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Abstract 

The paper concentrates on the study of reflection and transmission 
characteristics of waves at the interface of a thermoelastic-
diffusive solid half-space underlying an inviscid liquid. The 
analytic expressions for amplitude ratios, reflection and 
transmission coefficients, in terms of incident angles and material 
parameters have been obtained for quasi-longitudinal ( qP ) and 

quasi-transverse ( qSV ) wave incidence. The normal and grazing 

incidence cases have also been derived and discussed. The total 
reflection phenomenon has also been discussed. The energy law 
has been shown to be obeyed by the incidence, reflected and 
transmitted waves by deriving energy equation and its simulation. 
The numerical computations of reflection and transmission 
coefficients have been carried out for copper material half-space in 
contact with water at the interface by using MATLAB software. 
The computer simulated results have been presented graphically in 
order to bring out clear comparison of various situations. 
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1 INTRODUCTION 

Diffusion is defined as a movement of the particles from a region of high concentration to the low 
concentration. Thermal diffusion utilizes the transfer of heat across a thin liquid or gas to 
accomplish isotope separation. Today, the study of thermal diffusion phenomenon got a great deal 
of interest due to its wide ranging applications in geophysics and industrial applications. The 
concentration obeys the famous Fick’s law, which does not take into consideration the mutual 
interaction between the solvent and the solute or the effect of temperature on this interaction. 

J.N. Sharma a

R. Kaur b 

 

 

Department of Mathematics, National 

Institute of Technology 

Hamirpur-177005, India 
a jnsnith@gmail.com                    
b  kaur.rajbir22@gmail.com 

 
 
Received 15.05.2014 
In revised form 29.06.2014  
Accepted 18.08.2014 
Available online 26.09.2014 

 

 



2142      J.N. Sharma and R. Kaur / Study of reflection and transmission of plane waves at thermoelastic-diffusive solid/liquid interface 

Latin American Journal of Solids and Structures  11 (2014) 2141-2170 
 

However, there is a certain degree of coupling with temperature and temperature gradients as 
temperature speeds up the diffusion process. The thermo-diffusion in elastic solids is due to 
coupling of temperature, mass diffusion and strain fields addition to heat and mass exchange with 
the environment. Nowacki (1974, 1976) developed the theory of coupled thermoelastic diffusion. 
The recent development of generalized theory of thermoelastic diffusion by Sherief et al. (2004) 
allows the finite speed of propagation of thermo-diffusive waves. Sharma (2007) discussed the 
propagation of plane harmonic waves in generalized thermo-elasto-diffusive solid. Kumar et al. 
(2014) studied the propagation of Rayleigh waves in a homogeneous isotropic micro-stretch 
generalized thermoelastic diffusion solid half-space.   

The phenomenon of wave reflection and refraction is a fundamental topic in many fields such 
as seismology, geophysics, earthquake engineering, non-destructive evaluation, etc. Jeffreys (1930) 
and Gutenberg (1944) considered the reflection of elastic plane waves at a solid half space. Knott 
(1899) derived the general equations for reflection and refraction of waves at plane boundaries. 
Singh (2005) discussed the reflection of P  and SV   waves from the free surface of an elastic 
solid with generalized thermo-diffusion. Singh (2006) studied the reflection of SV waves from the 
free surface of an elastic solid in generalized thermo-elastic diffusion. Sharma and Sharma (2010) 
investigated the reflection characteristics of acousto-diffusive waves from the surface of a 
semiconductor half-space which is subjected to stress free, isoconcentrated and stress free, 
impermeable conditions. Kumar and Kansal (2012) considered the reflection and refraction of 
plane waves at the interface of an elastic solid half-space and a thermoelastic diffusive solid half-
space. Bijarnia and Singh (2012) investigated the propagation of plane waves in a transversely 
isotropic generalized thermoelastic solid half-space with diffusion and they also studied the 
reflection of these plane waves from a thermally insulated free surface. Kumar et al. (2013) 
studied the reflection and refraction phenomenon due to plane wave’s incident obliquely at a 
plane interface between uniform elastic solid half-space and microstretch thermoelastic diffusion 
solid half-space. 

Wu, et al. (1990) investigated the reflection and transmission of elastic waves from the 
boundary of a fluid-saturated porous solid. Lin, et al. (2005) studied the reflection of plane waves 
in a poroelastic half-space saturated with inviscid fluid. Deresiewicz (1960) studied the reflection 
of plane waves from a plane stress-free boundary in the coupled theory of thermoelasticity. 
Sharma, et al. (2003) studied the reflection of generalized thermoelastic from the boundary of a 
half space. Sinha and Sinha (1974) and Sinha and Elsibai (1996, 1997) investigated the reflection 
of thermoelastic waves from the free surface of a solid half-space and at the interface of two semi-
infinite media in welded contact, in the context of generalized thermoelasticity. Das, et al. (2008) 
explored the reflection of generalized thermoelastic waves from isothermal and insulated 
boundaries of a half space. Sharma, et al. (2008) studied the reflection of piezo-thermoelastic 
waves from the charge free and stress free boundary of transversely isotropic half space. Abd-Alla 
and Al-Dawy (2000) discussed the reflection of thermoelastic plane wave at a generalized 
thermoelastic half space with one and two relaxation times. Singh (2010) applied the LS and GL 
theories of generalized thermoelasticity to study the reflection from a thermally insulated stress-
free thermoelastic solid half-space of monoclinic type. Sharma et al. (2012) studied the reflection 
and transmission characteristics of acoustic waves at an interface of a semiconductor half-space 
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underlying an inviscid liquid. Sharma and Bhargava (2014) investigated the reflection and 
transmission of thermoelastic plane waves at an imperfect interface between a thermal conducting 
viscous-liquid and generalized thermoelastic solid half-space. Sharma, et al. (2008) studied the 
generalized Rayleigh waves in thermoelastic solids under viscous fluid loading.   

Keeping in view the above state facts and applications of reflection/transmission phenomenon 
in thermoelastic-diffusive solid under the interaction of fluid, the present paper is devoted to 
discuss the reflection and transmission of plane waves at the interface between such continua. 
The effects of incident angles, material parameters and fluid loading on reflection and 
transmission coefficients of various possible waves due to the incident qP and qSV waves have 

been considered. The analytical results so obtained have been verified numerically and are 
illustrated graphically.   
 
 
2 FORMULATION OF THE PROBLEM 

We consider a homogeneous isotropic, thermoelastic-diffusive solid in the undeformed state 
initially at uniform temperature 0T , underlying an inviscid liquid half-space. We take origin of the 

rectangular Cartesian co-ordinate system Oxyz at any point on the plane surface (interface) with 

z -axis directed normally into the solid half-space, which is thus represented by 0z  as shown 
in Figure 1. We choose the x-axis along the direction of propagation of waves in such a way that 
all the particles on the line parallel to the y-axis are equally displaced. Therefore, all the field 
quantities are independent of y -co-ordinate. Further, the disturbances are assumed to be 

confined to the neighborhood of the interface 0z and hence vanish as z . 
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Figure 1: Geometry of the problem. 
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The basic governing field equations of motion, heat conduction equation, mass equation and 
constitutive relations for a solid medium, in the absence of heat sources and body forces, are 
given by Sherief et al. (2004)   
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where T )23(1  , C )23(2  ,  

Here ),,(),,,( wvutzyxu 


, ),,,( tzyxT  and ( , , , )C x y z t are the displacement vector, 

temperature change and mass concentration respectively. Here T , C  are coefficients of linear 

thermal expansion and linear diffusion expansion;  , are Lame’s parameters;   is the mass 

density; K  is the thermal conductivity; D is the mass diffusion coefficient; a and b are thermo-

diffusive and diffusive constants; 0t  and 1t  are thermal and mass flux relaxation times and eC  is 

the specific heat at constant strain. The quantity ij  is the Kronecker’s delta with 1j  for Lord 

and Shulman (LS) theory (1967) and 2j  for Green and Lindsay (GL) theory (1972). The 

superposed dot notation is used for time differentiation.  
The basic governing equations for inviscid fluid (liquid) medium are given by 
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where    LL 3 ; L  is the bulk modulus; L  and   are the density and coefficient of 

volume thermal expansion; ),0,( LLL wuu 


 is the velocity vector and LT  is the temperature 

deviation in the liquid temperature from its ambient temperature 
0T .  

In order to facilitate the analysis, we define the following dimensionless quantities 
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Here   is the characteristic frequency, T and  C  are thermo-mechanical coupling constant 

and mass concentration of the solid respectively, 21 ,cc  are respectively the longitudinal and 

shear wave velocities in the solid half-space, L  is the thermomechanical coupling and Lc  is the 

velocity of sound in the fluid.  
Upon using quantities (8) in equations (1)-(7), we obtain  
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where



 L and the operator  and 2  are again designated to have their usual meaning in 

the changed variables  
The scalar point potential functions   and L  and vector point potential functions 


 and L


 

have been defined through the relations given below: 
 

0.,  


U  

0.,  LLLLU 


                                 (16)         
 

where  ),0,( WUU 


, ),0,( WUU LL 


 

In case )0,,0(  


 and )0,,0( LL  


, the above equations provide us 
 

ZXU ,,   ,    XZW ,,    

XLLU , ,  ZLLW ,                                         (17)         
 

Upon introducing expressions (17) in equations (9)-(15), and noting that 0L for inviscid fluid, 
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The equation (18) corresponds to decoupled shear motion which remains independent of 
temperature and mass concentration changes. 
 
 
3 BOUNDARY CONDITIONS 

The boundary conditions to be satisfied at the solid-liquid interface ( 0Z ) are given by 
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where h is Biot's constant, 0h corresponds to the thermally insulated boundary and 

h  refers to the isothermal one and the pressure ( p ) of the liquid is given 

by L
Lp 


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4 SOLUTION OF THE PROBLEM 

We assume wave solutions of the form 
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are the non-dimensional phase velocity, frequency 

and wave number of waves respectively. The primes have been suppressed for convenience.  
Upon using solution (27) in equations (18)-(23), one obtains a system of algebraic equations in 
unknowns A, B, C, D and E. The condition for the existence of non-trivial solution of this system 
of equations on simplification, provides us 
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In case elastic and thermal fields are uncoupled )0( LT    to each other, the equation (30) 

reduces to  
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The equation (30) and (31) will be used for reductions in the following analysis. 
 
 
5 REFLECTION AND TRANSMISSION AT SOLID-LIQUID INTERFACE 

In this section we shall discuss reflection and transmission of waves at the interface of thermo-
elasto-diffusive solid and inviscid fluid for qP -wave and qSV -wave incidence cases. 

 
5.1. Quasi longitudinal )(qP -wave incidence 

Suppose that a qP -wave is incident at the interface from the solid half-space. Then the total 

wave fields after reflection and transmission of waves from the interface are given by  
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In the absence of mass diffusion and thermal variations )0,0( 2  Ta  , we have 
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





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3,1,0

j

j
V j , 

 









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3),1( 0

j

j
S j


                              (40)     

                            

Upon using equations (32)-(37) and employing the boundary conditions (24)-(26), one obtains a 
system of five coupled algebraic equations (A.1)-(A.5) given in the Appendix. 
Since all the waves, incident, reflected or transmitted must be in phase at the interface 0Z  for 
all values of X  and  , therefore the equations (A.1)-(A.5), lead to 
 

sin1k 11 sink 22 sink 33 sink 5544 sinsin  kk            (41) 
                            

The equation (41) with the help of equation (28) implies that   
 

sin1a  2211 sinsin  aa 33 sina 5544 sinsin  aa               (42) 
                           

This is the modified form of the Snell’s law, which in the absence of thermal, mass diffusion, 
viscosity and fluid fields )0,0,0,0( 2  LLL a  , becomes  
 

41 sinsin    
This implies that  

2

4

1

1 sinsin

cc


                                      (43)   

                 
which is the Snell’s law as stated in Achenbach [33].  
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The system of equations (A.1)-(A.5) with the help of equation (41) can be expressed as 
 

BAZ p                                              
(44)

        
where A , pZ  and B are defined in the Appendix. 

Solving the system of equations (44), the amplitude ratios  )4,3,2,1( kRqP
k  and qPT1  are 

obtained as 
 




 1
1
qPR , 




 2
2
qPR ,




 3
3
qPR , 




 4
4
qPR ,




 5
1
qPT               (45) 

              

where A  has been defined in equation (A.9) of Appendix and )5,4,3,2,1(  ii can be 

obtained from  by replacing first, second, third, fourth and fifth column by 

  
511411312111 aVaSaaa , respectively. 

For the normal )0( 51
0    and grazing  )90( 1

0    incidence, the relation (45) 

reduces to  
 

              






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1
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



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qPR , 


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






 4
4
qPR , 






 5
1
qPT                                

 

and   

             
11 qPR , qPqPqPqP TRRR 1432 0             (46) 

                                                                           

respectively. The quantities   and )5,4,3,2,1(  ii have been defined in equation (A.9) of 

Appendix. 
Thus for the grazing incidence, the reflected qP wave annihilates the incident qP wave and 

there is no reflection or transmission of other waves through the interface. 
In the absence of mass diffusion )0( 2a , the non vanishing amplitude ratios are  
 

         

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ˆ

ˆ
1

1
qPR , 





ˆ

ˆ
2

3
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


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ˆ
3

4
qPR , 





ˆ

ˆ
4

1
qPT                                  (47)    

        

Here the quantities )4,3,2,1(ˆ,ˆ  ii  are defined by equation (A.9) in the Appendix.  

In the absence of mass diffusion and thermal fields )0,0( 2  Ta  , the non vanishing 

amplitude ratios at normal )0( 1
0    and grazing  )90( 1

0    incidence of qP  wave, 

are given by 
 

            1

1
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and   
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              11 qPR , qPqPqP TRR 143 0                            (48)    
                             

respectively. The relations (48) are in complete agreement with the corresponding equations of 
Achenbach (1973). Clearly qP  wave is reflected as well as transmitted in case of normal 

incidence, however, for grazing incidence the reflected qP -wave annihilates the incident one. 

 
5.1.1 Quasi longitudinal )(qP -wave incidence at free surface  

In case the liquid media is absent )0( L , the amplitude ratios for stress free, insulated and 

stress free, isothermal thermoelastic half-space are, respectively, given by 
 

                                    L

qP aaaiS
R


 2411333

1

cos
21



 
 

                                     L

qP aaaiS
R


 2411111

3

cos
2


                                    (49)

 
 

L
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
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2 2143333234111111
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                 and 
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L
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)(
21

 
 

                                              

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L

qP aaS
R 14211

3 2
                                          

(50)
    

 

                       




L

qP aaSaaS
R 2111313211

4 2
                                  

                 where 

)(cos)(cos 1421241133314232413111 aaaaaiSaaaaaiSL                (51) 

                
)()( 142124113142324131 aaaaSaaaaSL 

                         (52) 

                             
In the absence of mass diffusion, fluid and thermal fields )0,0( 2 LTa   , the non-

vanishing amplitude ratios are 
 

4
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2cos2sin2sin

2cos2sin2sin







qPR  



2152      J.N. Sharma and R. Kaur / Study of reflection and transmission of plane waves at thermoelastic-diffusive solid/liquid interface 

Latin American Journal of Solids and Structures  11 (2014) 2141-2170 
 

                         4
2

41
2

41
2

4 2cos2sin2sin

2cos2sin2





qPR

                                     
(53)

        
Relations (53) are in complete agreement with the corresponding equations as in Achenbach 

(1973). In case of both normal )0( 1
0    and grazing  )90( 1

0    incidence, the 

relations (53) provide us  
 

11 qPR , 04 qPR                              (54)         
 

Thus, the incident qP -wave is reflected as qP -wave without change in phase in case of normal 

incidence and the reflected qP -wave annihilates the incident qP -wave for grazing incidence one. 

It may be noted from the above analytical expressions for the reflection/transmission coefficients 
that the characteristics of reflected and transmitted waves depends on material parameters and 
incidence angle in addition to thermal variation and fluid loading effects. 
 
5.2 Quasi transverse  qSV -wave incidence 

Now consider the reflection and transmission of a plane qSV -wave for similar conditions on the 

boundary as in Section 5.1 above. The total displacement field in this case is given by  
 

                      
)exp(

)}cossin(exp{
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






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                LtLLtLrrr  ,,,,                                (55)    

        
where LtLtrrr  ,,,,   are defined in equations (32)-(37). 

Upon using expressions (55) in the boundary conditions (24)-(26), at the surface 0Z and 
assuming that all the incident, reflected or transmitted waves are in phase at this surface for all 
values of X  and  , so that 

 

sin4k 11 sink 22 sink 33 sink 44 sink 55 sink            (56) 

              
we obtain a system of five coupled algebraic equations given as 
 

1BAZs                                    (57)  
              

Where 

                                         511
*
4113424141 aVaSaaaB ,    

 

                               qSVqSVqSVqSVqSV
s TRRRRZ 14321 ,,,,                                                 

            

Upon solving system of equations (57), the amplitude ratios can be obtained as 
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
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where 
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( 1, 2,3, 4)krqSV

k

i

A
R k

A
   and 

1

5
1
qSV

i

A
T

A
  are amplitude ratios of the reflected and 

transmitted waves. Here, the quantities )5,4,3,2,1(
~  ii  used in equation (58) can be obtained 

from   by replacing first, second, third, fourth and fifth column 

by   511
*

411342414 aVaSaaa respectively. 

In case of both normal )0( 54
0    and grazing  )90( 4

0    incidence, the 

relation (58) reduces to  
 

14 qSVR , 

 qSVqSVqSVqSV TRRR 1321 0                                      (59)                 
 

Thus the shear ( qSV ) wave is reflected as qSV -wave in case of normal incidence and the 

reflected ( qSV ) wave annihilates the incident wave for grazing incidence. 

In the absence of mass diffusion )0( 2a , the non vanishing amplitude ratios are  
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ˆ
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
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Here, the quantities )4,3,2,1(ˆ  ii  used in equation (60) can be obtained from ̂  by replacing 

first, second, third and fourth column by   *
411342414 aSaaa respectively. 

In the absence of mass diffusion and thermal fields )0,0( 2  Ta  , the amplitude ratios 

at normal )0( 1
0    and grazing  )90( 1

0   incidence of qSV  wave, are given by 
 

qSVqSVqSV TRR 131 0  , 14 qSVR                          (61)     
                             

Thus only shear ( qSV ) wave is reflected as qSV -wave in case of normal incidence and the 

reflected ( qSV ) wave annihilates the incident wave for grazing incidence case. The other waves 

do not reflect or transmit in either case.  
 
5.2.1 Quasi transverse  qSV -wave incidence at the free surface 

In case )0( L , the amplitude ratios for stress free, insulated and stress free, isothermal 

thermoelastic half-space are, respectively, given by 
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where L  and  L are defined in equations (51) and (52) respectively.   

In the absence of mass diffusion, fluid and thermal fields )0,0( 2 LTa   , the non 

vanishing amplitude ratios are  
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(64)
        

 

Equations (64) are in agreement with the corresponding equations as in Achenbach (1973). In 

case of both normal )0( 4
0    and grazing  )90( 4

0    incidence of qSV  wave, the 

expressions for reflection coefficients in equation (63) provide us 
 

01 qSVR , 14 qSVR                       (65)         
 

Thus only shear wave is reflected as qSV  wave without any change of phase in case of normal 

incidence and reflected qSV -wave annihilates the incident qSV  wave in case of grazing 

incidence. It is noticed that the reflection/transmission characteristics of waves depends upon 
material parameters and incidence angle in this case too. 
 
6 TOTAL REFLECTION 

In this section, the case of total reflection beyond critical angle has been discussed. We consider 
the equation (56) which implies that 
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sin4k )4,3,2,1(sin ik ii                                  (66)      
                             

Here the quantities )4,3,2,1(2 iai  are complex and so does at the wave numbers 

)4,3,2,1(2 iki are also complex. Thus the phase velocities )4,3,2,1)/((  ikc ii  of these 

waves are complex and the waves becomes attenuated in space. If we take  
 

4,3,2,1,111   jQiVc jjj                               (67)        
                             

where jjjjj ViQk /,    and )4,3,2,1( jQ j  are real quantities. Then jV , jQ   

respectively represent phase speed and attenuation coefficients of these waves.   
Upon using relations (67) in equation (66), we get 
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Now upon using equations (66)-(68), the potential function r  given in equation (32) can be 

rewritten as 
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angle c  for elastic wave is obtained when 11 V , so that  1sin c . Thus in the presence of 

thermal field, the value of critical angle increases as  11 V  or 1 . For 1
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(69)

                 
Thus the thermal part and elastic part of reflected P-wave propagates horizontally in X -
direction and these quantities decay exponentially with depth.  

Moreover, we have also considered the relation  sinsin 11 a , which shows that 1 is real 

only if c  , where   1
1sin ac
 , this equals to   01 29sin    c in the absence of mass 

diffusion. In the presence of mass diffusion for qPwave, the critical angle is 69.290 c  (see 
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numerical results later on) and beyond this cutoff point maximum incident shear wave power is 
converted to reflected shear wave. 

 
 

7 ENERGY EQUATIONS 

From the principle of energy, the energy carried to the boundary by the incident wave must be 
equal to the energy carried away from the boundary by the reflected and transmitted waves.  
For the incident  qP  waves the particle velocities are  
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For the reflected qP  waves  
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For the reflected qSV  waves   
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For the transmitted qP  waves   
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If we take the kinetic energy per unit volume as )(
2

1 2222  WU , then the energy flux 

for the waves mentioned above may be computed by multiplying the total energy per unit volume 
by the velocity of propagation and the area of the wave front involved. Here the cross-sectional 
areas of the incident, reflected and transmitted waves are proportional to the cosines of the angles 
made by the ray directions of the waves with the normal to the interface. Thus, we may write the 
equality between the incident, reflected and transmitted waves in case of qPwaves for the unit 

area on the interface as 
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In the absence of mass diffusion )0( 2a , the energy equation is given by 
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In the absence of mass diffusion and thermal fields )0,0( 2  Ta  , the energy equation is 

given by 
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         (72)                 

For the incident  qSV  waves the particle velocities are  
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In this case, the energy equation may be obtained by writing the equality between the incident 
qSV wave and the sum of the reflected qPwave, reflected qSV wave and transmitted qPwave 

energies for the unit area on the interface as  
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In the absence of mass diffusion )0( 2a , the energy equation is given by 
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In the absence of diffusion and thermal fields )0,0( 2  Ta  , the energy equation is given 

by                       sayg
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Here TED stands for thermoelastic-diffusion, TE for thermoelasticity and E for elastic one. It is 
shown with the help of numerical results in the following section that the energy equation is 
satisfied in each case.  
 
 
8 NUMERICAL RESULTS AND DISCUSSIONS 

In this section the reflection and transmission coefficients for qP  and qSV  wave incidences at an 

interface between thermoelastic-diffusive solid and inviscid fluid have been computed numerically. 
The material chosen for this purpose is Copper, the physical data for which is given as in Sherief 
et al. (2004) 
 

0168.0 , 2101076.7  Nm , 2101086.3  Nm , 3310954.8  mkg , 
 

11386  KWmK , 151078.1  KT , 1341098.1  kgmC ,  KT 2930  , 
 

111.383  KkgJCe , 381085.0  mskgD , 1224102.1  Ksma ,  
 

2156109.0  skgmb  
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The liquid chosen for the purpose of numerical calculations is water, the velocity of sound in 

which is given by smcL /105.1 3  and density is 31000  mkgL . The values of specific 

heat of water at different temperatures have been given in Table 1 below: 
 

)(0 KT   273 283 293 303 313 323 333 343 353 363 

)/( KgKJ

Cv
  

1.008 1.0019 0.99948 0.99866 0.99869 0.9919 1.001 1.0013 1.0029 1.005 

 

Table 1: Specific heat of water at different temperatures (Sharma et al., 2008). 
 

The values of the reflection )4,3,2,1(, kRR qSV
k

qP
k  and transmission qSVqP TT 11 , coefficients for 

incident qP  and qSV waves have been computed from equations (45), (47), (49), (50), (58), (60), 

(62) and (63) for various values of the angle of incidence )(  lying between 00 900   . The 

numerical computations have been carried out with the help of MATLAB software. The 
computed results have been presented graphically in Figures 2-11, and the satisfaction of energy 
equations at different angles of incidence is given in Table 2. Here, TED refers to thermoelastic 
diffusion case, ED to elastic-diffusive case and TE to thermo-elastic one.  

Figures 2-4, show the energy distribution of reflection and transmission coefficients in case of 
qP wave incidence at the interface, for thermoelastic diffusion, elastic diffusive and thermoelastic 

solids, respectively. It is noticed that the transmitted longitudinal wave losses energy with 
increasing angle of incidence. A significant effect of diffusion is noticed on the transmitted 
longitudinal wave between the range 00 4020   . The presence of diffusive field significantly 

affected the reflected longitudinal wave in the range 00 700   , after which the behavior of 
reflected longitudinal wave is almost similar for each case. The effect of thermal and diffusive 
fields on the reflected thermal wave is noticed in the range 00 900   . In the absence of 
diffusive field only a meager amount of energy is associated with the reflected thermal wave 
except in the range 00 200   . A significant effect of diffusion and thermal fields has been 
noticed on the reflected shear wave. From figures 2 and 3, it is noticed that the reflected diffusive 
wave increases to attain its maximum value at 030  and decreases for 00 4030   meaning 

that diffusive wave get sufficient amount of energy before it dies out at 090 . The transmitted 

wave also gets affected due to thermoelastic diffusion and mass diffusion for 00 900   via-a’-
vis thermal variations as evident from Figures 2 to 4. 
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Figure 2: qP -wave incidence at the interface in case of thermoelastic-diffusion (TED). 
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Figure 3: qP -wave incidence at the interface in case of elastic-diffusion (ED). 
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Figure 4: qP -wave incidence at the interface in case of thermoelasticity (TE). 

 
 

Figures 5 and 6, present the energy distribution of reflection coefficients in case of qP wave 

incidence at stress free surface for thermoelastic diffusion and thermoelastic solids respectively. 
The effect of diffusion on reflected longitudinal wave is significantly noticed at the normal 
incidence 00 . In the presence of mass diffusion and thermal fields, the reflected thermal field 

decreases with increasing angle of incidence except at 050 , where no reflection of thermal 
wave is noticed. The reflected diffusive wave decreases with increasing angle of incidence and 
between 00 5030    and it loses energy. In the absence of thermal field only a meager amount 

of energy is associated with the thermal wave except in the range 00 200   . From Figures 2-

6, it is revealed that at grazing incidence  090 , the reflected and transmitted waves of 

incident qP wave vanishes except reflected longitudinal wave, thereby meaning that reflected 

longitudinal wave annihilates the incident longitudinal wave. It is noticed that in the absence of 
mass diffusion and thermal variations, the trend and nature of reflection and transmitted waves 
almost agrees with those presented in Achenbach (1973) and Kino (1987). 
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Figure 5: qP -wave incidence at the free surface in case of thermoelastic-diffusion (TED). 
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Figure 6: qP -wave incidence at the free surface in case of thermoelasticity (TE). 
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Figures 7-11, shows the energy distribution of reflection coefficients in case of qSV wave 

incidence at the interface and stress free surfaces. It is noticed that for shear wave incidence, 
there exists two critical angles in case of TED and TE: for transmitted longitudinal wave 
( 09.210  ) and for reflected shear wave ( 69.290  ) beyond which it becomes evanescent in 
Z -direction and whole of the incident shear wave power is converted to the reflected shear wave. 
It is also noticed that the reflected longitudinal wave increases to attain its maximum value at 

030 due to high stresses generated in the material at this angle of incidence and after that it 

decreases sharply to become zero at 045 . Beyond this longitudinal wave cutoff, only the 
decaying fields are associated with the longitudinal wave components and it propagates parallel to 
the surface and a large amount of energy dissipation has been noticed near 070 . It is 
observed that the reflected thermal wave and transmitted longitudinal wave are significantly 
affected due to the presence of thermal and diffusive fields. From figures 7, 8 and 10, it is noticed 

that at 030 , qSVR3  is quite close to zero though not exactly zero, a phenomenon closely 

analogous to Brewster angle in optics [Kino, (1987)] has been observed. This may be used to 
convert a shear wave to longitudinal wave. 
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Figure 7: qSV -wave incidence at the interface in case of thermoelastic-diffusion (TED). 
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Figure 8: qSV -wave incidence at the interface in case of elastic-diffusion (ED). 
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Figure 9: qSV -wave incidence at the interface in case of thermoelasticity (TE). 
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Figure 10: qSV -wave incidence at the free surface in case of thermoelastic-diffusion (TED). 
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Figure 11: qSV -wave incidence at the free surface in case of thermoelasticity (TE). 
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Table 2: The values of energy equations at different angles of incidence. 

 

From Table 2, it is inferred that in case of qP wave incidence energy equation is approximately 

satisfied at all the incidence angles though it exactly holds near the normal and grazing incident 
angles. Therefore, there is a slight dissipation of energy at the other angles of incidence. In case of 
qSV wave incidence, the energy equation holds approximately everywhere except in the 

neighborhoods of critical angle and 080 where large amount of energy dissipation has been 
noticed. These conclusions are in agreement with Mott (1971). 
 

 
9  CONCLUDING REMARKS 

1. The analytic expressions for reflection and transmission coefficients for qP  and qSV  wave 

incident obliquely at the interface between thermoelastic-diffusive solid and inviscid fluid media 
have been derived.  
2. For qP  wave incidence at the surface, the significant amount of energy is carried out by 

transmitted longitudinal wave in the presence of liquid, however the maximum amount of energy 
is carried out by reflected longitudinal wave in the absence of liquid.   
3. For qSV  wave incidence at the surface, the maximum amount of energy is carried out by 

reflected longitudinal wave before the critical angle occurs and there after reflected shear wave 
becomes prominent.  
4. It is observed that the distribution of energy through the reflected and transmitted waves obey 
energy equations in the respective cases of wave incidence with some exceptions in the 
neighbourhood of critical angle.  
5. The reflection and transmission coefficients have been observed to depend on the material 
parameters and angle of incidence. 
6. Significant effect of mass diffusion and thermal variations has been noticed on the 
reflection/transmision characteristics of waves. 
7. The phenomenon of total reflection reveals that the thermal and elastic parts of reflected 
qP wave propagate horizontally but decay exponentially with depth. 

8. The study may find applications in semiconductor, seismology and signal processing. 

  00  010  020  030  040  050  060  070  080  090  

TEDf  1 0.9855 0.8233 0.9549 0.9747 0.9508 0.9500 0.9860 0.9867 1 

TEDg  1 0.9414 0.7190 0.2295 0.8914 0.9663 0.8678 0.1705 0.6103 1 

TEf  1 0.9629 0.9189 0.9434 0.9516 0.9194 0.9412 0.9670 0.9893 1 

TEg  1 0.9330 0.7224 0.1285 0.8913 0.9713 0.8758 0.1504 0.7619 1 

Ef  1 0.9956 0.9366 0.9795 0.9958 0.9940 0.9380 0.9730 0.9915 1 

Eg  1 0.9543 0.8191 0.2643 0.8802 0.9486 0.8983 0.2632 0.6802 1 
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Appendix 

Upon employing the boundary conditions (24)-(26) at the solid-liquid interface, following system 
of equations is obtained 
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where   sin1 Xik , 111 sin Xik , 222 sin Xik , 
 

333 sin Xik , 444 sin Xik , 555 sin Xik           (A.6)    
                             

The quantities A , pZ  and B used in equation (44) are given by 
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transmitted wave. The quantities )5,4,3,2,1,( jiaij  are given by  
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Also the quantities ,  and ̂  used in equations (45), (46) and (47) are given by 
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)5,4,3,2,1(  ii can be written from   by replacing first, second, third, fourth and fifth 

column by    11111 )(01 aiVhaiSa    and also )4,3,2,1(ˆ  ii  can be obtained from ̂  by 

replacing first, second, third and fourth column by   
411312111 aSaaa respectively. 

 
 
 

 

 


