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Abstract

The paper concentrates on the study of reflection and transmission
characteristics of waves at the interface of a thermoelastic-
diffusive solid half-space underlying an inviscid liquid. The
analytic expressions for amplitude ratios, reflection and
transmission coefficients, in terms of incident angles and material

parameters have been obtained for quasi-longitudinal (qP) and
quasi-transverse (C]SV ) wave incidence. The normal and grazing

incidence cases have also been derived and discussed. The total
reflection phenomenon has also been discussed. The energy law
has been shown to be obeyed by the incidence, reflected and
transmitted waves by deriving energy equation and its simulation.
The numerical computations of reflection and transmission
coefficients have been carried out for copper material half-space in
contact with water at the interface by using MATLAB software.
The computer simulated results have been presented graphically in
order to bring out clear comparison of various situations.
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Diffusion is defined as a movement of the particles from a region of high concentration to the low

concentration. Thermal diffusion utilizes the transfer of heat across a thin liquid or gas to

accomplish isotope separation. Today, the study of thermal diffusion phenomenon got a great deal

of interest due to its wide ranging applications in geophysics and industrial applications. The

concentration obeys the famous Fick’s law, which does not take into consideration the mutual

interaction between the solvent and the solute or the effect of temperature on this interaction.
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However, there is a certain degree of coupling with temperature and temperature gradients as
temperature speeds up the diffusion process. The thermo-diffusion in elastic solids is due to
coupling of temperature, mass diffusion and strain fields addition to heat and mass exchange with
the environment. Nowacki (1974, 1976) developed the theory of coupled thermoelastic diffusion.
The recent development of generalized theory of thermoelastic diffusion by Sherief et al. (2004)
allows the finite speed of propagation of thermo-diffusive waves. Sharma (2007) discussed the
propagation of plane harmonic waves in generalized thermo-elasto-diffusive solid. Kumar et al.
(2014) studied the propagation of Rayleigh waves in a homogeneous isotropic micro-stretch
generalized thermoelastic diffusion solid half-space.

The phenomenon of wave reflection and refraction is a fundamental topic in many fields such
as seismology, geophysics, earthquake engineering, non-destructive evaluation, etc. Jeffreys (1930)
and Gutenberg (1944) considered the reflection of elastic plane waves at a solid half space. Knott
(1899) derived the general equations for reflection and refraction of waves at plane boundaries.
Singh (2005) discussed the reflection of P and SV  waves from the free surface of an elastic
solid with generalized thermo-diffusion. Singh (2006) studied the reflection of SV waves from the
free surface of an elastic solid in generalized thermo-elastic diffusion. Sharma and Sharma (2010)
investigated the reflection characteristics of acousto-diffusive waves from the surface of a
semiconductor half-space which is subjected to stress free, isoconcentrated and stress free,
impermeable conditions. Kumar and Kansal (2012) considered the reflection and refraction of
plane waves at the interface of an elastic solid half-space and a thermoelastic diffusive solid half-
space. Bijarnia and Singh (2012) investigated the propagation of plane waves in a transversely
isotropic generalized thermoelastic solid half-space with diffusion and they also studied the
reflection of these plane waves from a thermally insulated free surface. Kumar et al. (2013)
studied the reflection and refraction phenomenon due to plane wave’s incident obliquely at a
plane interface between uniform elastic solid half-space and microstretch thermoelastic diffusion
solid half-space.

Wu, et al. (1990) investigated the reflection and transmission of elastic waves from the
boundary of a fluid-saturated porous solid. Lin, et al. (2005) studied the reflection of plane waves
in a poroelastic half-space saturated with inviscid fluid. Deresiewicz (1960) studied the reflection
of plane waves from a plane stress-free boundary in the coupled theory of thermoelasticity.
Sharma, et al. (2003) studied the reflection of generalized thermoelastic from the boundary of a
half space. Sinha and Sinha (1974) and Sinha and Elsibai (1996, 1997) investigated the reflection
of thermoelastic waves from the free surface of a solid half-space and at the interface of two semi-
infinite media in welded contact, in the context of generalized thermoelasticity. Das, et al. (2008)
explored the reflection of generalized thermoelastic waves from isothermal and insulated
boundaries of a half space. Sharma, et al. (2008) studied the reflection of piezo-thermoelastic
waves from the charge free and stress free boundary of transversely isotropic half space. Abd-Alla
and Al-Dawy (2000) discussed the reflection of thermoelastic plane wave at a generalized
thermoelastic half space with one and two relaxation times. Singh (2010) applied the LS and GL
theories of generalized thermoelasticity to study the reflection from a thermally insulated stress-
free thermoelastic solid half-space of monoclinic type. Sharma et al. (2012) studied the reflection
and transmission characteristics of acoustic waves at an interface of a semiconductor half-space
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underlying an inviscid liquid. Sharma and Bhargava (2014) investigated the reflection and
transmission of thermoelastic plane waves at an imperfect interface between a thermal conducting
viscous-liquid and generalized thermoelastic solid half-space. Sharma, et al. (2008) studied the
generalized Rayleigh waves in thermoelastic solids under viscous fluid loading.

Keeping in view the above state facts and applications of reflection/transmission phenomenon
in thermoelastic-diffusive solid under the interaction of fluid, the present paper is devoted to
discuss the reflection and transmission of plane waves at the interface between such continua.
The effects of incident angles, material parameters and fluid loading on reflection and
transmission coefficients of various possible waves due to the incident P and SV waves have

been considered. The analytical results so obtained have been verified numerically and are
illustrated graphically.

2 FORMULATION OF THE PROBLEM

We consider a homogeneous isotropic, thermoelastic-diffusive solid in the undeformed state
initially at uniform temperature T, underlying an inviscid liquid half-space. We take origin of the
rectangular Cartesian co-ordinate system OXYZ at any point on the plane surface (interface) with

Z-axis directed normally into the solid half-space, which is thus represented by z >0 as shown
in Figure 1. We choose the x-axis along the direction of propagation of waves in such a way that
all the particles on the line parallel to the y-axis are equally displaced. Therefore, all the field
quantities are independent of Y -co-ordinate. Further, the disturbances are assumed to be

confined to the neighborhood of the interface Z =0 and hence vanish as Z — 0.

gP (transmitted)
Os

Liquid

v
>

gP (reflected)

qP or gSV 94
(incident)

T-mode (reflected)

C-mode (reflected)

gsSV (reflected)

Figure 1: Geometry of the problem.
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The basic governing field equations of motion, heat conduction equation, mass equation and
constitutive relations for a solid medium, in the absence of heat sources and body forces, are
given by Sherief et al. (2004)

V20 +(A+ p)VV-i- VT - B,VC = pli 1)

KV?T — pC, (T +t,7) - B, T,V.( +t,i) —aT,(C +t,C) =0 (2)
1 . .. S . a

V2C -—(C +tC)-2V?*(V.ii)-—V’T =0 3

Db( .C) . (V.u) 0 (3)

T = A8y 0y + 218 — BiT6; — B,C0; (4)

P=-pe, +bC—aT, i jk=123 (5)

where B, = BA +2u)a, , B,=BA+2u)a.,

Here U(X,Y,z,t)=(u,v,w), T(X,Vy,z,t) and C(XY,Zt)are the displacement vector,
temperature change and mass concentration respectively. Herea;, @ are coefficients of linear
thermal expansion and linear diffusion expansion; A, g are Lame’s parameters; 0 is the mass

density; K is the thermal conductivity; D is the mass diffusion coefficient; aand b are thermo-

diffusive and diffusive constants; {; and t; are thermal and mass flux relaxation times and C, is
the specific heat at constant strain. The quantity §ij is the Kronecker’s delta with j =1 for Lord
and Shulman (LS) theory (1967) and j =2 for Green and Lindsay (GL) theory (1972). The

superposed dot notation is used for time differentiation.
The basic governing equations for inviscid fluid (liquid) medium are given by

A VV U, _ﬂE VT =p, lj:L (6)
*T*

TL = _ﬂL—ZV-UL (7)
p.Cy

where 5, =34, @”; A, is the bulk modulus; p, and " are the density and coefficient of
volume thermal expansion; U, =(U_, 0, W ) is the velocity vector and T, is the temperature
deviation in the liquid temperature from its ambient temperature TO*.

In order to facilitate the analysis, we define the following dimensionless quantities

X=CX 792 ot 0=1,9-C 0, =1t
Cl Cl TO CO TO
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g po’cl Wi = poCW g _ pocl, Vi :pa)*clvT/L

BT, gT, 't AT, Y AT,

*2 *
. BT, __ B BT
T Gr2m) b2 T poia

azaCo’__ To ﬂ 162 ﬂzi
M), b'C JATS !
C.(1+2 ~ :
where a)*:u1 Wb:S—l,Cf:M,szzﬁ, CE:i_
K «"Db p p o

Here @" is the characteristic frequency, &rand &; are thermo-mechanical coupling constant

and mass concentration of the solid respectively, C;,C, are respectively the longitudinal and

shear wave velocities in the solid half-space, & is the thermomechanical coupling and C, is the

velocity of sound in the fluid.
Upon using quantities (8) in equations (1)-(7), we obtain

52U +(1-62)VV-U-Vo-FvI=U
V20— (0 +7,0)— &, V-(U +7,0)-a(d+7,9) =0
VZB—WD(9+719)—%VZ(VU)—EVZ@:0

o, = (1-25%)V-Us, +6°U,, +U ;) - 05, - B35,

]

P=-£V-U5, +3-b0O
55vv-UL—QV®L -U,
Yo}

£.PS;
B

e, =- vU,

(12)

(13)

(14)

(15)
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where p = &and the operator V and V? are again designated to have their usual meaning in

o,
the changed variables
The scalar point potential functions ¢ and ¢, and vector point potential functions ¥ and l/7L

have been defined through the relations given below:
U=Vg+Vxy, Vg =0
U.L:V¢L+VXV7L'V'WL:O (16)

where U =(U,0W), U, =U_,0,W)
In case ¥ = (0,—w,0) and ¥, =(0,—w,0), the above equations provide us

U=gty,,, W=9¢,,-v,
UL:¢L'><a WL:¢L’Z (17)

Upon introducing expressions (17) in equations (9)-(15), and noting that y, = 0 for inviscid fluid,

one obtains

1

Vzv/:?;}/’ (18)
Vi-0-59=¢ (19)

V2O - (0+7,0)—&; Vi (h+1,4)—a(I+7,9) =0 (20)
VZ9-W, (3+7,9) -6, Vip—bV?O =0 (21)

%
5i+¢g)
L L
ELp

L= —m¢L (23)

The equation (18) corresponds to decoupled shear motion which remains independent of

Vi,

temperature and mass concentration changes.

3 BOUNDARY CONDITIONS

The boundary conditions to be satisfied at the solid-liquid interface (Z =0) are given by

Oz ==P, 0y =0, W=W, (24)
O, +h,(0-0.)=0 (25)
9,=0 (26)
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where h® is Biot's constant, h@ —> Ocorresponds to the thermally insulated boundary and

hg — o refers to the isothermal one and the pressure (P) of the liquid is given

Pl v
byp:_pél\_g ¢L

4 SOLUTION OF THE PROBLEM

We assume wave solutions of the form

{9, v,0,9 ¢ }={A B, C, D,E}exp{ik(Xsind—-Zcosd—-cr)} (27)
[ 0] ( wj ( kclj o .
where C|=—|, @'|=—/], k =—>| are the non-dimensional phase velocity, frequency
(o @ @

and wave number of waves respectively. The primes have been suppressed for convenience.

Upon using solution (27) in equations (18)-(23), one obtains a system of algebraic equations in
unknowns A, B, C, D and E. The condition for the existence of non-trivial solution of this system
of equations on simplification, provides us

ki =ajw’ (j=1,2,3,45) (28)
where
> al =1+rW, +rg[(l+ab)l+e,) + L+ Bb) (e —&,) [(L-&c)

3 ata? = ¢ (L-ab) + o)W, [L+ 7 (L+ & )] /(L - 5¢)

Y afajal =7, W, [(1-&¢) )
2 1 2 1

a,=—, &g =———
R (.

r_ s o-1 r_ H ) _ [y
=ty +io ™, =1, +io ", &, =5, /bp

In the absence of mass diffusiona =0 = f,, the quantities ai2 (1=1,2,3,4,5) defined in equation
(29) become

- 1 1
a=cW,,a’+a’=1+7,(l+¢;), a’a’ =z, a’ =—-, & =
o (L+¢))

57 (30)

In case elastic and thermal fields are uncoupled (& =0=¢& ) to each other, the equation (30)

reduces to
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a’=1a’=1W, a’=r,,a’=—, al=—

The equation (30) and (31) will be used for reductions in the following analysis.

5 REFLECTION AND TRANSMISSION AT SOLID-LIQUID INTERFACE

(31)

In this section we shall discuss reflection and transmission of waves at the interface of thermo-

elasto-diffusive solid and inviscid fluid for QP -wave and QSV -wave incidence cases.

5.1. Quasi longitudinal (QP) -wave incidence

Suppose that a QP -wave is incident at the interface from the solid half-space. Then the total

wave fields after reflection and transmission of waves from the interface are given by

A, exp{ik, (X sin@—Z cos6)} +
p=0¢ +¢ = Z3:Arj e)(p{ikj (X sin t9j +Z COSQJ- )} exp(-ie)

i1

v=y, = [A,4 exp{ik, (X sin g, + Z cos 94)}Jexp(—ia)r)

S, A explik, (X sin@—Z cos6)}
=0 +0 = 3 _ expHar
T +2.5,A, expflik;(Xsing; +Zcosd;)} PEier)
=1
'V, A, explik, (X sin@ - Z cosd)}+
9=8+94 = 3. _ ) expHwr)
DV, A, expfk; (Xsing; +Z cosé,)}
1

.. =[A exp{ik; (X sin 6, — Z cos 0, ) }exp(-iwr)

0O, = [S_LAS exp{ik, (X sin 6, — Z cos 95)}]exp(—ia)r)

S, =BV, -(1-a}),
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_ ELP
Y pl+e)

V,=ba’[l-(1+¢,)a’]/[1+ Bb)a’ -rW,], j =123 (38)

In the absence of mass diffusion(a =0 = f,), we have

0, j=13
V. = ] ;
Pl j=2
aj-1), j=13
5, - (aj -1 J_ (39)
0, j=2
In the absence of mass diffusion and thermal variations (& =0=f,, & =0), we have
0, j=13
V' = - ’
Yl j=2
s —1), j=3
S, = (7o -1) J- (40)
0, ]=12

Upon using equations (32)-(37) and employing the boundary conditions (24)-(26), one obtains a
system of five coupled algebraic equations (A.1)-(A.5) given in the Appendix.

Since all the waves, incident, reflected or transmitted must be in phase at the interface Z =0 for
all values of X and 7, therefore the equations (A.1)-(A.5), lead to

k,sind =k;sing, =k,sing, = k,sing, =k, sing, =k, sin g, (41)
The equation (41) with the help of equation (28) implies that
a,sind=a,sing, =a,sind, =a,sing, = a,sing, =a, sin b, (42)

This is the modified form of the Snell’s law, which in the absence of thermal, mass diffusion,
viscosity and fluid fields (@ =0=¢,0, =0=¢ ,a=0=f,, p, =0), becomes

osing, =sing,
This implies that
sing, sing
L=— 4 (43)
Cl C2

which is the Snell’s law as stated in Achenbach [33].
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The system of equations (A.1)-(A.5) with the help of equation (41) can be expressed as

AZ =B (44)
where A, Z p and B are defined in the Appendix.
Solving the system of equations (44), the amplitude ratios RT (k =1,2,3,4) and T,* are

obtained as

R = RY = RY =2 P2 QT =k

(45)
where A=|A| has been defined in equation (A.9) of Appendix and A, (i =1,2,3,4,5) can be
obtained from Aby replacing first, second, third, fourth and fifth column by
[— a, &, ay Sa, V1a51I, respectively.

For the normal (8 =0° =6, =6,) and grazing (6 =90° =6,) incidence, the relation (45)

reduces to
R _ D pe _ D pe _ By e Ay e A
1 A* ’ 2 A* ’ 3 A* ’ 4 A* ? 1 A*
and
qup =-1, RSP =0= Rgp = pr :qup (46)

respectively. The quantities A" and A}(i =1,2,3,4,5) have been defined in equation (A.9) of
Appendix.
Thus for the grazing incidence, the reflected (P wave annihilates the incident QP wave and

there is no reflection or transmission of other waves through the interface.

In the absence of mass diffusion (@ =0= f,), the non vanishing amplitude ratios are

A A A A
R ==L R ==% R¥ = B TF == (47)
A A A A

Here the quantities A, Ai (1=1,2,3,4) are defined by equation (A.9) in the Appendix.
In the absence of mass diffusion and thermal fields (a=0= f,,&; =0), the non vanishing
amplitude ratios at normal (0 =0°=6,) and grazing (0 =90° =6,) incidence of P wave,

are given by

R = PLCL— PG L RP=0=R" , T = 2pc,
PLCL+PC PLCL+PC

and
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R =-1, RF =R =0=T," (48)

respectively. The relations (48) are in complete agreement with the corresponding equations of
Achenbach (1973). Clearly (P wave is reflected as well as transmitted in case of normal

incidence, however, for grazing incidence the reflected (P -wave annihilates the incident one.

5.1.1 Quasi longitudinal (qP) -wave incidence at free surface

In case the liquid media is absent (pL =0), the amplitude ratios for stress free, insulated and

stress free, isothermal thermoelastic half-space are, respectively, given by

R® —1-2 S;lmwa, cosb,a,,a,,

L

R = 2 Sjima, cAos 0,a,,a,, (49)
L

RP _9 alliw{glal C0S6;8,,8,; — §3 a, 050,358, }
N =
A

and
Sl (a13a24 - a23a14) - S:453'11""24
A*L

R¥ =1-2

S_1a'21a'14 (50)
AL

RP =2

REP -2 §1a21a13 _* §eauazl
AL

where

AL = Slia)al Cos 01 (a13a24 - azsa14) - S3iwa3 Cos 03 (a11a24 - a21a14) (51)

A*|_ = Sl (a13a24 - a23a14) - 33 (a11a24 - a21a14) (52)

In the absence of mass diffusion, fluid and thermal fields (@a=0= f,,&; =0=p,), the non-

vanishing amplitude ratios are

R _ 5% sin 26, sin 20, — cos’ 20,
' 52sin26,sin 20, +cos? 20,
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257 sin 26, cos 26,
5% sin26,sin 26, +cos® 26,
Relations (53) are in complete agreement with the corresponding equations as in Achenbach
(1973). In case of both normal (@=0°=6,) and grazing (=90 =6,) incidence, the

RP =— (53)

relations (53) provide us
R¥=-1,RF=0 (54)

Thus, the incident QP -wave is reflected as (P -wave without change in phase in case of normal
incidence and the reflected QP -wave annihilates the incident QP -wave for grazing incidence one.

It may be noted from the above analytical expressions for the reflection/transmission coefficients
that the characteristics of reflected and transmitted waves depends on material parameters and
incidence angle in addition to thermal variation and fluid loading effects.

5.2 Quasi transverse (QSV )-wave incidence

Now consider the reflection and transmission of a plane QSV -wave for similar conditions on the

boundary as in Section 5.1 above. The total displacement field in this case is given by

A exp{ik,(Xsin@—-Zcosd)}+ .
=y +y, = ] exp(—-iwr)
A, exp{ik, (X sing, + Zcoséd,)}
p=¢,, ©0=0,, §=39., ¢ =¢,, O, =0 (55)

whered,, ©O,, 4., ¢,, O, are defined in equations (32)-(37).
Upon using expressions (55) in the boundary conditions (24)-(26), at the surface Z =0 and

assuming that all the incident, reflected or transmitted waves are in phase at this surface for all
values of X and 7, so that

k,sin@ =k, sing, =k,sin@, = k,sing, = k,sing, =k sin 6, (56)

we obtain a system of five coupled algebraic equations given as
AZ, =B, (57)

Where
* !
B, = [a14 — 8y, —ay S8, V1a51] )

Z, = [qusv ’ R;SV , R3qsv ’ Rfsv ’ -I-lqsv ]'

Upon solving system of equations (57), the amplitude ratios can be obtained as
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A A A
’ R qsVv _ 2 , R Qv _ 73 ’ R qsVv _ 4 ’ T qsVv — 58
el At LR o )

S5
A

> | B

sV _
R™ =

A

where R® =—-(k=1,2,3,4) and qusv :i are amplitude ratios of the reflected and

; i
transmitted waves. Here, the quantities Zi (1=1,2,3,4,5) used in equation (58) can be obtained
from A by replacing first, second, third, fourth and fifth column
by [am —a,, — 8, S,a, V,a, ’respectively.

In case of both normal (#=0°=6,=6,) and grazing (0=90°=6,) incidence, the

relation (58) reduces to

R =-1
quSV — RgSV — R;]SV — 0 :quSV (59>

Thus the shear (QSV ) wave is reflected as SV -wave in case of normal incidence and the
reflected (QSV ) wave annihilates the incident wave for grazing incidence.

In the absence of mass diffusion (& =0= f,), the non vanishing amplitude ratios are

N S T
A A A A

Here, the quantities A: (i=12,3,4) used in equation (60) can be obtained from A by replacing

first, second, third and fourth column by [a14 —a,, —ay S_lau* respectively.
In the absence of mass diffusion and thermal fields (@ =0= f,,&; =0), the amplitude ratios

at normal (@ =0° =6,) and grazing (6 =90° = @,) incidence of SV wave, are given by
R =R =0=T*" R =-1 (61)

Thus only shear (QSV ) wave is reflected as QSV -wave in case of normal incidence and the
reflected (QSV ) wave annihilates the incident wave for grazing incidence case. The other waves

do not reflect or transmit in either case.

5.2.1 Quasi transverse (qSV )-wave incidence at the free surface
In case (,0,_ =0), the amplitude ratios for stress free, insulated and stress free, isothermal

thermoelastic half-space are, respectively, given by

ia)(slal Cos 6, (a13a24 — a233-14) — 2338.3 cos 93a14a24)
A

Qv _
R™ =
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ia)(ZSl a, C0s6,a,,a,, — S, 8, C0S 6, (alla24 — a21a14))

RqSV —

3 A,
RISV —1_ ia)(2§1 & Cosela13a24 — 2§3 8y C056’3‘3"11"3124 — §1 & C0501 (a11a23 — a21a'13)) (62)

4 A,

and
RISV — _ (S_l (a13a24 — az3a14) + 28—33143-24)
Rqsv _ (2§1az4a14 + §1 (a‘lla24 B a21a14)> (63)
s =

AL

RISV —1— (2813-243-13 — 283‘3‘11"3‘24 + S1 (auazs — a21a13))
4 A
where A, and A are defined in equations (51) and (52) respectively.

In the absence of mass diffusion, fluid and thermal fields (a=0=f,,&; =0= p, ), the non

vanishing amplitude ratios are

Rqsv __ sin 493
' 52 sin 26, sin 26, + cos’ 20,
RISV _ 5% sin 26, sin 20, — cos? 26, o)

5% sin 26, sin 29, + cos® 26,

Equations (64) are in agreement with the corresponding equations as in Achenbach (1973). In
case of both normal (f=0°=6,) and grazing (0=90°=6,) incidence of SV wave, the

expressions for reflection coefficients in equation (63) provide us
R®™ =0, R =-1 (65)

Thus only shear wave is reflected as qSV wave without any change of phase in case of normal
incidence and reflected (SV -wave annihilates the incident SV wave in case of grazing

incidence. It is noticed that the reflection/transmission characteristics of waves depends upon
material parameters and incidence angle in this case too.

6 TOTAL REFLECTION

In this section, the case of total reflection beyond critical angle has been discussed. We consider
the equation (56) which implies that
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k,sin@=Kk;sing, (1=1234) (66)

Here the quantities ai2 (1=12,3,4) are complex and so does at the wave numbers
k’(i=1,2,3,4) are also complex. Thus the phase velocities (C; = (@/k;)i=12,3,4)of these

waves are complex and the waves becomes attenuated in space. If we take
-1 1 s .
C; :Vj +lw Qj,j:1,2,3,4 (67)

where K; =x; +iQ; , x; =@/V; and Q;(j=12,3,4) are real quantities. Then V;, Q,

respectively represent phase speed and attenuation coefficients of these waves.
Upon using relations (67) in equation (66), we get

k,8in0=kK,8IN0, = k,SIN0, = k,8IN0, = k,Sin0I,
Q,sind, =Q,sind, =Q,sind, =0 (68)
Because Q, =0, therefore
k,=k,.0=0, V,=c,, V/'sing, =V, sing,

Now upon using equations (66)-(68), the potential function @, given in equation (32) can be

rewritten as

P = 23: A, exp{-Q,;Z}exp{ik, (X sind + Z\/52VJ?2 —sin? 0)}exp(-iwr)

i1
Now for qPand qSV waves V, <V, = 8°V,” <5°V,? and Sin@ increases to the value oV,

Va i _ .
first for 0< @ < > If sin@ =06V, =sind,, then =6, is called critical angle. For € > @, the

factor O ZVlf2 —sin? @ becomes purely imaginary. In the absence of thermal field the critical
angle @_ for elastic wave is obtained when V, =1, so that €, =sin"* ¢ . Thus in the presence of

thermal field, the value of critical angle increases as V, >1 or <1. For sin@ >V, > oV, ", we

have

é, = ZZ:A”. exp[HQ; + k4\/sin2 0 -5V, ¥Z]exp{i (k,X sin0 - wr)} (69)
-1

Thus the thermal part and elastic part of reflected P-wave propagates horizontally in X -
direction and these quantities decay exponentially with depth.

Moreover, we have also considered the relation 0@, Sin @, =Sin @, which shows that 6, is real
only if 8 <6, , where 6, =sin™(a,5 ), this equals to 6, =sin (5 )=29°in the absence of mass
=29°96" (see

diffusion. In the presence of mass diffusion for QP wave, the critical angle is 6,
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numerical results later on) and beyond this cutoff point maximum incident shear wave power is
converted to reflected shear wave.

7 ENERGY EQUATIONS

From the principle of energy, the energy carried to the boundary by the incident wave must be
equal to the energy carried away from the boundary by the reflected and transmitted waves.
For the incident (P waves the particle velocities are

2
U= 94 _ k7 csin@ A exp{ik, (X sin@—Zcos@—cr)}
oX Ot '

2
w o9 =—kfccoseAi1 exp{ik, (X sind —Z cos@ —cr)}

T azZor

— 00, —— .

0= e —ik,cS; A exp{ik, (X sind—Zcos6 —cr)}
T

— 09 I i .

g = a—' =—ik,cV; A exp{ik, (X sind-Z cosd—cr)}
T

For the reflected QP waves

U

3
D kicsin 6, A, exp{ ik (X sin @; + Z cos §; —c7)}
j=1

w

W = kiccos &; A, exp{ik;(Xsin 8, +Zcos §; -cr)}

[aN

3 fr—
©=> -ik,cS, A, exp{ik; (X sin@; + Z cosd; —c7)}

j=1

-3

=1

ik;cV; A, exp{ik;(Xsin6d; +Zcosd; —cr)}

For the reflected qSV waves

U =k;csin 0, A exp{ ik, (X sin 8, +Z cos 8, —cz)}

W =kzccos 6, A, exp{ik,(X sin 6, + Z cos 6, —cr)}
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For the transmitted P waves
= kZcsin 6, A, exp{ ik (X sin 8, — Z cos 6, — c7r)}
W, =kZccos 6, A, exp{ ik, (X sin 8, — Z cos 6, —c7)}

0, =—ik,cS, A, exp{ik;(X sing, —Z cosd, —cr)}

1
If we take the kinetic energy per unit volume aSE pU ZfW?2+0%+ 9 2), then the energy flux

for the waves mentioned above may be computed by multiplying the total energy per unit volume
by the velocity of propagation and the area of the wave front involved. Here the cross-sectional
areas of the incident, reflected and transmitted waves are proportional to the cosines of the angles
made by the ray directions of the waves with the normal to the interface. Thus, we may write the
equality between the incident, reflected and transmitted waves in case of (P waves for the unit

area on the interface as
1—R?4 azz( —82 j Rz 0050, ag( a’-Sz-Vv7? ]chos@3
— ™o 2 2 2 2 3
a’Z (af - cosd, a; \(a, —S; -V,7) cos 6,

a’ 1 , C0sd, a’ az-s? c, €osd
+a_i[(az— ~V,? )JR c, cos6, pa_sz((azjsz—va) T12c_Lcosé?5 (70)
1 1 1 1 1 1 1 1

(= fTED say)

In the absence of mass diffusion (@ =0 = f3,), the energy equation is given by

2 —
1-R?+ chose .\ 312 R? c0504+5a_2(a52_ ep szc cos b,
a; ~cosf, S°a cos &, a, B+e)) " ¢ cosh, (71)
(: fTE,say)

In the absence of mass diffusion and thermal fields (@ =0= f,,&; =0), the energy equation is

given by
1 _,cos6 1 .,C_cCosd;
1=Rl+ SR} —+p T/ -——>(=fF sa 72
PTS M eose, Pt e cose( y) 72)
For the incident QSV waves the particle velocities are
T 62'//i 2 i : i
U= =k,csind A exp{ik,(Xsind—-Zcosd -cr)}
oX ot '
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2
W=V

7 or =—k;? sccosd A exp{ik, (X sind —Z cosd—cr)}

In this case, the energy equation may be obtained by writing the equality between the incident
gSV wave and the sum of the reflected QP wave, reflected qSV wave and transmitted (P wave

energies for the unit area on the interface as

& & (a2 -7 _vp)R2 & S50 A 8 (a2 52 _y2)R2 9 006
a4 c, C0sd, a4 C, C0sd,
2 2
+a_3( _v2R2 & ¢, C0SO; | oo +,5a—5(a2 _Sz)Tzc_Lcos@5 73
4 4 4 5 L/%1
a , C0s0, a, c, cosé,
(= gTED,say)

In the absence of mass diffusion (a=0= ﬂz) , the energy equation is given by

cosd, cos o, _ p |C cosé
a25°R? +a25°R? Rf+p—2 al - _&ap |_-|-12 5
36'4 coséd, o/ pl+e))c cosd,  (74)
(: gTE ’ say)
In the absence of diffusion and thermal fields (& =0= f,,&; =0), the energy equation is given
cos 4, _o6*_, ¢, cosé;
by 1=5°R? +R2 4+ p TP SL 2205 (- g say) (75)
SO, o, = €, c0s0,

Here TED stands for thermoelastic-diffusion, TE for thermoelasticity and E for elastic one. It is
shown with the help of numerical results in the following section that the energy equation is

satisfied in each case.

8 NUMERICAL RESULTS AND DISCUSSIONS

In this section the reflection and transmission coefficients for qP and qSV wave incidences at an

interface between thermoelastic-diffusive solid and inviscid fluid have been computed numerically.
The material chosen for this purpose is Copper, the physical data for which is given as in Sherief
et al. (2004)

£=0.0168, 1 =7.76x10"°Nm~, uz=3.86x10"Nm™, p =8.954x10°kgm™>
K =386Wm'K™, a; =1.78x10°K ™, a, =1.98x10*m’kg™*, T,=293K ,
C,=383.1Jkg K™, D=0.85x10"kgsm®, a=12x10"m?*s K™,
b=0.9x10°m°kg *s
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The liquid chosen for the purpose of numerical calculations is water, the velocity of sound in
which is given by C_ =1.5%10°m/s and density is p. =1000kg m~2. The values of specific

heat of water at different temperatures have been given in Table 1 below:

T, (K) 273 283 293 303 313 323 333 343 353 363

c

(3/KgK) 1.008 1.0019  0.99948 0.99866  0.99869  0.9919 1.001 1.0013 1.0029 1.005

Table 1: Specific heat of water at different temperatures (Sharma et al., 2008).

The values of the reflection RI?P, RSSV (k=1,2,3,4) and transmission qup, qusv coefficients for
incident gP and SV waves have been computed from equations (45), (47), (49), (50), (58), (60),
(62) and (63) for various values of the angle of incidence (6) lying between 0° <@ <90°. The
numerical computations have been carried out with the help of MATLAB software. The
computed results have been presented graphically in Figures 2-11, and the satisfaction of energy
equations at different angles of incidence is given in Table 2. Here, TED refers to thermoelastic
diffusion case, ED to elastic-diffusive case and TE to thermo-elastic one.

Figures 2-4, show the energy distribution of reflection and transmission coefficients in case of
gP wave incidence at the interface, for thermoelastic diffusion, elastic diffusive and thermoelastic
solids, respectively. It is noticed that the transmitted longitudinal wave losses energy with
increasing angle of incidence. A significant effect of diffusion is noticed on the transmitted
longitudinal wave between the range 20° < @ < 40°. The presence of diffusive field significantly
affected the reflected longitudinal wave in the range 0° <@ <70°, after which the behavior of
reflected longitudinal wave is almost similar for each case. The effect of thermal and diffusive
fields on the reflected thermal wave is noticed in the range 0° <@ <90°. In the absence of
diffusive field only a meager amount of energy is associated with the reflected thermal wave
except in the range 0° <@ <20°. A significant effect of diffusion and thermal fields has been
noticed on the reflected shear wave. From figures 2 and 3, it is noticed that the reflected diffusive
wave increases to attain its maximum value at € = 30° and decreases for 30° < @ < 40° meaning
that diffusive wave get sufficient amount of energy before it dies out at 8 = 90°. The transmitted
wave also gets affected due to thermoelastic diffusion and mass diffusion for 0° <@ < 90°via-a’-

vis thermal variations as evident from Figures 2 to 4.
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Figure 2: (P -wave incidence at the interface in case of thermoelastic-diffusion (TED).
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Figure 4: (P -wave incidence at the interface in case of thermoelasticity (TE).

Figures 5 and 6, present the energy distribution of reflection coefficients in case of (P wave
incidence at stress free surface for thermoelastic diffusion and thermoelastic solids respectively.
The effect of diffusion on reflected longitudinal wave is significantly noticed at the normal
incidence € =0°. In the presence of mass diffusion and thermal fields, the reflected thermal field
decreases with increasing angle of incidence except at € = 50°, where no reflection of thermal
wave is noticed. The reflected diffusive wave decreases with increasing angle of incidence and
between 30° <@ <50° and it loses energy. In the absence of thermal field only a meager amount
of energy is associated with the thermal wave except in the range 0°<6<20°. From Figures 2-
6, it is revealed that at grazing incidence ((9 =900), the reflected and transmitted waves of
incident QP wave vanishes except reflected longitudinal wave, thereby meaning that reflected
longitudinal wave annihilates the incident longitudinal wave. It is noticed that in the absence of

mass diffusion and thermal variations, the trend and nature of reflection and transmitted waves
almost agrees with those presented in Achenbach (1973) and Kino (1987).

Latin American Journal of Solids and Structures 11 (2014) 2141-2170



2162 J.N. Sharma and R. Kaur / Study of reflection and transmission of plane waves at thermoelastic-diffusive solid/liquid interface

1
—R1
09 ] ____R2
------- R3
0.8
——--R4
g o7
S 06" -
% //’/ -\‘\~
8 05 , S
c /' N
S . .
.§ 04 ] '/, \.
= / .
N \
02| \
01 frm———mme .
’ NI )
0 T T T T > — — ==

Angle of incidence

Figure 5: (P -wave incidence at the free surface in case of thermoelastic-diffusion (TED).
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Figure 6: qP -wave incidence at the free surface in case of thermoelasticity (TE).
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Figures 7-11, shows the energy distribution of reflection coefficients in case of SV wave
incidence at the interface and stress free surfaces. It is noticed that for shear wave incidence,
there exists two critical angles in case of TED and TE: for transmitted longitudinal wave
(0 =21°.90") and for reflected shear wave (€ = 29°.96") beyond which it becomes evanescent in
Z -direction and whole of the incident shear wave power is converted to the reflected shear wave.
It is also noticed that the reflected longitudinal wave increases to attain its maximum value at
6 =30°due to high stresses generated in the material at this angle of incidence and after that it
decreases sharply to become zero at @ = 45°, Beyond this longitudinal wave cutoff, only the
decaying fields are associated with the longitudinal wave components and it propagates parallel to
the surface and a large amount of energy dissipation has been noticed near @ = 70°. 1t is
observed that the reflected thermal wave and transmitted longitudinal wave are significantly
affected due to the presence of thermal and diffusive fields. From figures 7, 8 and 10, it is noticed

that at @ =230°, ‘R3qsv‘ is quite close to zero though not exactly zero, a phenomenon closely

analogous to Brewster angle in optics [Kino, (1987)] has been observed. This may be used to

convert a shear wave to longitudinal wave.

Reflection/Transmission coefficients

Angle of incidence

Figure T7: qSV -wave incidence at the interface in case of thermoelastic-diffusion (TED).
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Figure 10: SV -wave incidence at the free surface in case of thermoelastic-diffusion (TED).
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0 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

f 10 1 0.9855  0.8233  0.9549 09747  0.9508  0.9500  0.9860  0.9867 1
g’ 1 0.9414  0.7190  0.2295  0.8914  0.9663  0.8678  0.1705  0.6103 1
fTE 1 09620  0.9189 09434  0.9516  0.9194  0.9412  0.9670  0.9893 1
g'" 1 09330 07224 01285  0.8913  0.9713  0.8758  0.1504  0.7619 1
fE 1 0.9956  0.9366  0.9795  0.9958  0.9940  0.9380  0.9730  0.9915 1
g° 1 0.9543  0.8191  0.2643  0.8802  0.9486  0.8983  0.2632  0.6802 1

Table 2: The values of energy equations at different angles of incidence.

From Table 2, it is inferred that in case of P wave incidence energy equation is approximately

satisfied at all the incidence angles though it exactly holds near the normal and grazing incident
angles. Therefore, there is a slight dissipation of energy at the other angles of incidence. In case of
gSV wave incidence, the energy equation holds approximately everywhere except in the

neighborhoods of critical angle and 6 = 80° where large amount of energy dissipation has been

noticed. These conclusions are in agreement with Mott (1971).

9 CONCLUDING REMARKS

1. The analytic expressions for reflection and transmission coefficients for qP and SV wave

incident obliquely at the interface between thermoelastic-diffusive solid and inviscid fluid media
have been derived.
2. For P wave incidence at the surface, the significant amount of energy is carried out by

transmitted longitudinal wave in the presence of liquid, however the maximum amount of energy
is carried out by reflected longitudinal wave in the absence of liquid.
3. For SV wave incidence at the surface, the maximum amount of energy is carried out by

reflected longitudinal wave before the critical angle occurs and there after reflected shear wave
becomes prominent.

4. It is observed that the distribution of energy through the reflected and transmitted waves obey
energy equations in the respective cases of wave incidence with some exceptions in the
neighbourhood of critical angle.

5. The reflection and transmission coefficients have been observed to depend on the material
parameters and angle of incidence.

6. Significant effect of mass diffusion and thermal variations has been noticed on the
reflection/transmision characteristics of waves.

7. The phenomenon of total reflection reveals that the thermal and elastic parts of reflected
gP wave propagate horizontally but decay exponentially with depth.

8. The study may find applications in semiconductor, seismology and signal processing.
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Appendix

Upon employing the boundary conditions (24)-(26) at the solid-liquid interface, following system
of equations is obtained

cos 26, exp( 1,)R™ +cos 20, exp( 7,)RF +cos 20, exp( n,)RSF (A1)
—sin 20, exp( 7,)RF - 52w, exp( n,)T,* = —cos 20 exp( 1)

5%a’ sin26, exp(n7,)RF +5%a; sin 20, exp(n,)RS’ +5%aZ sin 20, exp(n,)Ry’ A2
+0s20, exp(r7,)RF = 5%a2 sin20exp(n) '

a, cos 6, exp(ry,) R1qP +a, cos d, exp(n,) qup +a,C0s 0, eXp(773)R§P (A.3)
—a,sin g, exp(n,)RF +a, cos &, exp(n, )T,¥ = a, cos dexp(r) '

Latin American Journal of Solids and Structures 11 (2014) 2141-2170



J.N. Sharma and R. Kaur / Study of reflection and transmission of plane waves at thermoelastic-diffusive solid/liquid interface 2169

S, (iw a, cosé, +h,)exp(,)RYF +S, (iw a, cosé, + h, ) exp(z,)RF (A4
+ §3 (iw a; cosé; +h, ) exp(r;)Rs" — h®S_L exp@rs)T," = S, (iwa, cos6 - hy ) exp(7) '

V,iw a, cos 8, exp(n,)R® +V,iw a, cos 6, exp(n,)RF (A5)
+V,iw a, cos 6, exp(n,)RF =V,iwa, cos 0 exp(7) '

where 7 =1k, Xsin@, n, =ik, Xsiné,, n, =ik, X siné,,
n, =ik, Xsiné;, n, =ik, Xsing,, n, =ik X sing, (A.6)

The quantities A, Z, and Bused in equation (44) are given by

_3-11 dp, A3 8y 8 | _ a, ]
Ay Az Ay 8y Ay ay
A=|ay d3p 83 Ay 85 |, B=| ay )
S_18‘41 S. 284 S_3a43 844 Qg5 3_1341*
_\716151 \723-52 \73353 A4 As5 | L \71351 )
Z, :[qup, RSP, RgP, RfP,quP]' (A.7)

Here REP = i(k =1,2,3,4) and qup = i are amplitude ratios of the reflected and
. .
transmitted wave. The quantities a;; (1,]=1,2,3,4,5) are given by
a,, =c0s26,, a,, =¢0s20,, a,; =C€0s26,, a, =-sin20,, a, =—0°w,,
a, =d5°a’sin26,, a,, = 5°a’sin20,, a,, = 5%a’sin26,, a,, =co0s26, ,
a,s =0, a, =a,c08d,, a,, =a,C0s0,, a, =a,Cosb,,
a, =-a,sind,, a, =a,;cosd;, a, =iw a,cosé, +hgy,
a,, =lwa,cosd, +h,, a,, =imwa,cosd, +h,, a,, =0,
a, =-h,S,, a, =a, —2h,, a; =iw a, cosé,,

a,, =lwa, cosd,, a,, =imwa,cosd,, a;,, =0,

a; =0, o = ;52 (A.8)
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Also the quantities A, A" and A used in equations (45), (46) and (47) are given by

ay ap, Q3 QA

ax axn Ay Ay 8y

A =lag as a3 Ay Qg
a a

S18y S_2"3‘42 S_3"3‘43 44 Y45
_1a51 \72a52 _3a53 a54 a55
1 1 1 0 -6°m,
0 0 0 1 0
A = a a, a, 0 a; : (A.9)
S,(iwa, +h,) S,(iwa, +h,) S,(iwa,+h,) 0 —h,S,
V,ima, V,ima, Viawa, 0 0

all a13 a14 alS

a21 a23 a24 a25

>
I

a‘31 a33 a34 a35

S184 S35 Ay Ay

A (1=12,3,4,5)can be written from A" by replacing first, second, third, fourth and fifth
column by [—1 0 a S,(ica, —h,) \71'031] and also Ai (i=1,2,34) can be obtained from A by

p— " !
replacing first, second, third and fourth column by [— a, a, ay S,a, | respectively.
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