
www.lajss.org
Latin American Journal of Solids and Structures 3 (2006) 263–278

Anisotropic damage in composite shell structures
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Abstract

Continuum Damage Mechanics (CDM) had important developments since the initial
works of Kachanov and Rabotnov, and constitutes now a practical tool to account for macro-
cospic damage in materials and structures. In this work, an application of the anisotropic
damage theory based in Murakami work is presented. In the presented formulation, the
fourth order damage tensor M (that relates Cauchy and effective stress tensors) is deter-
mined on the basis of the tensor Ω (three-dimensional area density of damage) that, in turn,
can be determined through experimental data. The analytical formulation is set in incre-
mental form and implemented into a finite element program (for plates and shell structures
in composite material) taking account of geometrically non-linear effects. In order to verify
and validate the numerical model, comparisons between analytical and experimental results
for simple situations are presented.
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1 Introduction

Anisotropy is an important characteristic of composite materials, that must be taken into account
both in elastic and inelastic analysis, including damage. In this work a computational model is
presented, based on damage mechanics [5,10,12,13,18,19,21] to simulate the progressive failure
of composites under high loads. Being a micromechanical model, it allows the determination of
the composite damage based on damage models for the constituents (fiber and matrix). The
formulation is incorporated into a program of finite elements that can analyze plate and shell
structures. The parameters of the material are determined on the basis of experimental tests
and individually adjusted, and numerical results are compared with experimental data. The
study is addressed to shells of fiber reinforced composite materials with polymeric matrix and
set in a context of finite displacements with small strains.

The content of the paper is as follows. Section 2 presents the finite element model and the
procedures for the incremental numerical solution [16, 20]. In section 3 the formulation used is
presented. Using micromechanics this formulation is applied to composite materials in section
4. In section 5 some examples are shown comparing numerical and experimental results and in
section 6 the conclusions are presented.
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Note: tensors are represented, according to convenience, in matrix or inditial notation. The
operations with matrices have been carried through using the mathematical software MAPLE.

2 Finite element model

We follow the general procedure described in [4], including the effects of viscoelastic and hy-
grothermal deformations. According to reference [16] this leads to an incremental relation of
the form
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are the vectors of viscoelastic, thermal and hygroscopic loads, respec-

tively.

2.1 Numerical Solution

The numerical solution of the equations in (1) is implemented through an incremental-iterative
procedure. Both the Newton–Raphson Method and the Generalised Displacement Control
Method proposed by [25] have been implemented.

In the Newton–Raphson method, a prescribed load increment is used. One limitation of
this method is the numerical instability that occurs near the limit load as the stiffness matrix
becomes singular. This inconvenient is avoided by the Generalised Displacement Control Method
(GDCM) in which the load increments (positive or negative) are determined for the algorithm.
More details in [25].

3 Continuum damage model

3.1 Review of continuum damage mechanics

The principles of continuum damage mechanics may be introduced considering a bar subjected
to a tensile force T . The uniaxial stress σ in the undamaged bar is found from the T = σA.
The original cross-sectional area A is reduced in the damaged state by the presence of voids and
cracks. The effective cross-sectional area of the damaged bar is denoted by Ā and the effective
stress is σ̄. The bar in both the real and continuum damaged configurations are subjected to
the same tensile force T and therefore T = σ̄Ā. Equating the two expression of T , one obtains
the following expression for the effective uniaxial stress σ̄
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σ̄ =
A

Ā
σ (2)

Using the definition of the damage variable φ as originally proposed by Kachanov [9],

φ =
A− Ā

A
(3)

and substituting into equation (2), one ontains:

σ̄ =
σ

(1− φ)
(4)

This idea was generalized by various authors [10, 13, 14], to multiaxial stress states and
anisotropic damage.

3.2 Anisotropic damage and effective stresses

According to reference [18], for the anisotropic case, a relation between the global stress tensor
σij and the effective stress tensor σ̄ij may be given by the linear transformation

σ̄ij = Mijklσkl (5)

where Mijkl is a fourth order damage effective tensor. For a generic state of strain and
damage, the stress effective tensor σ̄ij is usually no symmetrical. A symmetrical form for σ̄ij is
obtained through this equation

σ̄ij =
1
2

[
σik (δkj − φkj)

−1 + (δil − φil)
−1 σlj

]
(6)

whereδij is the delta de Kronecker. According to reference [23], for the general case of strain
and damage, the damage tensor is given by:

[φij ] =




φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33


 (7)

For the case of plane stress, we have σ33 = σ13 = σ23 = φ33 = φ13 = φ23 = 0 and the
representation of the damage effective tensor [M] is reduced to

[M ] =
1
∆
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 (8)

where ∆ = ψ11ψ22 − φ2
12 and ψij = δij − φij .
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3.3 Constitutive equations for elastic damage

The generalized Hooke law for the case of undamaged and damaged materials is given, respec-
tively, by

σ̄ij = Eijklε̄kl (9)

σij = Ēijklεkl (10)

The elastic strain energy for the undamaged and damaged materials is defined, respectively,
as

V̄ =
1
2
E−1

ijklσ̄ij σ̄kl (11)

V =
1
2
Ē−1

ijklσijσkl (12)

Using the hypothesis of the equivalent elastic energy [21] that assumes that “the elastic
energy for the damaged material is equivalent to the elastic energy of the undamaged material
when the stress is substituted by the effective stress”, and equating equation (11) and (12) and
using equation (5), we obtain

Ēijkl = M−1
pqklErspqM

−1
rsij (13)

Differentiating equation (11) with relation to σ̄ij and using equations (5), (10) and (13) we
obtain for the effective strain

ε̄ij = M−1
ijpqεpq (14)

3.4 Constitutive relations for incremental analysis

For incremental analyses in non-linear situations as described in Section 2, constitutive relations
in incremental form are needed. Differentiating equation (10) with relation to the time,
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and considering that M−1
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From the symmetry of the damage tensor we obtain,
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Using the chain rule,
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To obtain this relation in explicit form it is necessary to introduce a relation for the damage φ.
Let us see first an example for the uniaxial case. The exponential equation Ē = Ee−Kε is

used to model the degradation of the elastic modulus, K being a constant to be determined
experimentally. Then, the damage coefficients are obtained by the expression [23]:

φ = 1−
√

Ē

E
= 1−

√
Ee−Kε

E
= 1−

√
e−Kε (22)

For the uniaxial case, (15) reduces to

σ̇ = Ēε̇ +
.

Ē ε (23)

Then,

.

Ē =
∂Ē

∂ε
ε̇ = −KEe−Kεε̇ (24)

and substituting in (23),

σ̇ = Ee−Kε (1−Kε) ε̇ (25)

Figure 1 below represents the behavior of the degradation of the elastic modulus and of the
damage coefficient for different values of K.

As expected, the nonlinear behavior of the proposed model can be observed. Damage coef-
ficients present a behavior similar to that observed experimentally [23].

Example 1: plate under tension. To verify the incremental equation and the integration
procedure implemented into the FE program, a plate subject to axial traction (figure 2) is ana-
lyzed. All of the layers possess equal thickness, elastic modulus E = 200 GPa and K11 = 2500.
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Figure 1: Variation of the damage coefficient and the secant elasticity modulus with the strain.
a) - Degradation of the secant elasticity module; b) - Evolution of the damage coefficient. 

 

  
 
 

 Figure 2: Geometry and loading

The numerical results obtained in the analysis are compared, in Figure 3, with the analytical
expression σ = Ee−Kεε that uses the secant modulus.

Numerical and analytical results coincide when Poisson modulus vanishes. As expected, for
a Poisson modulus ν = 0.3, the traverse deformation influences the behavior.

3.5 Localization and unloading.

Damage behavior has special characteristics that have to be taken into account in numerical
analyses. We discuss now this point through an example.

Example 2. Non-uniform bar under tension. We consider a bar of non-uniform section
and 100 mm length under tension (figure 4). The bar is modeled with two Finite Elements,
using an elastic modulus E = 18500.00 MPa and a damage factor K = 50. Once damaged, the
material remains in the damaged state under decreasing stresses. Thus, different relations have
to be written for loading and unloading.
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Figure 3: Relation stress x strain and incremental numeric approach
 
 

 

Figure 4: Geometry and loading for the nonuniform bar in tension.

Plots in Figures 5-7 show the behavior of stresses, displacements, damage and elastic mod-
ulus.

The first element, being less rigid, degrades faster and reaches the unit value of damage,
where it begins to unload under increasing deformation. At this point, when it begins to unload,
the damage in the second elements is about 0.3. During unloading, damage remains constant
and so does the elastic modulus, which maintains the last value of the secant modulus. Thus,
for loading the tangent modulus (21) is used while for unloading the secant modulus (13) is
operative.

The behavior observed in this example shows that damage and strain grow always in the first
element while stress and strain may diminishe in the second one. In the case of continuously
varying section, he phenomenon of strain localization, characteristic of damage processes, is
observed. As it is well known, this phenomenon leads to the so-called “lack of objectivity” or
mesh dependence in Finite Element analyses [15].
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Figure 5: Stress-strain relation for the first and second elements.

Latin American Journal of Solids and Structures 3 (2006)



Anisotropic damage in composite shell structures 271

 
 

1º element

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000

Strain

D
am

ag
e

 
 

2º element

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0000 0.0020 0.0040 0.0060 0.0080 0.0100 0.0120 0.0140 0.0160

Strain

D
am

ag
e

 
 

Figure 6: Damage versus strain for first and second elements.
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Figure 7: Elastic modulus degradation with strain for first and second elements.
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4 Micromechanical characterization of damage of fiber-reinforced composite materials

4.1 Damage analysis - constitutive equations.

In the case of a composite material we can have different damage processes in the matrix and in
the fiber. The present formulation allows to model each component separately and then obtain
the behavior of the composite. Thus, equation (5) can be rewritten as

σ̄R
ij = MR

ijklσ
R
kl (26)

where the index represents either the matrix (M) or the fiber (F ).
The generalized Hooke law is given for each constituent as

σR
ij = Ēijklε

R
kl (27)

Again, using the hypothesis of the energy equivalence, it can be demonstrated that:

ĒR
ijkl = M−R

pqklE
R
rspqM

−R
rsij (28)

The local stress tensor is related to the global stress tensor

σ̄R
ij = BR

ijklσ̄kl (29)

σR
ij = B̄R

ijklσkl (30)

where BR
ijkl is a tensor of fourth order indicating the elastic concentration factor of stresses.

The relation among the damaged stress concentration tensor B̄R
ijkl and the non damaged BR

ijkl

is given by:

B̄R
ijkl =

(
MR

ijkl

)−1
BR

ijklMpqkl (31)

4.2 Stress concentration tensors

In the following, the equations of Mori-Tanaka [7] are used to find the stress in the fibers. In
agreement with this theory, the stresses in the fibers are equivalent to the stress obtained through
an equivalent inclusion [6, 8, 11,17,24].

The expressions for the stress and strain concentration tensor BF and AF for the fibers are,
respectively

AF
ijkl =

[
Iijkl + cMSijrsE

M−1

rsmn

(
EF

mnkl − EM
mnkl

)]−1
(32)

BF
ijkl =

[
Iijkl + cMEM

ijmn (Imnpq − Smnpq)
(
EF−1

pqkl − EM−1

pqkl

)]−1
(33)
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where [S] it is the Eshelby tensor (fourth order) for the elastic case, [I] is the identity tensor
(fourth order), cM and cF are the fractions of the volume corresponding, respectively, to the
matrix and to the fiber.

Substituting (32) and (33) in equations (34) and (35) we obtain the stress and strain con-
centration tensor BM and AM , respectively, for the matrix:

cMAM
ijkl + cF AF

ijkl = Iijkl (34)

cMBM
ijkl + cF BF

ijkl = Iijkl (35)

Mura [17] provides the non-null components of tensor [ S ] for fibers with circular cross-
section:

S1111 =
5− 4νM

8 (1− νM )
S2222 = S1111 S3333 = 0

S1122 =
4νM − 1

8 (1− νM )
S2211 = S1122 S2323 =

1
4

S2233 =
νM

2 (1− νM )
S3311 = 0 S1133 = S2233

S3322 = 0 S1212 =
3− 4νM

8 (1− νM )
S3131 =

1
4

(36)

5 Validation of the numerical analysis

Example 3. Composite under transverse compressive stress. In this example, we consider a
plate under transverse compression whose material properties are given in Table 1. As the plate
is subjected to stress in one direction, only one damage parameter (for each matrix and fiber) has
to be determined. From the fitting of experimental results [22] we obtain K22 = KF

22 = KM
22 = 20.

Table 1: Material properties for E-Glass/ MY750/HY917/DY063

Properties Fiber Matrix Laminate
Módulus E1 (GPa) 74.0 3.35 45.6
Módulus E2 (GPa) 74.0 3.35 16.2
G12 30.8 1.24 5.83
Poisson 0.2 0.35 0.278

Example 4: Analysis of a unidirectional composite. The present formulation can be used
to determine stresses in each constituent (fiber and matrix) of the composite. In this example,
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Figure 8: Transverse compressive stress/strain curve for E-glass/ MY750/HY917/DY063 epoxy
lamina. Comparison of experimental and numerical values.

we consider a plate under uniaxial tension. Experimental details and mechanical properties
of the materials are (EF = 410, 000.00MPa e EM = 80, 000.00MPa) [2]. Other properties
were determined using mixture theory [1]. As the plate is under axial tension, only one Kij

parameter for each matrix and fiber are needed: K11 = KF
11 = KM

11 = 50. In figure 9, the
comparison between numerical and experimental results is shown.
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Figure 9: Comparison of numerical and experimental results for composite and components.

Example 5. Plate under pure shear. We consider the plate in figure 10. The plate is made
with laminated material LTM45EL-SM [3], whose properties are given in Table 2. As the stress
state is pure shear, only one of the parameters Kij need to be determined (K12 = 90).

Experimental and numerical results may be seen in figure 11.
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Figure 10: Geometry and loading

Table 2: Material properties for LTM45EL-SM
Properties Fiber Matrix Laminate
Módulus E (GPa) 235.0 2.9 -
Poisson 0.2 0.38 0.3
G12 96.311 0.760 4.0
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Figure 11: Comparison of model prediction and experimental data for shear of LTM45EL-SM
unidirectional lamina

Latin American Journal of Solids and Structures 3 (2006)



Anisotropic damage in composite shell structures 277

6 Conclusion and final remarks

Beginning with the fundamental hypotheses of Murakami [18, 19] and the damage matrix pro-
posed by Voyiadjis & Kattan [23] the following results were obtained:

1. An incremental constitutive relation was determined and verified comparing numerical and
analytical results.

2. This incremental relation was implemented into a Finite Element code for anisotropic
shells.

3. The formulation and the code were validated for some simple states of stress comparing
numerical and experimental results.

Moreover, the particular behavior of materials in the damaged state that leads to unload-
ing and localization phenomena was described. This analysis shows the need of determining
loading-unloading criteria and to face mesh-dependence effects. These important subjects will
be addressed in a forthcoming paper.
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