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Abstract 
An analytical model is developed to examine a low impulsive 
projectile impact on a fully clamped sandwich beams by consider-
ing the coupled responses of the core and the face sheets. Firstly, 
based on the dynamic properties of foam cores, the sandwich beam 
is modeled as two rigid perfectly-plastic beams connected by rigid 
perfectly-plastic springs. Different from the previous sandwich 
beam model, the transverse compression and bending effects of the 
foam core are considered in the whole deformation process. Based 
on this model, different coupling mechanism of sandwich beams 
are constructed so that an analytical solution considering small 
deformation is derived. The coupled dynamic responses of sand-
wich beams with different core strengths are investigated. The 
results indicate that this model improves the prediction accuracy 
of the responses of the sandwich beams, and is available for the 
situation when the sandwich beam undergoes moderate global 
deformation. 
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1 INTRODUCTION 

As one kind of representative structures widely used in the design of commercial and military 
vehicles, such as aircrafts, spacecrafts, vehicles, ships, and high speed train carriages, responses of 
sandwich structures subjected to impact at a wide range of velocities have attracted great atten-
tion and been extensively studied. How to accurately predict the dynamic behaviors of sandwich 
structures is of current interest. 

For the shock resistance of clamped sandwich beams, Fleck and Deshpande (2004) separate 
the responses of these beams into three stages, that is, fluid-structure interaction stage; the core 
compression stage and a combined beam bending and stretching stage. By decoupling these three 
stages, they develop an analytical model for understanding the blast responses of sandwich 
beams. In a parallel work, Xue and Hutchinson (2004) compare the blast resistance of clamped 
sandwich beams to that of monolithic beams of the same mass via three-dimensional finite ele-

Wen-zheng Jianga 
Ying Liua, * 
Yu Gua 
G X Lub 
 
aDepartment of Mechanics, School of Civil 
Engineering, Beijing Jiaotong University, 
Beijing, 100044 
bSchool of Mechanical and Aerospace Engi-
neering, Nanyang Technological University, 
50 Nanyang Avenue, Singapore 639798, 
Singapore 
 
*Author e-mail: yliu5@bjtu.edu.cn 
 



1652      Ying Liu et al./An analytical model of a clamped sandwich beam under low-impulse mass impact 

Latin American Journal of Solids and Structures 11 (2014) 1651-1678 
 

ment simulations. Then, some finite element (FE) simulations by Rabczwk et al. (2004) and 
Liang et al. (2007) suggest that the model of Fleck and Deshpande may over-estimate or under-
estimate the deflection of sandwich beams under blasting loading. This discrepancy indicates that 
coupling between stages of responses can influence the deflections. Deshpande and Fleck (2005) 
examine the coupling between the fluid-structure interaction stage I and the core compression 
stage II. Their results show that the Taylor (1963) analysis based on a free-standing front face-
sheet underestimate the transmitted momentum by 20-40% for sandwich beams comprising high 
strength cores, which explains the discrepancies between the FE simulations of Rabczuk et al. 
(2004) and the analytical predictions of Fleck and Deshpande (2005). 

In order to explain the discrepancy between the FE simulation of Liang et al. (2007) and the 
analytical predictions of Fleck and Deshpande (2004), Tilbrook et al. (2007) developed an analyt-
ical model based on time-scales of core compression and the bending/stretching response of the 
sandwich beam. In their model, four regimes of behavior, that is, decoupled responses with the 
sandwich core densification partially or completely, and coupled responses with partial or full core 
compression, are defined. However, during their formulation, they made one critical assumption, 
that is, neglecting the shear strength of the core prior to equalization of the velocities of the front 
and back faces, and the transverse compression strength loads the back and front faces simulta-
neously. Hence, before the velocity equalization, the sandwich beam is treated approximately as a 
pressure cavity, which obviously has different deformation mechanism from the structures with 
foam cores. Following their treatments, some theoretical and experimental works are carried out 
(Qin, et al., 2009; 2011; Wang, et al., 2011). Although this model to some extend accounts for the 
coupling between the core compression and the beam bending/stretching phases, their analytical 
results under-predict the peak back face deflection and over-predict the support reactions, espe-
cially for sandwich beams with high strength cores (Tilbrook, et al., 2007).  

Structurally, a typical sandwich beam consists of two thin face sheets bonded to a core made 
from low- density materials. The deformation of the front face under initial dynamic loading, 
then the core compression and the deflection of the back face, is a series of coupled responding 
process. The foam core provides not only the transverse pressure, but also the bending/shear 
strength during the coupled deformation between the core compression and the beam bend-
ing/stretching phases. Moreover, researches show that the responses of the foam at the impact or 
distal ends are different for different impacting conditions (Liu and Zhang, 2009; Liu, et al., 
2012), which indicates that the pressures loads on the back and front faces due to the transverse 
compression of the core may be different, and asynchronous. As a result, how to consider the 
bending/shear effect of the foam core during the deformation, and describe the transverse pres-
sures on the face sheets caused by the core compression, are the key points in the analytical mod-
eling of sandwich beams, and have not been absolutely solved to per author’s knowledge.  

Aiming to these problems, an abstracted beam-spring model for the sandwich beam is firstly 
established by considering the transverse compression and bending effect of the foam core in the 
whole deformation process. Different from beam-spring system on-rigid foundation (Chen and Yu, 
2002; Yu et al., 2002), the coupled motion of the front and back beam is considered. Based on 
this model, a projectile impact on a fully clamped sandwich beam with a foam core is investigated 
based on small deflection theory. The coupling deformation mechanism of the beam-spring system 
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is formulated for sandwich structures with soft or intermediate strength cores. Then the analyti-
cal predictions are compared with experimental results and finite element (FE) simulations of the 
mass impacted sandwich beams to show the availability of this model. At last, the conclusion is 
given. 

 
2 ANALYTICAL MODEL OF A SANDWICH BEAM UNDER MASS IMPACTING 

As shown in Fig. 1a, a fully clamped slender metal foam core sandwich beam impacted by a striker 
with an initial velocity at the midpoint is considered herein. The mass and the initial velocity of the 
striker are m0 and V0, respectively. The beam length is 2L. Two face-sheets with thickness hf and hb 
are perfectly bonded to the foam core with the core thickness being C. It is assumed that the face 
sheet metals obey the rigid-perfectly plastic law with the yield strength is σ y . 

 

  
 

Figure 1   (a) A sandwich beam impacted by a mass; (b) Simplified rigid-perfectly plastic beam-spring model. 
 

In the dynamic analysis we assume that displacements occur only in a direction transverse to the 
original axis of the beam. Small transverse deflections are considered, such that the deflection w at 
the mid-span of the beam is assumed to be small compared to the beam length and the rotational 
inertia is not included into the moment balance equations. 

Lopatnikov et al. (2007) distinguished the impact/shock loaded cellular solids deformation pat-
terns as two modes, i.e., (a) homogeneous deformation, that is, cellular medium deforms homogene-
ously over the entire volume of the sample; and (b) progressive collapse, during which the same 
deformation is reached by complete densification of the portion of the cellular material adjacent to 
the location where the load applies, while the rest is assumed to be un-deformed. In the present 
discussion, since small deflection assumption is made and low impulsive loading is considered, ho-
mogeneous deformation is assumed which implies the same stress responses at the impact and distal 
ends of the core. Figure 2 displays a typical stress-strain curve of the cellular material under the 
dynamic/shock loading, in which σ 0  is the initial force peak, and εD  and σ p  are densification 

strain and plateau stress, respectively. Considering that the total outer input energy is greater than 
the energy absorbed due to the elastic deformation, the rigid perfectly-plastic-locking (RPPL) mod-
el is adopted (red line in Fig. 2), and after the densification, the core is treated as rigid. 
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Figure 2   Typical dynamic stress-strain curves for the foam. The red line corresponds to rigid perfectly-plastic-locking (RPPL) model. 
 
Based on this homogeneous deformation assumption of the foam core, rigid-perfectly plastic 

springs, whose responses obey RPPL model given in Fig. 2, are introduced to establish the relation 
between the pressures acting on the front and back faces due to the transverse compression of the 
foam core. Employing the lumped mass approximation, the mass of the core is equally distributed 
to the front and back beams, that is, the mass per unit length of the front and back faces are (Fleck 
and Deshpande, 2004) 
 

mf = hf ρ f + ρcC / 2  (1) 
 
and 
 

mb = hbρb + ρcC / 2  (2) 
 
where ρ f , ρb , and ρc  are the densities of the front face, the back face and the foam core, respec-

tively. 
In Fig. 3, during the bending of the face sheets, the foam core is also bended. Consequently, ex-

cept for the transverse pressure, the bending effect of the core should also be considered. Different 
from Tilbrook et al. (2007), in which the shear/bending effect of the core is ignored before the end 
of the core compression, a simple but critical equivalence is made, that is, the bending moment of 
the core is divided equally by considering the homogeneous deformation assumption, and added to 
the corresponding values of the front and back faces to account for the bending effect provided by 
the foam core. This treatment effectively accounts for the bending effect of the core during the de-
formation and the validation of this assumption is confirmed via full FE simulation in Section 3. 
Then we have 
 

2
f 0 f / 2 / 4 / 2C y f CM M M h Mσ= + = +  (3) 
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and 
 

M b0 = M b +MC / 2 =σ yhb
2 / 4 +MC / 2  (4) 

 
where Mf, Mb, and MC are the sectional limit bending moments of the front face, the back face and 
the foam core, respectively, in which 
 

  MC =σ yCC 2 1− εm( )2
/ 4  (5) 

 
where σyC is the yield strength of the foam core, εm  is the middle point compression strain which is 
defined as εm =|Wf -Wb|/C with Wf and Wb the mid-span deflections of the front and back beams, 
respectively. 
 

 
 

Figure 3   Experimental results of impact failure modes with respect to load intensity (Wang, et al., 2011). 
 

By now, the sandwich beam is modeled as two beams with larger mass and bending moments 
(compared to the face sheets) connected by rigid-perfectly plastic springs, which is shown in Fig. 
1b. After the deformation of the front beam, the forces due to the compression of the foam core will 
act on the back beam. If the core is sufficiently strong, it will decelerate the front beam and simul-
taneously accelerate the back beam; otherwise, the back beam will keep un-deformed at the plateau 
stage of the core compression. The response of the clamped beam depends on the transverse pres-
sure sp acting from the core onto the back face. Following Jones (1989), by taking γ=σ p /σ bs  with 

σ bs =4Mb0/L2 the static extreme pressure of the back beam with εm=0, the sandwich beam with 
intermediate or low strength cores are considered in the following section. 
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2.1 Intermediate strength foam core (1 3γ≤ ≤ ) 

When the front beam is impacted, the midpoint of the beam moves with the velocity V0 at the 
instantaneous impact, whilst the left part keeps stationary. In order to keep balance, a disturbance 
is propagated along the beam from the midpoint to the fixed ends and the core is gradually com-
pressed. This includes two different kinematical phases: a transient phase (0 ≤ t ≤ tI , phase I, Fig. 
4a), and a modal phase ( tI < t ≤ tII , phase II, Fig. 4b). At the same time, the back beam will also 
deform since the plateau stress of the core is assumed to be greater than its yield stress (γ>1). Cor-
responding to the kinematical phases of the front beam, the deformation of the back beam includes 
the deflection under a moving and then a uniform loading (Figs. 5a and 5b), respectively. When the 
velocities of the front and back beams become the same (t=teq), the beams deform as a system, as 
shown in Fig. 6 ( t ≥ teq , phase III). Moreover, if the densification (t=tD) is reached before the 

equivalent velocity is obtained ( tD ≤ t ≤ teq ), the front and back beams also begin to deform as a 

system (phase III).  
 
2.1.1 Coupled deformation in the first phase, I0 t t≤ ≤  

2.1.1.1 Front beam 

In the first phase, a disturbance propagates from the central point to the fixed ends. Because of 
symmetry, the right half beam 0 x L≤ ≤  is considered. Its transverse velocity field is assumed to be 
(Figs. 4a and 4b) 
 

!wf 1 = !Wf 1(1− x / ξ ) 0 ≤ x ≤ ξ ,

!wf 1 = 0                          ξ ≤ x ≤ L ,
 (6) 

 
where w is the transverse displacement, ξ is the position of the plastic hinge which dependents on 
the time t. The upper dot means the differentiating with respect to the time t, and the suffix f rep-
resents the front beam and the number 1 the first phase. At the moving plastic hinges (x=±ξ), the 
bending moment Mf1 is maximum and the transverse force Q=0. The force balance between the two 
moving plastic hinges along the transverse direction yields 
 

m0 !!Wf 1 + 2 mf !!wf 10

ξ

∫ dx + 2 q(x)dx
0

ξ

∫ = 0  (7) 

 
where q(x) is the dynamic pressure caused by the compression of the foam core, which keeps con-
stant before densification as shown in Fig.2 (red line). 
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Figure 4   (a) Velocity profile of the front beam in phase I; (b) a free body diagram of the left half front beam in phase I; (c) velocity 
profile of the front beam in phase II; (d) a free body diagram of the left half front beam in phase II. 

 
Substitution Eq. (6) into Eq. (7) leads to 

 

m0 !!Wf 1 + 2mf
!!Wf 1(1− x / ξ )d0

ξ

∫ x + 2 q(x)dx
0

ξ

∫ = 0  (8) 

 
that is, 
 

m0 !!Wf 1 +mf
!!Wf 1ξ + !Wf 1

!ξ( ) = −2 q(x)d
0

ξ

∫ x  (9) 

 
Considering the moment balance between x=0 and x=ξ to the beam midpoint, and the boundary 

conditions: Mf1=Mf0 at x=0; M f1= -Mf0 and Q=0 at x=L, we have  
 

2M f 0 − mf !!wf 10

ξ

∫ xdx − q(x)xdx
0

ξ

∫ = 0  (10) 

 
Substitution Eqs. (6) into Eq. (10) and considering q(x)=σ p  yields 

 
2M f 0 −mf

!!Wf 1ξ
2 / 6 + !Wf 1

!ξξ / 3( )−σ pξ
2 / 2 = 0  (11) 

 
Then we have 
 

d !Wf 1ξ
2( )

d t
= (12M f 0 − 3σ pξ

2 ) /mf  (12) 
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Integrating Eq. (12) and considering when t=0, ξ=0, we have 
 

t =
mf
!Wf 1ξ

2 + 3σ p ξ 2 dt
0

t

∫
12M f 0

 (13) 

 
Integrating Eq. (9) and considering when t=0, ξ=0, and !Wf 1 =V0 , we have 

 

!Wf 1 =
m0V0 − 2 σ pξ d0

t

∫ t

m0 +mfξ
 (14) 

 
Combination Eqs. (13) and (14) we have the time-position relation of the dynamic plastic hinge, 

that is   
 

t =
mfξ

2 m0V0 − 2σ p ξ d
0

t

∫ t⎛
⎝

⎞
⎠

12M f 0 m0 +mfξ( ) +
σ p ξ 2 d

0

t

∫ t

4M f 0

 (15) 

 
Differentiating Eq. (15) with respect to the time t, we obtain the travelling velocity of the plastic 

hinge, that is, 
 

!ξ =
2mfσ pξ

3 m0 +mfξ( )+ 12M f 0 − 3σ pξ
2( ) m0 +mfξ( )2

mfξ 2m0 +mfξ( ) m0V0 − 2σ p ξ d
0

t

∫ t⎛
⎝

⎞
⎠

 (16) 

 
When the plastic hinge arrives at the fixed end, we have ξ=L, that is, t=tI, the first phase ends. 

According to Eqs. (14) to (16), we can obtain the related deformation parameters of the front beam 
in the first phase. It is seen that x is time and position dependent. The direct integrals of Eqs. (14) 
to (16) are impossible. Numerical integration using MatLab is performed. Moreover, as expected 
when σp=0, Eqs. (14) to (16) degenerate to the equations for monoclinic beams given in Appendix 
A. Comparison between Eq. (14) and Eq. (A6) indicates that the velocity of the mid-span point of 
the front beam is smaller than that of the monolithic beam due to the existence of the foam core.  
In the first phase, the kinetic energy of the mass and the front beam is 
 

Ef I = Emass + Efront =
m0 !Wf 1

2

2
+
mf
!Wf 1
2ξ
3

 (17) 

 
When the moving plastic hinge length is ξ, the dissipated plastic bending energy is 
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UBending-FI =
4M f 0Wf 1

ξ
 (18) 

 
and the dissipated spring potential energy is 
 

USpring-FI = 2 σ pΔwf 1d x0

ξ

∫  (19) 

 
where Δwf 1  is the relative deflection of the front beam at point x. 

 
2.1.1.2 Back beam 

Because γ>1, during the deformation of the front beam, the back beam also deforms. According to 
experimental and numerical examination, the transverse velocity field of the back beam in the first 
phase is assumed as (Figs. 5a and 5b) 
 

!wb1 = !Wb1(1− x / ξ ) 0 ≤ x ≤ ξ ,
!wb1 = 0                          ξ ≤ x ≤ L ,

 (20) 

 
and the governing equations of the beam are 
 

∂2Mb1

∂2x
= −σ p +mb

∂2wb1
∂2t

       0 ≤ x ≤ ξ  (21a) 

 
∂2Mb1

∂2x
= 0               ξ < x ≤ L  (21b) 

 
where Mb1 is the bending moment of the back beam at the first stage.  
 

  

  
 

Figure 5   (a) Velocity profile of the back beam in phase I; (b) a free body diagram of the left half back beam in phase I; (c) velocity 
profile of the back beam in phase II; (d) a free body diagram of the left half back beam in phase II. 
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Substitution Eq. (20) into Eq. (21a) leads to 
 

∂2Mb1

∂2x
= −σ p +mb(1− x / ξ )

d 2Wb1

d 2t
           0 ≤ x ≤ ξ  (22) 

 
Integrating Eq. (22) and considering Mb1 = M b0 , Q = ∂Mb1 / ∂x = 0  at x=0, we have 
 

Mb1 = −σ px
2 / 2 +mb(x

2 / 2 − x3 / 6ξ )
d 2Wb1

d 2t
+M b0     0 ≤  x ≤ ξ  (23) 

 
Since at x=ξ, Mb1=-Mb0, according to Eq. (23), we have 
 

d 2Wb1

d 2t
= (3σ pξ

2 / 2 − 6M b0 ) /mbξ
2  (24) 

 
It should be pointed out that for beams under the moving loading, the assumed velocity field is 

only valid for 
 

σ p ≥
4M b0

Lξ
 (25) 

 
which leads to          
 

ξ ≥
4Mb0

Lσ p

 (26) 

                               
As a result, the back beam does not deform simultaneously with the front beam. Only after Eq. 

(26) is satisfied does the back beam begins to deform. 
Integration Eq. (24) leads to 
 

!Wb1 = 3σ pξ
2 / 2 − 6M b0( )t /mbξ 2  (27) 

 
In Fig. 5a, when the moving hinges arrive at the fixed ends, that is, ξ = L , the moving forces 

arrive at the fixed ends and the first stage ends. The kinetic energy of the back beam in the first 
phase is 

 

EBI =
mb !Wb1

2ξ
3

 (28) 
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When the length of the moving pressure x=x, the dissipated plastic bending energy is 
 

UBending-BI =
4M b0Wb1

ξ
 (29) 

 
and the dissipated spring potential energy is 
 

UBSpringI = 2 σ pΔwb1d x0

ξ

∫  (30) 

 
where Δwb1  is the relative deflection of the back beam at point x. 
 
2.1.2 Coupled deformation in the second phase, t I<t≤ t II 

In the second phase, the plastic hinges are fixed during which the remaining energy is dissipated by 
the plastic deformation of the plastic hinges (Fig. 4c), the foam core and the deformation of the 
back beam (Fig. 5c). 
 
2.1.2.1 Front beam 

Seen as Fig. 4c, we assume the transverse velocity field of the front beam in the second phase is  
 

!wf 2 = !Wf 2 (1− x / L) 0 ≤ x ≤ L  (31) 
 

The governing equation of the beam is 
 

∂2M f 2

∂2x
=σ p +mf 1− x / L( ) d

2Wf 2

d 2t
           0 ≤ x ≤ L  (32) 

 
Integrating Eq. (32) and considering M f 2 = M f 0 , Q = m0 !!Wf 2 / 2  at x=0, we have 

 
∂M f 2

∂x
=σ px +mf x −

x2

2L
⎛
⎝⎜

⎞
⎠⎟
d 2Wf 2

d 2t
+
m0

2
d 2Wf 2

d 2t
          0 ≤ x ≤ L  (33) 

 
and 
 

M f 2 =σ px
2 / 2 +mf

x2

2
− x

3

6L
⎛
⎝⎜

⎞
⎠⎟
d 2Wf 2

d 2t
+
m0
2
d 2Wf 2

d 2t
x +M f 0           0 ≤ x ≤ L  (34) 

 
Considering M f2= -Mf0 at x=L, we have 
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!!Wf 2 = −
12M f 0 + 3σ pL

2

2mf L
2 + 3m0L

 (35) 

 
Integrating Eq. (35) leads to 
 

!Wf 2 = −
12M f 0 + 3σ pL

2

2mf L
2 + 3m0L

t + !Wf I  (36) 

 
where !Wf I  is the mid-span velocity of the front beam at the end of the first phase. 

In the second phase, the kinetic energy of the front beam and the mass is 
 

EFII = Emass + Efront =
m0 !Wf 2

2

2
+
mf
!Wf 2
2 L

3
 (37) 

 
For the front beam, the dissipated plastic bending energy is 
 

UBending-FII =
4M f 0Wf 2

L
 (38) 

 
and the dissipated spring potential energy is 
 

UFSpringII = 2 σ pΔwf 2d x0

L

∫  (39) 

 
where Δwf 2  is the relative deflection of the front beam at point x. 

 
2.1.2.2 Back beam 

As shown in Fig. 5c, we assume the transverse velocity field of the back beam in the second phase 
is 
 

!wb2 = !Wb2 (1− x / L)  (40) 
 
and the governing equation of the beam is 
 

∂2Mb2

∂2x
= −σ p +mb 1− x / L( ) d

2Wb2

d 2t
           0 ≤ x ≤ L  (41) 

 
Integrating Eq. (41) and considering Mb2 = M b0 , Q = ∂Mb2 / ∂x = 0  at x=0, we have 
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∂Mb2

∂x
= −σ px +mb x −

x2

2L
⎛
⎝⎜

⎞
⎠⎟
d 2Wb2

d 2t
          0 ≤ x ≤ L  (42) 

 
and 
 

Mb2 = −σ px
2 / 2 +mb

x2

2
− x

3

6L
⎛
⎝⎜

⎞
⎠⎟
d 2Wb2

d 2t
+M b0           0 ≤ x ≤ L  (43) 

 
Considering M b2= -Mb0 at x=L, we have 

 
!!Wb2 = 3σ pL

2 −12M b0( ) 2mbL
2( )  (44) 

 
Integrating Eq. (44) leads to 
 

!Wb2 = 3σ pL
2 −12M b0( )t 2mbL

2( )+ !WbI  (45) 

 
where !WbI  is the velocity of the middle point of the back beam at the end of the first phase. 

Then the kinetic energy of the back beam in the second phase is  
 

EBII =
mbL !Wb2

2

3
 (46) 

 
The dissipated plastic bending energy is 
 

UBending-BII =
4M b0Wb2

L
 (47) 

 
The dissipated spring potential energy is 
 

UBSpringII = 2 σ pΔwb2d x0

L

∫  (48) 

 
where Δwb2  is the relative deflection of the back beam at point x in the phase II. 
 
2.1.3 Coupled deformation in the third phase , ( t ≥ teq , or tD ≤ t ≤ teq )  

In the first and second phases, the front beam makes decelerated motion, while the back beam has 
accelerated motion. If core densification is not reached, the front and back beams will arrive at the 
same velocity at time t=teq, after which the sandwich beam deforms as one single beam as shown in 
Fig. 6, which is referred as phase III.   
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Figure 6   (a) Velocity profile of the beams in phase III- system deformation; (b) a free body diagram of the left half beams in phase 
III- system deformation. 

 

At that time, we assume the velocity field of the sandwich beam with the form 
 

!wIII = !WIII (1− x / L) 0 ≤ x ≤ L  (49) 
 

and the governing equation 
 

∂2M III

∂2x
= mf +mb( )(1− x / L)

d 2WIII

d 2t
+m0

d 2WIII

d 2t
                    0 ≤ x ≤ L  (50) 

 
Integrating Eq. (50) and considering M eq = M f0 +M b0 , Q = ∂M III / ∂x = 0  at x=0, we have 

 

M III = mf +mb( )(x2 − x3 / 6L)
d 2Weq

d 2t
+
m0x

2

2
d 2Weq

d 2t
+M eq                     0 ≤ x ≤ L  (51) 

 
Considering M III= -Meq at x=L, we have 
 

!!Weq = −
12M eq

2 mf +mb( )L2 + 3m0L2
 (52) 

 
Integration Eq. (52) yields 
 

!WIII = !Weq −
12M eq

2 mf +mb( )L2 + 3m0L2
t  (53) 

 
If the densification occurs at t=tD before the common velocity of the faces is reached, the sandwich 
beam directly deforms as in phase III, which is governed by Eqs. (52) and (53). At that time, !Weq  

is determined by the momentum balance. If the densification occurs in the first phase of the front 
and back beams, we have 
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m0 !Wf + 2mf !wf t=tD0

ξ

∫ d x + 2mb !wb t=tD
d x

0

ξ

∫ = m0 !Weq + 2 mf +mb( ) !weq0

ξ

∫ d x  (54a) 

 
and in the second phase, we have 
 

m0 !Wf + 2mf !wf t=tD0

L

∫ d x + 2mb !wb t=tD
d x

0

L

∫ = m0 !Weq + 2 mf +mb( ) !weq0

L

∫ d x  (54b) 

 
The kinetic energy of system in the phase III is 
 

EIII = Emass + Efront + Eback =
m0 !Weq

2

2
+
mf +mb( )L !Weq

2

3
 (55) 

 
The dissipated plastic bending energy is 
 

UBending-III =
4 M f 0 +M b0( )Weq

L
 (56) 

 
Since the core is not compressed in the Phase III, the energy dissipated by springs is zero. 

 
2.2 Low strength core ( γ <1 ) 

In this case, if all of the energy is dissipated before the core densification is reached, the back beam 
will not deform and the final deflection of the upper beam could be obtained according to the equa-
tions given in section 2.1.1.1 and 2.1.2.1 for the front beam. If the densification is reached, the de-
formation of the beams will follow Eqs. (52), (53), and (54). 
 
2.3 Non-dimensional groups 

Following Tilbrook et al. (2007), we use the same independent and dependent non-dimensional 
groups.  

The non-dimensional geometric variables of the sandwich beam are 
 

C = C
L

, h =
hf + hb
2C

, !h =
hb
hf

 (57) 

 
and the non-dimensional core properties are εD , 
 

ρ =
ρc
ρ f

, σ yC =
σ yC

ρσ y

 (58) 
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For the impulse, it is defined as 
 

I = I L ρ fσ y  (59) 

 
In addition, the dependent non-dimensional groups are 
 

t = t
τ

, wf t( ) = wf

L
, wb t( ) = wbL , Wf =

Wf

L
, Wb =

Wb

L
, v f t( ) = v f ρ f hfI

, and 

vb t( ) = vbρ f hfI
 

(60) 

 
where τ = L σ y ρ f  is the response time of a plastic string of length 2L made from a material 

with yield strength σ y  and density ρ f . 

 
3 DYNAMIC RESPONSE IN TERMS OF DEFLECTION 

For the sandwich beams under blasting loading, Liang et al. (2007) divides their behaviors into 
three regimes by comparing various time-scales in the responses, which is given in Fig. 7. In the 
figures, tbd is the time at which the back face begins to decelerate, and teq is the time that the mid-
span velocities of the front and back faces are equal. Following their definition, explicit finite ele-
ment analysis is performed and the results are compared with the analytical study. In the FE mod-
el, the face sheets and the core are assumed perfectly bonded together. Element type Solid164, an 8-
node solid structural element provided by the code (LS-DYNA, 2007) is used to discretize the face 
sheets and the foam core. There are 4050 and 10125 elements for the face sheets and the foam core 
of the beam, respectively. The vertical, horizontal and rotational displacements of nodes at the ends 
of the beam are zero. Appropriate mesh refinements near the impact point and the end support are 
included. Mesh sensitivity is checked before calculations. The automatic time step calculation op-
tion from the code is chosen. The contact between the beam and the roller is modeled by using a 
contact pair surface algorithm with a frictionless contact option (LS-DYNA, 2007).  
 

   
 

Figure 7   Velocity versus time histories of the mid-span of the front and back faces in three regimes: regime A- strong core; regime B- 
densification reaches before the velocities equalization; regime C- soft core [4]. 
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Firstly the analytical prediction and experimental results are compared. Following Wang et al. 
(2011), the material and geometrical parameters of sandwich beams are listed in Table 1. The strik-
er mass is equal to the mass of the foam projectile used in experiments. Fig. 8 shows the experi-
mental results and our analytical prediction for the normalized maximum middle point deflection of 
the back face. It is seen that when the core makes the large global deformation, our prediction 
agrees well with the experimental ones. But when the core shear or fractures was present in the 
experiments of the sandwich structures, which is not considered in the analytical modeling, the 
deviation of our predictions from the experimental results increases. Nevertheless, during the global 
deformation stage, our model could well predict the experimental results.  

 
Table 1   Material parameters of sandwich beams 

 

 
 

 

     
 

Figure 8   Comparison between the analytical predictions and experimental results by Wang et al. [10] for (a) Metal foam core, and (b) 
aluminum honeycomb core. 

 
Figure 9 shows the contours of plastic strain in the right part of sandwich beam obtained by FE 
simulation since the deformation is symmetry. Fig. 9a shows the mesh of the model. The impulse 
I = 4.91×10−6 . Beam geometrical and material parameters are: hf=hb=0.5mm, C=10mm, 
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σp=0.1MPa (γ=2.08),   εD=0.7,  σy =75.8MPa. It is seen that during the deformation of the sand-
wich beam, the foam core is not only compressed, but also bended as the striker velocities decrease 
to zero, which may be of significant effect on the overall behavior of the sandwich beam. Therefore, 
the effect of compression and bending of the foam core on global deformation should be considered 
in the theoretically analysis. In the following discussion, we compare the finite element results with 
the aforementioned analytical solutions. 
 

 

  

  

  
Figure 9   Numerical results for the impact response of the sandwich beam. The impulse 64.91 10I −= × , V=20m/s. Beam geometri-
cal and material parameters are: hf=hb=0.5mm, C=10mm, σp=0.1MPa (γ=2.08),   εD=0.7,  σy =75.8MPa. (a) Mesh of the sand-
wich beam; (b) Distribution of plastic strain when 0.15t = ; (c) Distribution of plastic strain when 0.5t = ; (d) Distribution of 

plastic strain when 1.5t = . 
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Figure 10 shows the comparison of the predicted results from the present model and that of Til-
brook et al. (2007), as well as the numerical ones from FE simulation. It is seen that because the 
shear/bending strength of the core prior to the equalization of the velocities of the front and back 
faces (that is, in the first and second phases) is ignored, the velocity of the front beam, predicted by 
Tilbrook et al. (red dash-dot lines), is a little slower than the FE results (blue dash lines), whilst 
the velocity of the back beam is larger than those given by FE simulation. The velocity equivalent 
reaches in the first phase, and the responses of the sandwich beam goes directly into phase III, 
which corresponds to Regime A in Fig. 7a. It is seen that the front and back faces reach a higher 
equal velocity much earlier than the numerical one, which results in the over-estimation of the mid-
span deflection of the face-sheets. This great discrepancy further indicates the necessity of consider-
ing the shear/bending strength of the core even prior to the equalization of the face velocities. 

In our modeling (black solid lines), the velocities of the front and back beams are coincided well 
with those given by FE simulation. The core densification occurs before the equivalence of beam 
velocities in the first phase, and the responses of the sandwich beam follow directly into phase III, 
where the sandwich beam deforms as a single beam, corresponding to Regime B given in Fig. 7b. In 
phase III, the velocity deviation from FE simulations is due to the assumption made for the core in 
the analytical modeling, that is, the core is treated rigid after densification. In fact, in FE simula-
tion, at time t=tD, the core densification at the mid-span occurs. However, the other parts of the 
core have not yet been densified. This is just why no obvious velocity impact discontinuity is ob-
served in the FE results. Comparison between the results given by our model and FE simulation 
shows that our model can well predict the mid-span deflection of the sandwich beam. It is also no-
ticed that the response of the back beam is postponed in our modeling. This is partly due to the 
increase of the bending moment of the back beam in our model since the bending strength of the 
core is considered (Eq. 4). The comparison indicates that our model in treatment of the core defor-
mation is reasonable and could well describe the dynamic responses of sandwich beams under a 
projectile impact. 

 
 

     
 

Figure 10   Comparison of analytical predictions of our and Tilbrook models with respect to the data given by FE simulations for normal-
ized mid-span velocity and deflection of front and back face-sheets. The impulse I = 9.82×10−6 , V=40m/s. Beam geometrical and 

material parameters are: hf=hb=0.5mm, C=10mm, σp=0.1MPa (γ=2.08),   εD=0.7,  σy =75.8MPa. 
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Figs. 11 to 13 give the analytical and FE predictions of the normalized mid-span velocity and 
deflection of front and back beams under different impulse loadings. The results before the mid-
span velocity reaches zero for the first time are given. Seen as Fig. 11, under low impulse loading 
(

66.63 10I −= × ), the mid-span velocities of the front and back beams reach the equal value in the 
first phase, and then goes into phase III- system deformation directly, which has the same behavior 
as that shown in Fig. 7a. The mid-span deflection predicted by our model and FE simulation coin-
cides well with each other. In this situation, the velocity deviation in phase III is due to the theoret-
ical assumption that the beams deform as a system after the velocity equalization. Actually, in the 
FE simulation, before the velocity equivalence, the front beam makes the decelerated motion, while 
the back beam accelerated one. At time t=teq, the equalization of the mid-span velocities reaches. 
Then at the next time, the velocity of the back face will be larger than that of the front face, which 
results in the traction of the core. At that time, the directions of the pressures act on the face 
sheets have changed. The back face will make the decelerated motion whilst the front face acceler-
ated one, which results in the equal face velocity a few times later. Then the front and back faces 
will make the same motion again until all of the kinematic energy is dissipated. This process also 
indicates that at the first velocity equalization, due to the direction inverse of the face pressures and 
the large acceleration, the delimitation of the back face with the core maybe happen. 

 

 
 

Figure 11   Analytical and FE predictions of normalized mid-span velocity and deflection of front and back face-sheets with V=30m/s. 
Material and geometrical parameters are: hf=hb=0.5mm, C=10mm, σp=0.1MPa (γ=2.08),   εD=0.7,  σy =75.8MPa. 

 
Along with the increase of the loading impulse ( I = 9.82×10−6 , Fig. 12), the densification reaches 

before the equalization of the beam mid-span velocities, then the responses of the beams follows 
phase III, as shown in Fig. 7b. It is noticed that the predicted velocity of the back face is the same 
as that given by FE simulation. But the responses of the front and back beams are not synchro-
nous. The responses of the back beam are postponed. According to Eqs. (26) and (16), the delay 
time could be determined. However, the mid-span deflection predicted by our model agrees well 
with those given by FE simulation. 
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Figure 12   Analytical and FEM predictions of normalized mid-span velocity and deflection of front and back face-sheets with V=40m/s. 
Material and geometrical parameters are: hf=hb=0.5mm, C=10mm, σp=0.1MPa (γ=2.08),   εD=0.7,  σy =75.8MPa. 

 
Along with the further increase of the loading impulse ( I =13.2×10−6 , Fig. 13), due to the post-

poned responses of the back beam, the densification occurs before the motion of the back beam, and 
the responses of the sandwich beam goes directly into phase III. It is seen that the discrepancy be-
tween the analytical predictions of mid-span normalized deflection and the numerical ones could be 
ignored. 

 

   
 

Figure 13   Analytical and FEM predictions of normalized mid-span velocity and deflection of front and back face-sheets with V=60m/s. 
Material and geometrical parameters are: hf=hb=0.5mm, C=10mm, σp=0.1MPa (γ=2.08),   εD=0.7,  σy =75.8MPa. 

 
Figure 14 shows the comparison between the analytical predictions and numerical simulations 

for the normalized kinematic energy and plastic energy with respect to the time. The loading im-
pulse I = 9.82×10−6  (V=40m/s, Fig. 12). It is seen that in phase I, the analytical and numerical 
ones agree well with each other. In the third phase, the differences are due to the continuously cou-
pling deformation of the face sheets and the core, which is ignored in the analytical modeling. But 
our model predicts well the final responses of the sandwich beams. 
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Figure 14   The time histories of normalized kinetic and plastic energies in the face sheets and the foam core of sandwich beams. 
 
Figure 15 gives the normalized mid-span velocity with respect to the time under the same load-

ing impulse but different impacting mass. For light mass impacting, the difference between the 
initial mid-span velocity of the front beam Vf |t =0  and the equivalent velocity of the face sheets is 

great, which results in larger mid-span deflection of the front beam. It is seen that under the same 
impulsive loading, densification at the mid-span of the beam occurs when m0=0.0125kg (red dash 
dot lines), which is due to the formation of the concave dent on the front beam in phase I, with the 
dent width inverse proportion to the impact mass (Eq. 16, mass increasing causing the decreased 
plastic hinge velocity). So for certain loading impulse, under light mass impacting, the local defor-
mation phenomenon near the impacting zone is predominating. Along with the increase of the im-
pact mass, the value of the equivalent velocity and the time teq are both decreased. The difference 
between the initial front beam mid-span velocity Vf |t =0  and the equivalent velocity of the face 

sheets is decreased, which results in the decreased mid-span deflection of the front beam. That is, 
along with the increase of impacting mass, the deformation of the sandwich beam is global bending 
dominated. 

 

   
 

Figure 15   Comparison of normalized front and back face-sheet mid-span velocities versus time under the same impulse loading 
( I = 9.82×10−6 ) but different impact mass. 
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Figure 16 displays the normalized mid-span velocity and deflection with respect to the time his-
tories for different sandwich beams under the same impulse ( I = 6.63×10−6 ). For soft core (γ <1 , 
Fig. 16a), the densification occurs in the phase II and then the front and back beams deform sys-
tematically in phase III. During this process, the back beam is assumed un-deformed until densifica-
tion occurs (our model, solid lines). It is noticed that in the FE simulation, the back face sheet is 
not stationary although the final deflection of the back beam could be ignored (FE results, dash 
lines). Along with the increase of the core strength (γ >1 ), the equalization of mid-span velocities of 
beams may happen in the first or second phase, which is then followed by the systematical defor-
mation of the sandwich beam (Figs. 16b and 16c). It is seen that along with the increase of the core 
strength, the time to the equalization of beam mid-span velocity is decreased, which is due to the 
accelerated motion of the back beam, but decelerated motion of the front beam. It is seen in all of 
these situations, our model can well predict the mid-span deflection of the beams. 

 

  

  
 
Figure 16   Analytical and FEM predictions of the normalized front and back face-sheet mid-span velocity and deflection versus time 

for sandwich beams with different strength foam core: (a) sp =0.01MPa; (b) sp =0.05MPa; (c) sp =0.1MPa. Material and geometrical 
parameters are: hf=hb=0.5mm, C=10mm, εD=0.7, σy =75.8MPa. 
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Figure 16 (continued)  Analytical and FEM predictions of the normalized front and back face-sheet mid-span velocity and deflection 
versus time for sandwich beams with different strength foam core: (a) sp =0.01MPa; (b) sp =0.05MPa; (c) sp =0.1MPa. Material and 

geometrical parameters are: hf=hb=0.5mm, C=10mm, εD=0.7, σy =75.8MPa. 
 

4 CONCLUDING REMARKS 

In this paper, a modified beam-spring model is proposed to investigate the dynamic responses of a 
clamped sandwich beam under impulsive projectile impact. Different from Tilbrook et al. (2007), 
that is, the bending/shear effect of the core is ignored before the velocity equivalence of the face 
sheets, the bending effects of the core are considered in the whole deformation process of the sand-
wich beams. Different from beam-spring system on-rigid foundation (Chen and Yu, 2000; Yu et al., 
2002), the coupling motion of the front and back beams is considered. The comparison among ana-
lytical predictions, experimental data, and numerical simulations shows that our model enables 
acceptable predictions of the responses of the sandwich beams under mass impact when the foam 
core makes large global deformation.  

It should be pointed out that although the present model is based on small deflection, it has po-
tential to be further developed by incorporating more factors. For instance, large deflections and 
local deformation characteristic of the foam core are expectable to be incorporated into the model, 
which will be given in the forthcoming papers.  
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Appendix A: Clamped monolithic beam under mass impact (Jones, 1989) 

In the first phase, considering the symmetric deformation, the right half beam 0 ≤ x ≤ L  is consid-
ered. Its transverse velocity is expressed as (Fig. 4a)  
 

!w = !W (1− x / ξ ) 0 ≤ x ≤ ξ  (A1a) 
 

!w = 0                        ξ ≤ x ≤ L  (A1b) 
 
where ξ is dependent on the time t and the position x, and the upper dot means the differential 
with respect to the time t. At the moving plastic hinges (x=±ξ), the bending moment M 0  is the 
maximum and the transverse force Q=0. The force balance between the two moving plastic hinges 
along the transverse direction yields 
 

m0 !!W + 2 m1 !!w0

ξ

∫ dx = 0  (A2) 

 
where m1 is the mass per length of the beam. Substitution Eq. (A1) into Eq. (A2) leads to 
 

m0 !!W + 2m1 [ !!W (1− x / ξ ) + !Wx !ξ / ξ 2 ]d
0

ξ

∫ x = 0  (A3) 

 
that is, 
 

m0 !!W +m1( !!Wξ + !W !ξ ) = 0  (A4) 
 

Considering t=0, !W = 0 , and ξ = 0 , the time integral of Eq. (A4) leads to 
 

m1 !W +m !Wξ = m1V0  (A5) 
 
that is, 
 

!W =V0 / (1+m0ξ /m1)  (A6) 
 

Considering the moment balance between x=0 and x=ξ to the beam midpoint, and the boundary 
conditions: M=M01 at x=0; M= -M01 and Q=0 at x=ξ, we have  

 

2M 0 − m0 !!w0

ξ

∫ xdx = 0  (A7) 

 
Substitution Eq. (A1) into Eq. (A7) yields 
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2M 0 −m [ !!W (1− x / ξ ) + !Wx !ξ / ξ 2 ]xd
0

ξ

∫ x = 0  (A8) 

 
that is, 
 

2M 0 −m( !!Wξ 2 / 6 + !W !ξξ / 3) = 0  (A9) 
 

Then Eq. (A9) is rewritten as 
 

d( !Wξ 2 ) / dt =12M 0 /m  (A10) 
 
Integrating Eq. (A10) and considering when t=0, ξ=0, we have 
 

t = m !Wξ 2 /12M 0  (A11) 
 
Combining with Eq. (A6), we have 
 

t = mm1V0ξ
2 / [12M 0 (m1 +mξ )]  (A12) 

 
Differentiating Eq. (A12) with respect to the time t, we obtain the traveling velocity of the plas-

tic hinges, that is 
 

!ξ =12M 0 (m1 +mξ )
2 / [mm1V0ξ(2m1 +mξ )]  (A13) 

 
Since no transverse displacement occurs before the moving plastic hinge arrives at t(x), when

t ≥ t(x) , the transverse displacement is determined by 
 

w = !w
t (x )

t

∫ dt  (A14) 

 
where t(x) is obtained according to Eq. (A12) by letting ξ=x. 

Let !ξ = dξ / dt , combining with Eq. (A1), Eq. (A14) is rewritten as 
 

w = !w
x

ξ

∫ dξ / !ξ  (A15) 

 
Substitution of Eqs. (A1), (A6), (A13) into (A15) yields 
 

w =
V0 (1− x / ξ )mm1V0ξ(2m1 +mξ )dξ
(1+mξ /m1)12M 0 (m1 +mξ )

2x

ξ

∫  (A16) 
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Integration the above equation, we have 
 

w =
m1
2V0

2

24mM 0

[ 1+ β
(1+α )2

− 1+ 2β
1+ β

+ 2β
1+α

+ 2ln1+α
1+ β

]  (A17) 

 
where α = mξ /m1 , β = mx /m1 . 

In the second phase (Fig. 4c), it assumes that the corresponding transverse displacement field 
obeys 

 
w2 = L − x( )θ  (A18) 

The energy conversation leads to 
 

4M 0θ = m0V0
2 1+ 2mf L / 3m0 − x( ) / 2 1+mf L /m0( )2⎡

⎣⎢
⎤
⎦⎥
 (A19) 

 
According to Eqs. (A18) and (A19), we have 
 

w2 = m0V0
2L 1+ 2mf L / 3m0( ) 1− x / L( ) / 8M 0 1+mf L /m0( )2⎡

⎣⎢
⎤
⎦⎥
 (A20) 

 
 


