nn   for 0n  (35.a) 
 

and 

 
x

nn dLxL
0

1 )()(   for 0n  (35.b) 
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with  
 

1. For  ,6,4,2,0n  

]/[)]()([)( 2
2

2
12

1
21

1
1    xsinhxsinhxL nn

n  (36.a)

 
2. For  ,7,5,3,1n  

]/[)]cosh()cosh([)( 2
2

2
12

1
21

1
1    xxxL nn

n  (36.b)

 
3. For  ,6,4,2 n  

]/[})!12/()(

)()({)(

2
2

2
1

2/)2(

0

2
2

2
1

)12(

2
1

21
1

1


















n

k

knknk

nn
n

kx

xsinhxsinhxL

 (36.c)

 
4. For  ,5,3,1 n  

]/[}!2/)(

)cosh()cosh({)(

2
2

2
1

2/)1(

0

12
2

12
1

2

2
1

21
1

1


















n

k

knknk

nn
n

kx

xxxL

 (36.d)

The rotation due to bending is obtained by substituting Eq. (23) into Eq. (28) and applying the 
inverse transform so that the amplitude is: 
 





4

3

2
3 )()]1(/[)2/ˆ()(

n
nnISLL xLbjcGAxbxapx   for 0n  (37)

With 
 

324 q̂b   (38,a)

123 ab   (38.b)

1232 ˆ aqb    (38.c)

0221  aab    (38.d)

1210   aab   (38.e)

2201    aab   (38.f)

12    ab   (38.g)

23    ab   (38.h)
 

and 
 

)]1(/[12  IS jcGAP   (39)
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Finally, the shear force amplitudes come from the inverse transform of Eq. (27), resulting in 
 





2

3
1

22
3 )()/1(2/ˆ)(

n
nnELLS xLawjcmxbxapxF   (40) 

 

while the bending moment amplitude comes from the use of Eq. (37) in expression (16.e),  
 







4

3
1 )()1()/()(

)()1()(

n
nnISLL

IB

xLbjcEIGAbxaEI

xwjcEIxM




 (41) 

 
4 MEMBER MATRICES 

4.1 Flexible span equilibrium  

Applying the following boundary conditions for the end displacement (see Fig. 2.a): 
 

2ˆ)( qLu   4ˆ)( qLv    6ˆ)( qL   (42) 
 

after laborious algebraic work, the equations of the previous section can be rearranged in the 
following expressions for the internal displacements: 
 

)(ˆ)(ˆ)()( 1111 xUpxUqxUxu opq   (43.a) 

)(ˆ)(ˆ)(ˆ)(ˆ)()( 55335533 xVpxVpxVqxVqxVxv oppqq   (43.b) 

)(ˆ)(ˆ)(ˆ)(ˆ)()( 55335533 xpxpxqxqxx oppqq    (43.c) 

 
with the functions on the right hand sides (from )(1 xU q  to )(xo ) being defined in Appendix A. 

Analogously, applying the following boundary conditions for the end forces: 
 

2ˆ)( pLFN   4)( pLFS

   6ˆ)( pLM B   (44) 
 

the internal forces are given by: 
 

)(ˆ)(ˆ)()( 1111 xNpxNqxNxF opqN   (45.a) 

)(ˆ)(ˆ)(ˆ)(ˆ)()( 55335533 xSpxSpxSqxSqxSxF oppqqS   (45.b) 

)(ˆ)(ˆ)(ˆ)(ˆ)()( 55335533 xBpxBpxBqxBqxBxM oppqqB   (45.c) 
 

with the functions on the right hand sides (from )(1 xNq  to )(xBo ) being defined in Appendix A. 

Now, defining the vectors: 
 

T
A qq }ˆˆ{ˆ

21Q  (46) 
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and  
 

T
A pp }ˆˆ{ˆ

21P  (47)
 

and using the previous equations (43.a) for the axial displacement and (45.a) for the normal force, 
the axial equilibrium is expressed by: 
 

0φPφQφ  OAAPAAQA
ˆˆ  (48)

 

with 
 








 


0)(

1)(

1

1

LN

LU

q

q
QAφ  (49.a)












1)(

0)(

1

1

LN

LU

p

p
PAφ  (49.b)










)(

)(

LN

LU

o

o
OAφ  (49.c)

    
Equation (48), after multiplication by the inverse of PAφ , gives the following classical matrix 

equilibrium equation: 
 

ADAEAA QKPP ˆˆˆˆ   (50)
 

with the vector of equivalent axial loads being  
 

OAPAEA φφP 1ˆ   (51)

 
while the axial dynamic stiffness matrix is 
 

QAPADA φφK 1ˆ   (52)
 

Analogously, transverse equilibrium can be written as  
 

LDLELL QKPP ˆˆˆˆ   (53)
 

with the equivalent lateral load vector and the dynamic stiffness matrix given by, respectively,  
 

OLPLEL φφP 1ˆ   (54)

QLPLDL φφK 1ˆ   (55)
 

With 
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T
L qqqq }ˆˆˆˆ{ˆ

6543Q  (56) 

T
L pppp }ˆˆˆˆ{ˆ

6543P  (57) 


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




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

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0)(1)(
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LVLV
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
φ  (58.a) 


























0)(1)(

1)(0)(

0)(0)(

0)(0)(

53

53
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LSLS

LBLB

LL

LVLV

pp

pp

pp

pp
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
φ  (58.b) 























)(

)(

)(

)(

LS

LB

L

LV

o

o

o

o

OL


φ  (58.c) 

 

Now, combining both axial and lateral matrix equilibrium equations, it follows that: 
 

QKPP ˆˆˆˆ
DE   (59) 

 

with the end displacements and end forces vectors being given, respectively, by 
 

Tqqqqqq }ˆˆˆˆˆˆ{ˆ
654321Q  (60) 

Tpppppp }ˆˆˆˆˆˆ{ˆ
654321P  (61) 

The equivalent load vector is 
 










EL

EA
E

P

P
P

ˆ

ˆ
ˆ  (62) 

 

and the dynamic stiffness matrix is 
 











DL

DA
D

K0

0K
K

ˆ

ˆ
ˆ  (63) 
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4.2 Rigid offset 

Observing Fig. 2, the conversions from the flexible span ends to the member ends are given by: 
 

QTQ ˆ
Q  (64)

QSPPTP ˆˆ 2
QRQ   (65)

        

where 


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
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
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][ ITHJUS  QQ  (66.d)
 

with 
 

][diag RJTJTJRITITI MMMMMMJ  (67.a)
 

and 
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
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
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JJ

II
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H  (67.c) 

AIAIAJTIAI pppLLp  ))((ˆ  (67.d) 

LILILJTILI pppLLp  ))((ˆ  (67.e) 

AIAIAJTIAJ pppLLLp  )](/)[(ˆ  (67.f) 

LILILJTILJ pppLLLp  )](/)[(ˆ  (67.g) 

22
III baL   (67.h) 

22
JJJ baL   (67.i) 

JIT LLLL   (67.j) 
 

Now, collecting P̂  and Q̂  from expressions (64, 65) and substituting into Eq. (59), member 

equilibrium requires that: 
 

QKPP DE   (68) 
  

where, for the member equivalent load vector and the member dynamic stiffness matrix, 
respectively, we have: 
 

REPE PPTP  ˆ  (69) 
12 )ˆ(  QQDPD TSKTK   (70) 
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4.3 End force release 

Let PI  denote a permutation matrix that moves, to the last line, the degree of freedom to be 

released. If, for any end displacement vector Q , it is imposed that the corresponding end force 

must be null, it can be written that: 
 










b

a
P

Q
~

~
~ Q

QIQ  (71)


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
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0
~

~
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b
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P

P

P
PIP  (72)










Eb

Ea
EPE

P
~

~
~ P

PIP  (73)

        

By doing so, the released versions for the member equivalent load vector and for the member 
dynamic stiffness matrix are, respectively: 
 



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 
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/
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bbEbabEaT
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P
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 (75)

 

with the partitions EaP
~

, EbP
~

, aaK
~

, abK
~

, baK
~

and bbK
~

 coming from: 
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
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Finally, the displacement of the released degree of freedom can be obtained from:  
 

bbabaEbb KPQ
~

/)
~~~

(
~

QK  (78)
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5 MODEL GLOBAL MATRICES 

The member equilibrium equations seen in the previous sections can be also expressed as 
 

)()()()(  iDiEii QKPP   (79) 
 

with the subscript i  added to identify the i-th member of the model and the dependency on the 
excitation frequency   is explicitly indicated. 
Then, the usual FEM model assembly leads to the global dynamic equilibrium written as: 

 

)()()()(  QKPP DE   (80) 
 

where )(P  is the vector of the applied nodal loads, )(Q  is the vector of the nodal 

displacements, both in global coordinates, and 
 


i

Eii
T
iE w )()( PRψP  (81) 

 

is the global equivalent load vector, with iR  denoting the member rotation matrix and iψ  

denoting the connection matrix that relates the member degrees of freedom with the model 
degrees of freedom.  
The global dynamic stiffness matrix is expressed by:  
 

i
T
i

i
Dii

T
iCECID jcjc ψRKRψMKK  )()/1()1()( 2   (82) 

 

with CK  denoting the matrix of the nodal concentrated springs and CM  denoting the matrix of 

the nodal concentrated masses. Once the global equilibrium equation (80) has been assembled, 
the solution is obtained by: 
 

)}()({\)()(  ED PPKQ   (83) 
 

with the backslash operator denoting an appropriate solution method, based, for instance, on the 

Gauss elimination. Once the vector )(Q has been obtained, the member end displacements are 

evaluated  by: 
 

)()(  QRQ i
T
ii   (84) 

 

and the member end forces by: 
 

)()()()(  EiiDii PQKP   (85) 
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6 APPLICATION EXAMPLES 

The exact harmonic analysis proposed herein was implemented in the standalone application 
VIHAND, developed in the MATLAB platform. This code is part of the VIANDI computational 
system for the exact static and dynamic analysis of skeleton-like structures (Dias, 2011) and 
freely available at www.gmsie.usp.br. In order to explore the above exact solution, some examples 
were judiciously chosen and compared with other analytical or numerical approaches from the 
literature, as now described. 
 
6.1 Euler-Bernoulli beam 

When shear deflection and rotatory inertia are disregarded, the Timoshenko theory must 
reproduce the Euler-Bernoulli theory. Therefore, the aim of this section is to verify the present 
method for the particular case when SA  and 0r  by comparing it with results from other 

authors.  
The examples given in Tables 2 and 3, where no damping is presented, show a very good 

agreement with the exact solution given in (Abu-Hilal, 2003), which uses Green functions 
obtained by the Laplace transform. In both tables, additional results obtained by the 
approximate mode superposition method for different number of modes are also listed. Clearly, it 
can be seen that the mode superposition series solution improves with increasing number of 
modes and that the convergence is quite good for the deflection but not so good for the shear 
force. This confirms the well-known fact that the mode superposition method lacks accuracy for 
predicting variables involving derivatives wrt position.  

 

m 10L ; 
2m 01.0A ; 

4m 457914.1  eI ; 
3kg/m 8000 ; 

2N/m 110.2 eE   

Force amplitude N 2000oP ; Force frequency rad/s 10  ; 

Force location 0.1/ Lx , Support location 1.0/ Lx  
 
 

Response amplitudes Lx /  
Abu-Hilal 

(2003) 

VIHAND 
Mode Superposition 

Number of modes 

 2 4 8 14 

Deflection )(xv  mm 

0.5 10.249 10.249 10.269 10.247 10.249 10.249 

0.8 24.001 24.002 23.966 24.000 24.002 24.002 

1.0 33.593 33.593 33.669 33.603 33.595 33.593 

Bending moment )(xM B Nm 0.1 N/A 45107 45785 45266 45065 45128 

Shear force )(xFS N 0.1 N/A 7788.3 8391.7 8093.8 7619.4 7813.2 

 

 

Table 2: Results for the undamped cantilevered Euler-Bernoulli beam in Abu-Hilal (2003) 
subjected to a concentrated sinusoidal force applied at the free end. 
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m 2L ; 
2m 015.0A ; 

4m 525.1  eI ; 
3kg/m 7830 ; 

2N/m 10125.5 eE   

Force location 0.1/ Lx ; Force amplitude N 100oP ; Force frequency rad/s 60 . 
 

Response amplitudes 
Abu-Hilal 

(2003) 
VIHAND 

Mode Superposition 

Number of modes 

2 4 8 14 

Deflection )(Lv  mm 2.7842 2.7842 2.7822 2.7839 2.7841 2.7841 

Bending moment )0(BM  Nm 1532.5 1532.5 1523.7 1530.1 1531.9 1532.3 

Shear force )0(SF  N 1025.8 1025.8 985.30 1000.1 1007.9 1011.3 

 

Table 3: Results for the undamped cantilevered Euler-Bernoulli beam in Abu-Hilal (2003) with intermediate 
simple support and subjected to a concentrated sinusoidal force applied at the free end. 

 
 
 
For the damped cases in Table 4, Abu-Hilal (2003) does not supply written tabular results. For 
this reason, the results were obtained by using the formulae presented there. Additionally, a FEM 
model was employed to solve the problem. 1000 beam elements have to be used to model the 
beam so to reach the same accuracy as that given by the present method. As can be observed in 
the table, the agreement of the three methods is quite good.  

Based on a receptance matrix, Gürgöze and Erol (2001) offer a series solution for the example 
in Table 5 as well as an exact solution based on boundary value formulation. Again, the 
agreement with the present method is very good. 
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Table 4: Results for the damped cantilevered Euler-Bernoulli beam in Abu-Hilal (2003) with elastic support 
at the free end and subjected to a concentrated sinusoidal moment applied at intermediate location. 

 
 
 
 
 
 

m 5.2L ; 
2m  015.0A ; 

4m 6125.3  eI ; 
3kg/m 7830 ; 

2N/m 1105.2 eE   

Moment amplitude Nm 7380oM ; Moment frequency rad/s 160 ; Moment location 3/2/ Lx  

Spring location 0.1/ Lx ; Spring constant N/m 2.952e6 /72 3  LEIK  

External damping 1 2 Ec ; No internal damping 0 Ic  
 

Damping a 
Response amplitudes   Ec   1  2  

– [1/s] – –   
Abu-Hilal 

(2003) 
ANSYS b VIHAND 

0.0 0.0 0.0 0.0 

)3/2( Lv  mm 7.8016 7.8020 7.8016 

)0(BM  Nm 15639 15640 15639 

)0(SF  N 24304 24304 24303 

0.05 14.8083 0.05 0.0215 

)3/2( Lv  mm 6.5561 6.5561 6.5560 

)0(BM  Nm 13227 13227 13227 

)0(SF  N 20735 20736 20735 

0.10 29.6166 0.10 0.0430 

)3/2( Lv  mm 4.7805 4.7806 4.7806 

)0(BM  Nm 9828.1 9828.1 9828.2 

)0(SF  N 1578.2 1578.2 1578.2 

0.20 59.2332 0.20 0.0860 

)3/2( Lv  mm 2.8236 2.8236 2.8237 

)0(BM  Nm 6214.8 6214.8 6214.9 

)0(SF  N 10732 10732 10732 

 

 

a The first natural frequency is rad/s 083.1431  ; the modal damping ratios are )/( 1  ii   
b Harmonic analysis by direct integration with 1000 BEAM3 elements and lumped mass matrix 
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m 0.10L ; 
2m  04.0A ; 

4m 4333.1  eI ; 
3kg/m 10000 ; 

2N/m 100.12 eE    

Force location 0.1/ Lx ; Force amplitude N 16000oP ; Force frequency rad/s 10 . 

 

                    Dimensionless deflection amplitudes 
3( ) / ( )ov x EI L P  

Support location 3.0/ Lx  5.0/ Lx  7.0/ Lx  

Position 
Lx /  

Foda and 
Albassam 

(2006) 
VIHAND 

Foda and 
Albassam 

(2006) 
VIHAND 

Foda and 
Albassam 

(2006) 
VIHAND 

0.2 0.008213 0.008214 0.004138 0.004136 0.002351 0.002351 

0.4 0.02999 0.03003 0.005503 0.005501 0.005621 0.005608 

0.6 0.1458 0.1459 0.01174 0.01175 0.004174 0.004174 

0.8 0.3074 0.3077 0.04970 0.04971 0.007070 0.007069 

Table 5: Undamped cantilevered Euler-Bernoulli beam in Foda and Albassam (2006) with an intermediate 
simple support at various locations and subjected to a concentrated sinusoidal force applied at the free end 

 

6.2 Timoshenko beam 

For the examples with no damping listed in Table 6, Foda and Albassam (2006) use  Green 
functions to provide exact solutions for Timoshenko beams with attached masses and springs. 
Unfortunately, the authors do not supply written tabular results, so only approximations could be 
collected from the graphics presented there. As seen in the table, the reliability of the present 
method could be confirmed by comparison with a FEM model with 1000 beam elements.  

m 0.20L ; 
2m  26458.2  eA ; AAS 85.0 ; 

4m 654344.1  eI   

3kg/m 7700 ; 
2N/m 100.12 eE  ;  3.0 ; Force amplitude N 1000oP ; 

Force location m  10x ; Mass value kg 9934.188M ; Mass location m 6877.8x  

Spring constant N/m 628eK  ; Spring locations m 2455.8x and m 7545.11x  
 

Case 
Force 

Frequency 

Deflection amplitude [mm] 

Locations 
Foda and 

Albassam (2006) 
ANSYS a VIHAND 

(a) With mass 5 Hz 
At mass ~2.0 2.006 2.007 

At load ~1.0 0.9962 0.9957 

(b) With springs 50 Hz 
At springs ~0.05 0.0588 0.0584 

At load ~0.16 0.1463 0.1456 
 

a Harmonic analysis by direct integration with 1000 BEAM3 elements and consistent mass matrix 
 

Table 6: Undamped simply-supported Timoshenko beam in Foda and Albassam (2006)] 
Subjected to a concentrated sinusoidal force applied at half span 

and with (a) attached mass and (b) two symmetrically attached springs 
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By adding damping effects, the same problem has the frequency response depicted in Fig. 3, 
where a very good agreement with the FEM solution can be observed. 

 

 

Figure 3: Frequency response for the simply supported Timoshenko beam of Table 6 with two symmetrically 
attached springs: (a) deflection at load location [mm]; (b) bending moment at load location [Nm]. Damping: 

10.01   and 09.02  -1s  3546.1 Ec  and s  43964.8  ecI  

 

6.3 Elastic robot manipulator 

The authors did not find in the open literature examples of the exact behavior of more complex 
skeleton structures. They would allow exploring further the resources in VIHAND and the theory 
here presented. However, a more refined model representing a robot manipulator is suggested in 
Fig. 4, whose free vibration response is studied in (Dias, 2010). Here, the effects of rigid offset, 
bending release, skewed edge, static and dynamic loads, concentrated mass, long and short beams 
and an external spring, besides damping, are all present. The results obtained by the theory in 
this article are then compared with the FEM, which is the only alternative that permits to solve 
such a problem. 
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0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

ANSYS

VIHAND

Bending Moment at Load Position [Nm]

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14

Frequency [Hz]

(b) 

(a) 



C. A. N. Dias / General exact harmonic analysis of in-plane Timoshenko beam structures 
 2197 

 

Latin American Journal of Solids and Structures  11 (2014) 2171-2202  

 
 

 
 

 Section Properties Material Properties 

 Dimensions Total Shear Shear Bending Elastic Mass Poisson 

 Height Width Area Factor Area Inertia Modulus Density Ratio 

 h b hbA  k  kAAS  12/3bhI  E   910
   

Member cm cm cm2 – cm2 cm4 ton/cm2 ton.s2/cm4 – 

1 3.0 2.0 6.0 5/6 5.0 4.500 2111 7.983 0.300 

2 3.0 1.0 3.0 2/3 2.0 2.250 2040 8.015 0.290 

3 1.8 2.0 3.6 1/2 1.8 0.972 745.8 2.846 0.397 

4 2.4 1.0 2.4 1/2 1.2 1.152 1161 4.471 0.350 

 

Damping Properties : 2/)/( iIiEi cc    

Static Load 
Natural Frequencies Modal Damping Rayleigh Coefficients 

First Second First  Second  External Internal 

P   2/11 f  2/22 f  1  2  Ec  Ic  

ton Hz Hz – – 1/s s 

0.0 14.988 145.88 0.100 0.015 18.7424 1.04E-5 

5.0 12.577 145.88 0.100 0.015 15.7177 1.40E-5 

 

Figure 4: Timoshenko beams composing a four-member elastic robot manipulator with complex configuration: 

end force release, rigid offset, skewed edge, additional concentrated mass M , additional concentrated spring K , 
initial static load P  that weakens the horizontal arm, harmonic prescribed displacement )(t , different sections, 

and different materials: (1) Steel 4139, (2) Steel ASTM A-515, (3) Aluminum 2024-T6, (4) Titanium 6AI-4V. 
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It is interesting to notice that VIHAND is capable of dealing with the interaction between static 
and dynamic loads. In the case of this robot structure, when the horizontal arm of the 
manipulator receives a static compression load, the natural frequencies of the structure decreases. 
This leads to a harmful vibration due to the resonance between the actuator excitation frequency 
and the first natural mode. As can be seen in Fig. 5, between 12 and 13 Hz the dynamic stress 
increases more than twofold, a fact that can severely compromise the structure fatigue life. 

 

 

Figure 5: Frequency response for the elastic robot manipulator of Fig. 4: (a) deflection [mm] at point B; 
(b) bending moment [ton.cm] at point A and (c) shear force [ton] at point A. 
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The results of the VIHAND and ANSYS programs agree very well. However, it must be pointed 
out that the ANSYS model needed more than 240 beam elements to achieve the same accuracy as 
that obtained by the exact solution of the program VIHAND, which employs only four elements. 

Two aspects of the present model are worth considering. First, the method is not suitable for 
spatial frames analyses, at least in an exact way. The reason is that, for these structures, it is 
likely that torsion-flexure coupling will be important and torsion is not here taken into account. 
The consideration of this coupling is far from simple and no attempt was made in the present 
study to handle it. The second point to highlight is that this model does not intend to be an 
alternative to the finite element method. But, being possible to obtain an exact solution, it is 
certain that finite element procedures can benefit from this study inasmuch as the solution 
procedure here outlined can serve as a reference for this and other numerical procedures. 

 
 

7 CONCLUSIONS 

By applying a Laplace transform to the coupled first order PDEs, which combine displacement 
and force amplitudes, this work consolidates an exact solution method for the frequency response 
of in-plane framed structures. The method, based on the Timoshenko beam theory, is quite 
general since it allows the use of concentrated masses and springs, rigid bodies, end force release, 
skewed edges, internal damping and external damping as well as concentrated and distributed 
harmonic loads.  

The reliability of the proposed method could be tested by comparing it against simple beam 
examples found in the literature. The method was also fully verified by means of a more complex 
model involving the majority of its capabilities and comparing the results with the FEM. 

Although a priori developed for a single excitation frequency, the method can be easily 
extended for more complex and arbitrary time varying excitations by using Fourier series and/or 
Fourier transform. Hence, the method is useful for spectral analysis implementation in the 
context of random vibrations. 
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Appendix A 

For the beam flexible span in Fig. 2, the following defines the functions needed to calculate the 

internal displacement and force amplitudes by Eqs. (43-45). Function )(xAn  is defined by Eqs. 

(33) and )(xLn  by Eqs. (36). 

 
A.1 Axial displacement  
 

)()( 11 xAxU q   

)()]}1(/[1{)( 01 xAjcEAxU Ip   

)]1(/[)]()([)( 21 IAAo jcEAxAaxAbxU    
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A.2 Normal force  
 

)()1()( 21 xAjcEAxN Iq   

)()( 11 xAxN p   

)()()( 10 xAaxAbxN AAo   

 
A.3 Total deflection  
 

)()()( 3331133 xLAxLAxVq   

)()()( 0032233 xLAxLAxVp   

)()( 2255 xLAxVq   

)()( 1155 xLAxVp   

)()()()()( 220110000110 xLAxLAxLAxLAxVo    

 
with 

133 A     )/( 110 SL GAbA   

125 /)1( IjcA     )/( 1003 EIA   

)/(1 123 SGAA     )/( 100 SL GAaA   

)/()( 1
2

013 EIrPA     )/( 1010 EIbA L   

)/(1 115 EIA     )/( 1020 EIaA L   

)]1(/[1 2
0  IS jcGAr   SI GAPjc /11    

 
 
A.4 Bending rotation 
 

)()()()( 0032234433 xLBxLBxLBxq   

)()()()]1(/[1)( 1131133333 xLBxLBxLBjcGAx ISp    

)()()( 1153355 xLBxLBxq   

)()()( 0052255 xLBxLBxp   

)()()(             

)()()(             

)]1(/[)2/()(

330220110

000110220

2

xLBxLBxLB

xLBxLBxLB

jcGAxbxax ISLLo

 



 
 

where 

243 B   2515 AB     0313 AB   

23233 AB    0322313 AAB     )/( 1200010 EIaAB L    
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25235 AB    00210 AB     )/( 1020 EIbB L   

13223 AB    1303 AB     )/( 1030 EIaB L   

15225 AB    1505 AB   

10220 AB    )/( 1201000 EIbAB L    

)]1(/[)/1(2  ISE jcGAwjcm    )]1(/[1 2
0  IS jcGAr   

SI GAPwjc /11      )]1(/[12  IS jcGAP   

 
 
A.5 Shear force 
 

)]()()[/1()( 013233
2

3 xLAxLAjcmxS Eq    

)]()()[/1(1)( 103123
2

3 xLAxLAjcmxS Ep    

)]()[/1()( 125
2

5 xLAjcmxS Eq    

)]()[/1()( 015
2

5 xLAjcmxS Ep    

)]()()()(A             

)[/1()2/()(

320210100010

22

xLAxLAxLAxL

jcmxbxaxS ELLo

 

 
 

A.6 Bending moment 
 

)]()()()[1()( 1033235433 xLBxLBxLBjcEIxB Iq    

)]()()()[1()( 0132134333 xLBxLBxLBjcEIxB Ip    

)]()()[1()( 2154355 xLBxLBjcEIxB Iq    

)]()()[1()( 1053255 xLBxLBjcEIxB Ip    

)]()()()()()(B             

)[1())(/()(

230120010100210320 xLBxLBxLBxLBxLBxL

jcEIbxaGAEIxB ILLSo

 

 
 


