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Abstract

In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain
approximate solutions to the stochastic beam bending problem. The study addresses Euler-
Bernoulli beams with uncertain bending stiffness modulus. The uncertainty is represented
as a parameterized stochastic process. The space of approximate solutions is built using
results of density between the space of continuous functions and Sobolev spaces. From
the approximate solution, first and second order moments of the response are derived, and
compared with the corresponding estimates obtained via Monte Carlo simulation. Results
show very fast convergence to the exact solution, at excellent accuracies.

Keywords: Euler-Bernoulli beam, Galerkin method, Askey-Wiener scheme, stochastic pro-
cesses.

1 Introduction

The field of stochastic mechanics has been subject of extensive research and significant devel-
opments in recent years. Stochastic mechanics incorporates the modeling of randomness or
uncertainty in the mathematical formulation of mechanics problems. This is in contrast to
the more established field of structural reliability, where uncertainty and randomness are also
addressed, but where problem solutions are obtained mainly based on deterministic mechanics
models.

The analysis of stochastic engineering systems has received new impulse with use of finite
element methods to obtain response statistics. Initially, finite element solutions where com-
bined with the Monte Carlo method, and samples of random system response where obtained.
Perturbation and Galerkin methods where used in this context [2]. Such methods allowed rep-
resentation of uncertainty in system parameters or in loads by means of stochastic processes.
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At the end of the 80’s, Spanos and Ghanem [18] used the Galerkin finite element method to
solve a stochastic beam bending problem, where Young’s modulus was modeled as a Gaussian
stochastic process. The space of approximate solutions was built using the finite element method
and chaos polynomials. These polynomials form a complete system in L2 (Ω,F , P ) = ΨL2(Ω,F ,P )

, where Ψ = span [{ψ}∞i=0] is the space generated by the chaos polynomials and (Ω,F , P ) is a
probability space. The ideas presented in this study where innovative and represented a new
method to solve stochastic problems.

Babuska et al. [4] presented a stochastic version of the Lax-Milgram lemma. The paper
presents a hypothesis which represents limitations to the modeling of uncertainty via Gaussian
processes. For certain problems of mechanics, use of Gaussian processes can lead to loss of
coercivity of the bi-linear form associated to the stochastic problem. This difficulty was indeed
encountered in the study of Silva Jr. [14], and resulted in non-convergence of the solution for
the bending of plates with random parameters. This non-convergence was due to the choice of
a Gaussian process to represent the uncertainty in some parameters of the system. This failure
to converge also affects solutions based on perturbation or simulation methods.

In the paper by Xiu and Karniadakis [8] the Askey-Wiener scheme was presented. This
scheme represents a family of polynomials which generate dense probability spaces with limited
and unlimited support. This increases the possibilities for uncertain system parameter modeling.
In the study, uniform parameterized stochastic processes are considered.

In recent years, much effort is being addressed at representing uncertainty in stochastic
engineering systems via non-Gaussian processes. The stochastic beam bending problem has been
studied by several authors. Vanmarcke and Grigoriu [19] studied the bending of Timoshenko
beams with random shear modulus. Elishakoff et al. [12] employed the theory of mean square
calculus to construct a solution to the boundary value problem of beam bending with stochastic
bending modulus. Ghanem and Spanos [10] used the Galerkin method and the Karhunem-
Loeve series to represent uncertainty in the bending modulus by means of a Gaussian process.
Chakraborty and Sarkar [7] used the Neumann series and Monte Carlo simulation to obtain
statistical moments of the displacements of curved beams, with uncertainty in the elasticity
modulus of the foundation. Although they present numerical solutions for stochastic beam
problems, none of the papers referenced above address the matter of existence and uniqueness
of the solutions.

In the present paper, the Galerkin method is used to obtain approximate solutions for the
bending of Euler-Bernoulli beams with random parameters. The uncertainty of Young modulus
is represented by parameterized random processes [11]. The approximated solution space is
constructed using isomorphism properties between Sobolev and product spaces, using density
between continuous functions and Sobolev spaces and using spaces generated by L2 polyno-
mials of the Askey-Wiener scheme [6, 8]. The Askey-Wiener scheme is used to represent the
uncertainty and to construct the approximate solution space. Another contribution of this pa-
per is a brief theoretical study about the existence and uniqueness of the solution of stochastic
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beam bending problem, through the Lax Milgram lemma [4]. The Galerkin solution developed
herein is evaluated by comparing first and second order moments of random beam displacement
response with the same statistics evaluated via Monte Carlo simulation.

2 Bending of Stochastic Euler-Bernoulli Beams

In this section, the strong and weak formulations of the problem of stochastic bending of Euler-
Bernoulli beams are presented. At the end of this section, the Lax-Milgram lemma is used to
present a proof of existence and uniqueness of the solution. The strong form of the stochastic
beam bending problem is given as:





d2

dx2

(
E.I (x,w) · d2u

dx2

)
= f, ∀ (x,w) ∈ (0, L)× Ω

u (0) = u (L) = 0
d2u
dx2

∣∣∣x=0 = d2u
dx2

∣∣∣
x=L

= 0

(1)

where E is the Young’s modulus, I is the moment of inertia, Ω is a sample space and f is a
load term. Product E.I is simply referred to as the beam bending stiffness. For the qualita-
tive analysis regarding existence and uniqueness of the response, the following hypotheses are
considered:

H1: ∃c, C ∈ R+ : P (ω ∈ Ω : E.I (x, ω) ∈ [c, C] , ∀x ∈ [0, L]) = 1
H2: f ∈ L∞

(
Ω,F , P ; L2 (0, L)

)
Hypothesis H1 ensures that the beam stiffness modulus is positive-defined and uniformly

limited in probability [4]. Hypothesis H3 ensures that the stochastic load process has finite
variance.

2.1 Existence and uniqueness of the solution

In this section, a brief theoretical study of existence and uniqueness of the solution of the
stochastic Euler-Bernoulli beam bending problem, with uncertainty in the bending stiffness,
is presented. For operators with derivatives of order greater than two, no such study was
found in the literature. Classical results from functional analysis are used in this study [1, 4,
21]. In order to study existence and uniqueness, the abstract variational problem associated
to the strong form (Eq. 1) needs to be defined. The abstract variational problem associated
to the beam bending problem defined in Eq. (1) is defined in V = L2 (Ω,F , P ;Q) , with
Q =

{
u ∈ H2 (0, L)

∣∣∣u (0) = u (L) = 0 ∧ d2u
dx2

∣∣∣x=0 = d2u
dx2

∣∣∣
x=L

= 0
}

,

L2 (Ω,F , P ; Q) =



u : (0, L)× Ω → R

∣∣∣∣∣∣
u is measurable and

∫

Ω

‖u (ω)‖2
H2(0,L) dP (ω) < +∞





(2)
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Expression (2) means that an element u ∈ L2 (Ω,F , P ;Q) for ω ∈ Ω , fixed, u (·, ω) ∈ Q .
On the other hand, for x ∈ (0, L) , fixed, u (x, ·) ∈ L2 (Ω,F , P ). Defining the tensorial product
between v ∈ L2 (Ω,F , P ) and w ∈ Q as u = v.w , one should note that for fixed ω ∈ Ω ,

u (·, ω) = v (·) .w (ω) ∈ Q

whereas for a fixed x ∈ (0, L),

u (x, ·) = v (x) .w (·) ∈ L2 (Ω,F , P ) .

Hence, one has

L2 (Ω,F , P ; Q) ' L2 (Ω,F , P )⊗Q ⇒ V ' L2 (Ω,F , P ; Q)⊗Q.

It is also necessary to redefine the differential operator for the space obtained via tensorial
product. The operator Dα

ω : V → L2 (Ω,F , P ) ⊗ L2 (0, L) , Matthies and Keese [16], acts over
an element u ∈ V the following way:

Dα
ωu :

(
dαv

dxα

)
(x) .w (ω) , (3)

where α ∈ N and α ≤ 2. V is a Hilbert space, with internal product defined as

(u, v)V =
∫

Ω

[
(Dωu (ω) , Dωv (ω))L2(0,L) +

(
D2

ωu (ω) , D2
ωv (ω)

)
L2(0,L)

]
dP (ω) , (4)

The internal product defined in Eq. (4) induces the V norm ‖u‖u = (u, v)1/2
V , following

Kinderlehrer and Stampacchia [15]. The bilinear form B : V × V −→ R is defined as,

B (u, v) =
∫

Ω

(
E.I.D2

ωu (ω) , D2
ωv (ω)

)
L2(0,L)

dP (ω) (5)

The abstract variational problem associated to the strong form (Eq. 1) is defined as follows:

{
Find u ∈ V such that
B (u, v) = 〈f, v〉 , ∀v ∈ V.

(6)

From the hypotheses of limited probability one can show that the bilinear form has the
following properties:
a. continuity

|B (u, v)| ≤ C

∫

Ω

∥∥D2
ωu (ω)

∥∥
L2(0,L)

∥∥D2
ωv (ω)

∥∥
L2(0,L)

dP (ω) ≤ C ‖u‖V ‖v‖V ; (7)

b. coercivity
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B (u, u) ≥ c

∫

Ω

(
D2

ωu (ω) , D2
ωu (ω)

)
L2(0,l)

dP (ω)

≥ c

2

∫

Ω

[∥∥D2
ωu (ω)

∥∥2

L2(0,L)
+

∥∥D2
ωu (ω)

∥∥2

L2(0,L)

]
dP (ω) (8)

≥ c

∫

Ω

[∥∥D2
ωu = (ω)

∥∥2

L2(0,L)

]
dP (ω) = c ‖u‖2

V

From hypothesis H1 and H2, which state the continuity and coervicity of the bilinear form,
and from the Lax-Milgram lemma, it is guaranteed that the problem defined in Eq. (1) has an
unique solution, and continuous dependency on the data [4, 5].

3 Uncertainty Representation

In most engineering problems, complete statistical information about uncertainties is not avail-
able. Sometimes, the first and second moments are the only information available. The prob-
ability distribution function is defined based on experience or heuristically. In this paper, the
uncertainty on beam bending stiffness is modeled by uniform random variables.

In order to apply Galerkin’s method, an explicit representation of the uncertainty is necessary.
In this paper, the Askey-Wiener scheme is used to represent uncertainty and in the construction
of the problems solution space.

3.1 The Askey-Wiener scheme

The Askey-Wiener scheme is a generalization of chaos polynomials, also known as Wiener-chaos.
Chaos polynomials were proposed by Wiener [20] to study statistical mechanics of gases. Xiu and
Karniadakis [8] have shown the close relationship between results presented by Wiener [20] and
Askey and Wilson [3] for the representation of stochastic processes by orthogonal polynomials.
Xiu and Karniadakis [8] extended the studies of Ghanem and Spanos [10] and Ogura [17] for
polynomials belonging to the Askey-Wiener scheme.

The Cameron-Martin theorem [6] shows that Askey-Wiener polynomials form a base for
a dense subspace of second order random variables L2 (C,F , P ). Let H ⊆ L2 (Ω,F , P ) be a
separable Gaussian Hilbert space and Pn (H) be the vector space spanned by all polynomials of
order less than n:

Pn (H) =
{

Γ
(
{ξi}N

i=1

)
: Γ is the polynomial of order ≤ n; ξi ∈ H,∀i = 1, . . . , N ; N < ∞

}
(9)

and
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H :n: = Pn (H)
⋂

Pn−1 (H)⊥ , (10)

where Pn is the closure of Pn . The space H :n: is known as homogeneous chaos of order n.
For n = 0 one has H :0: = P 0 (H) the space of constants and H :−1 = P−1 (H) = {0} . Space

P (H) =
⋃

n∈NPn (H) is a dense subspace in Lq (Ω,F , P ) with q ∈ N . As shown by Jason [13],
L2 (Ω,F , P ) can be decomposed as:

L2 = ⊕∞0 H :n: (11)

Equation (11) is an orthogonal decomposition of L2 (Ω,F , P ) , known as Wiener-chaos de-
composition or simply chaos decomposition. One application of this decomposition is the rep-
resentation of an element X ∈ L2 (Ω,F , P ) in terms of elements Xn ∈ H :n::

X =
∞∑

n=0

Xn. (12)

Equation (12) represents an important result for the approximation theory applied to stochas-
tic systems. Solution of a stochastic system is expressed as a non-linear function in terms
Gaussian random variables. This function is expanded in terms of chaos polynomials as:

ui (ω) =
∑

p≥0

∑
n1+...+nr=p

∑

i1,...,ir

uj1...jr

i1...ir
Γp (ξi1 (ω) , ..., ξtr (ω)) , (13)

where Γp is the chaos polynomial of order p and uj1...jr

i1...ir
are the polynomial coefficients. The

super-index refers to the number of occurrences of ξik (ω). Chaos polynomials of order p are
formed by an Hermite polynomial, in standard Gaussian variables {ξik (ω)}r

k=1 of order less than
p. Introducing a mapping in the sets of indexes {ik}r

k=1 and {jk}r
k=1, Eq. (13) can be rewritten

as:

ui (ω) =
∞∑

j=1

uijψj (ξ (ω)) . (14)

The internal product between polynomials ψi and ψj in L2 (Ω,F , P ) is defined as:

(ψi, ψj)L2(Ω,F ,P ) =
∫

RN

(ψi.ψj) (ξ (ω)) dP (ω) , (15)

where dP is a probability measure. These polynomials form a complete ortho-normal system
with respect to the probability measure, with the following properties:

ψ0 = 1, (ψi, ψj)L2(Ω,F ,P ) = δij , ∀i, j ∈ N. (16)
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It is important to observe that in Eq. (15) the polynomials are orthogonal with respect to
the standard Gaussian density function of vector ξ . The convergence rate is exponential for the
case where the random variable is Gaussian. For other random variables the convergence rate
is smaller.

The Askey-Wiener scheme represents a family of sub-spaces generated by orthogonal poly-
nomials obtained from ordinary differential equations [8]. Among them, the Hermite, Laguerre,
Jacobi and Legendre polynomials can be cited. Every sub-space generated by these polynomials
is a complete system in L2 . The elements of different sub-spaces of the Askey scheme are
inter-related. Figure (1) illustrates the Askey-Wiener scheme through the different polynomial
families and the inter-relations between them.

 Legendre Hermite Laguerre Jacobi 
Figure 1: The Askey-Wiener scheme.

The orthogonality between the polynomials is defined with respect to a weight function,
which is identical to the probability density function of a certain random variable. For example,
the Gaussian density function is used as weight function to obtain the orthogonality between
Hermite polynomials. Table (1) shows the correspondence between subsets of polynomials of
the Askey-Wiener scheme and the corresponding probability density functions.

The proposal of the Askey-Wiener scheme is to extend the result presented in Eq. (12) to
other types of polynomials. The fact that Pn (H) = span [{ϕi}∞t=1] with ϕi ∈ S, ∀i ∈ N where
S =

⋃
n∈N Pn (H) is a family of polynomials of the Askey-Wiener scheme and H is a separable

Hilbert space of finite variance random variables.

4 Galerkin Method

The Galerkin method is used in this paper to solve the stochastic beam bending problem with
uncertainty in the beam stiffness modulus. It is proposed that approximated solutions to the
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Table 1: Correspondence between some random variables and polynomials of the Askey-Wiener
scheme.

Random variable Polynomial Weight function Support

Gaussian Hermite e−
|ξ|2
2 (−∞, +∞)

Gama Laguerre 1
Γ(α+1)ξ

αe−ξ [0,+∞]

Beta Jacobi 2−(α+β+1)Γ(α+β+2)
Γ(α+1)Γ(β+1) (1− ξ)α (1 + ξ)β e−ξ [a, b]

Uniform Legendre 1
b−a [a, b]

stochastic displacement response of the beam have the following form:

u (x, ω) =
∞∑

i=1

uiδi (x, ω) , (17)

where ui ∈ R, ∀i ∈ N are coefficients and δi ∈ V are the test functions. Numerical solutions to
the variational problem defined in Eq. 6 will be obtained. Hence, it becomes necessary to define
spaces less abstract than those defined earlier, but without compromising the existence and
uniqueness of the solution. From the theory of Sobolev spaces we have C2 (0, L)

Q
= Q and from

the theory of chaos polynomials and the Askey-Wiener scheme one has SL2(Ω,F ,P ) = L2 (Ω,F , P )
. Consider two complete orthogonal systems Φ = span [{φi}∞i=1] and Ψ = span [{ψi}∞i=1] , such
that ΦQ = Q, Ψs = S , and define the tensorial product between Φ and S as:

(φ⊗ ψ)i (x, ω) = φj (x) .ψk (ω) , with j, k ∈ N (18)

To simplify the notation, we will use δi = (φ⊗ ψ)i . Since approximated numerical solutions
are derived in this paper, the solution space has finite dimensions. This implies truncation of
the complete orthogonal systems Φ and S . Hence one has Φm = span [{φi}m

i=1] and Ψn =
span [{ψi}n

i=1] , which results in VM = Φm ⊗ Ψn . With the above definitions and results, it is
proposed that numerical solutions are obtained from truncation of the series expressed in Eq.
13 at the M th term:

uM (x, ω) =
M∑

i=1

uiδi (x, ω) . (19)

Substituting Eq. (17) in Eq. (4), one arrives at the approximated variational problem:
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{
Find {ui}M

i=1 ∈ RM such that∑M
i=1

∑N
k=1 Bk (δi, δj) ui = 〈f, δj〉 , ∀δj ∈ VM

(20)

where

Bk (δi, δj) =
∫

Ω

L∫

0

ϕkξkD
2
ωδj .D

2
ωδjdxdP (ω) and 〈f, δj〈 =

∫

Ω

L∫

0

f.δjdxdP (ω) (21)

The approximated variational problem (Eq. 20) consists in establishing the coefficients of
the linear combination expressed in Eq. (19). Using a vector-matrix representation, the system
of linear algebraic equations defined in Eq. (20) can be written as:

KU = F (22)

where K ∈ MM (R) is the stiffness matrix, U = {ui}M
i=1 is the displacement vector and F =

{fi}M
i=1 is the loading vector. The sparseness of the stiffness matrixes for example 1 (to be

presented) is shown in Figure (2). Remember that “p” is the degree of the chaos polynomial.
The stiffness matrix corresponding to Figure 2(a) has dimension 20 and nz = 188 (number of

nonzero elements), whereas the matrix corresponding to Figure 2(b) has dimensions 56 and nz
= 1142. The conditioning number (nC) corresponding to these two matrixes is nC = 610.9443
and nC = 936.3786, respectively. These numbers show that the conditioning number increases
with the dimension of the approximation space. This can lead to ill-conditioning of the of
the stiffness matrix and hence to the loss of accuracy of the approximated solution. In this
paper, a family of Legendre polynomials is used to construct space Ψn , defined in the variables
(ξ1, ξ2) ∈ [−1, 1]× [−1, 1] .

5 Statistical Moments

Numerical solutions to be obtained are defined in VM ⊂ L2 (Ω,F , P ) ⊗ Q . Interest lies in the
statistical moments of the stochastic displacement response. In this section, it is shown how the
first and second order moments are evaluated from the numerical solution.

The statistical moment of kth order of a random variable u (x, ·) is obtained, for a fixed point
x ∈ [0, L] , by taking the kth power of the displacement and integrating with respect to it’s
probability measure:

µk
u(x) =

∫

Ω

uk
M (x, ω) dP (ω) =

k times︷ ︸︸ ︷∑

i1

...
∑

ik

ui1 ...uik

∫

Ω

(δi1 ...δik) (x, ξ (ω)) dP (ξ (ω)) (23)

The integration term dP (·) is a probability measure defined as:
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   (a) for m = 4, n = 7, p = 2;
   (b) for m = 4, n = 14, p = 4.

Figure 2: Sparseness of the stiffness matrix of example 1.

dP (ξ (ω)) =
N∏

i=1

ρi (ξi (ω)) dξi (ω) (24)

where ρi : ξi → R is the probability density function of random variable ξi . From the measure
and integration theory [9], one knows that the probability measure defined in Eq. (24) is the
product measure obtained from the product between probability measure spaces associated to
the random variables ξ (ω) = {ξi (ω)}N

i=1 , with ξi : Ω → [ai, bi] . With the probability measure
defined in Eq. (23) one has:

µk
u(x) =

k times︷ ︸︸ ︷∑
ii

...
∑

ik

ui1 ...uik

b1∫

a1

...

bN∫

aN

(δi1 ...δik) (x, ξ (ω)) ρ1 (ξ1) ...ρN (ξN ) dξ1 (ω) ...dξN (ω) (25)

The integrals in Eq. (25) are called iterated integrals. The first order statistical moment, or
expected value, of the stochastic displacement process evaluated at a point x ∈ [0, L] is:

µu(x) =
m∑

i=1

u(i−1).n+1φi (x) (26)

The second-order statistical moment (the variance) of this displacement is:
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Vu(x) =
M∑

i=1

M∑

j=1

uiuj

b1∫

a1

...

bN∫

aN

(δi.δj) (x, ξ (ω)) ρ1 (ξ1) ...ρN (ξN ) dξ1 (ω) ...dξN (ω)

−
m∑

i=1

m∑

j=1

u(i−1).n+1u(j−1).n+1 (φi.φj) (x) (27)

In the numerical example to follow, the statistical moments defined in Eqs. (26 and 27) are
evaluated and compared with the same moments obtained via Monte Carlo simulation, using
five thousand samples (NS = 5000).

6 Numerical Example

In this section, two numerical examples of the stochastic Euler-Bernoulli beam bending problem
are presented. In the first example, uncertainty on the Young modulus is considered. In the
second example, the high of the beam’s cross-section is assumed uncertain. In both cases,
uncertainty is modeled by parameterized stochastic processes. In both examples, the beam is
simply supported at both ends, the span (L) equals one meter, the cross-section is rectangular
(b×h) with b = 1

200 m and the beam is subject to an uniform distributed load of f (x) = 1KPa.m,
∀x ∈ [0, 1].

The first and second order statistical moments of the numerical solution obtained via Galerkin
method are compared with the same moments evaluated via Monte Carlo simulation. To eval-
uate the error of the approximated solution, the relative error functions in expected value and
in variance (εµu and εσ2

u
, respectively), are defined as,

εµu (x) =
{

(100%)×
∣∣∣
(
1− µu

µ̂u

)
(x)

∣∣∣ , ∀x ∈ (0, 1)

0, ∀x ∈ {0, 1} ∧ εσ2
u
(x) =

{
(100%)×

∣∣∣∣
(

1− σ2
u

σ̂2
u

)
(x)

∣∣∣∣ , ∀x ∈ (0, 1)

0, ∀x ∈ {0, 1}
(28)

where µu and σ2
u , are the Galerkin-based expected value and variance, respectively, and µ̂u and

σ̂2
u are the Monte Carlo estimates of the same moments. Numerical results presented in this

paper were obtained in a HP Pavilion personal computer, running a MATLAB computational
code.

6.1 Example 1: random Young’s modulus

In this example, the Young’s modulus of the material is modeled as a parameterized stochastic
process:

E (x, ω) = µE +
√

3.σE [ξ1 (ω) cos (x) + ξ2 (ω) sen (x)] , (29)

Latin American Journal of Solids and Structures 6 (2009)
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where µE is the mean value, σE is the standard deviation and {ξ1, ξ2} are independent uniform
random variables. The mean value µE = 210GPa is adopted in the solution. Numerical solutions
are obtained for two values of the standard deviation: (a) σE =

(
1
10

)
.µE ; (b) σE =

(
1
5

)
.µE .

The beams cross-section has width b = 1
200m and hight h = 1

100m . The covariance function of
Young’s modulus for case (a) is presented in Fig. 3.

It can be observed in the figure that stochastic process Young’s modulus is strictly stationary.
The covariance function shown in Fig. 3 is obtained in exact form from Eq. 29 and from the
orthogonality property of random variables {ξ1, ξ2}.

Figure 4(a) shows all the sampled realizations of the random transversal displacement of the
beam. Figure 4(b) shows the displacements at mid-spam for x = 1

2 .
Figure 5 shows the expected value of the displacement for the beam 5(a) and the relative error

in expected value 5(b). The expected value is evaluated via Galerkin method for p ∈ {1, 2, 3, 4}.
The error in expected value is computed by comparing these results with results of Monte Carlo
simulation. In Figure 5(a) it can be seen that for p ≥ 2 the Galerkin results accumulates over the
Monte Carlo simulation solution. Figure 5(b) shows the relative error of approximated Galerkin
solutions. Results accumulate over each other for p ≥ 3.

Fig. 6 shows the covariance function of the displacement. The figure shows that the dis-
placement stochastic process is not strictly stationary. This means that the problems linearity
did not preserve, for the displacement process, the stationarity of the Young’s modulus.

In Figure 7 the variance of random beam displacement is shown. Figure 7(a) shows the
variance obtained via approximated Galerkin solution for p ∈ {1, 2, 3, 4} . Figure 7(b) shows the
relative error of Galerkin solutions, in comparison to simulation results.

The convergence behaviors for expected value and variance are quite similar, but it is ob-
served that relative errors for variance are slightly larger than the errors in expected value. This
is expected since the approximations for the response moments loose quality as the order of the
moment increases.

The convergence rate of the numerical solutions is very good. Relative error functions in
expected value and in variance decrease considerably when the degree of polynomial interpolation
goes from p = 1 to p = 2. A smaller reduction is observed when the polynomial order is increased
from p = 3 to p = 4.

Summary of results for cases (a) and (b):

Results of expected value, variance and corresponding relative errors for the random variable
obtained by fixing x = 1

2 in the random process displacement, for cases (a) and (b) of example 1,
are summarized in Table 2. Results are presented for approximated solutions with p ∈ {1, 2, 3, 4}.
Monte Carlo estimates of expected value and variance for cases (a) and (b) where obtained as:

• µ̂u( 1
2)

= −0.014980290850853 m;
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   Figure 3: Covariance function of Young’s modulus for case (a).

    (a)

     (b)

Figure 4: a) Realizations of the displacement random process; b) Realizations of random variable
u

(
1
2

)
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    (a)
    (b)

Figure 5: a) Expected value of the displacement; b) Relative error in expected value.

    Figure 6: Covariance function of the displacement.
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    (a)
    (b)

Figure 7: a) Variance of the displacements; b) Relative error in variance.

σ̂2
u( 1

2)
= 2.27603016058937× 10−6 m2;

and

• µ̂u( 1
2)

= −0.0154842703449571 m;

• σ̂2
u( 1

2)
= 1.09773390470067 ×10−5 m2.

It is observed in Table 2 that an increase in the Young’s modulus variance resulted in an
increase in the variance of transversal beam displacement. The expected value of the displace-
ment was expected to be the same in the two cases studied. In other words, the expected value
of the displacement was not expected to change by changing variance of Young’s modulus. This
should be the consequence of representing Young’s modulus as a deterministic term added to a
random term with zero mean. Hence, the (expected) correspondence between the deterministic
part of Young’s modulus and the mean displacement was not observed. This is observed in the
approximated (Galerkin) and in the Monte Carlo solutions. In all cases, the relative error in
variance is larger than the relative error in expected values. In terms of expected value, case (a)
presented the smallest relative error.

6.2 Example 2: random cross-section height

In this second example, the height of beams cross-section is represented as a parameterized
stochastic process:
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Table 2: Summary of numerical results for cases (a) and (b) of example 1: expected value,
variance, relative errors in expected value and variance for the random displacement response at
mid-spam

(
x = 1

2

)
.

p
case(a)

µuM( 1
2 ) σ2

uM( 1
2 ) εµu

(
1
2

)
εσ2

u

(
1
2

)

1 -0.014977505506094 2.1774709978363× 10−6 0.018593395727389 4.33031004859571

2 -0.0149785968021307 2.22500740117425 ×10−6 0.0113085168981607 2.24174355413215

3 -0.0149793492220302 2.2586733753253 ×10−6 0.00628578464963902 0.762590301508722

4 -0.0149793541761291 2.25903752370874 ×10−6 0.00625271387097294 0.746591023917982

p
case (b)

µuM( 1
2 ) σ2

uM( 1
2 ) εµu

(
1
2

)
εσ2

u

(
1
2

)

1 -0.0154455459627453 9.26275145950668 ×10−6 0.250088517890467 15.6193370739294

2 -0.0154648167456578 1.01397468943761 ×10−5 0.125634588301266 7.63019297339668

3 -0.0154793536198963 1.08605558745147 ×10−5 0.0317530303417188 1.06385684173525

4 -0.0154798078358090 1.08984821070522 ×10−5 0.0288196282338699 0.718361158536607

h (x,w) = µh +
√

3.σh [ξ1 (ω) cos (x) + ξ2 (ω) sen (x)] , (30)

where µh is the mean value, σh is the standard deviation and {ξ1, ξ2} are independent uniform
random variables. The mean value µh = 1

100m is adopted in the solution. Numerical solutions
are obtained for two values of the standard deviation: (a) σh =

(
1
10

)
.µh ; (b) σh =

(
1
5

)
.µh .

The covariance function for random process beam height is similar to the previous example.
Figure 8(a) shows all the sampled realizations of the random transversal displacement of the

beam. Figure 8(b) shows the displacements at mid-spam for x = 1
2 .

     (a)

    (b)

Figure 8: a) Realizations of the displacement random process; b) Realizations of random variable
u

(
1
2

)
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A comparison of results in Figures 4 and 8 shows larger dispersion of transversal displace-
ments for random beam height. Hence, uncertainty propagation was larger for random beam
height in comparison to random beam stiffness.

Figure 9(a) shows the expected value of displacements for the beam. Two results are shown
in the figure: Monte Carlo simulation and the numerical (Galerkin) results. In Fig. 9(a) it is
observed that results obtained via Galerkin solutions for p ≥ 2 accumulate over the Monte Carlo
estimate. Fig. 9(b) shows that indeed the relative error in expected value is largely reduced for
p ≥ 2. A comparison of Figures 5(b) and 9(b) shows that the relative error in expected values
is greater for the random height problem than for the case of random stiffness coefficient.

Fig. 10 shows the covariance function of transversal beam displacements. As for the previous
example, it is observed that the displacement response is not stationary as the beam height
random process.

   (a)
   (b)

Figure 9: a) Expected value of the displacement; b) Relative error in expected value.

Figure 11 shows the variance of beam displacements and the relative error in variance, for
four degrees of polynomial interpolation. Relative error in variance is significantly larger than
relative error in expected value. This is expected since the approximations for the response
moments loose quality as the order of the moment increases. Results in figure 11(b) show very
fast convergence of the Galerkin solutions. The relative error in both expected value and variance
decreases by about 300% when the polynomial degree changes from p = 1 to p = 2. A smaller
reduction is obtained when the degree is changed from p = 2 to p = 3. The relative error in
variance is larger for this example in comparison to the case of random beam stiffness.
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   Figure 10: Covariance function of transversal beam displacements.

   (a)

  (b)

Figure 11: a) Variance of the displacements; b) Relative error in variance.
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Summary of results for cases (a) and (b):

Table 3 summarizes results of expected value, variance and corresponding relative errors for the
random variable obtained by fixing x = 1

2 in the random process displacement, for cases (a)
and (b) of example 2. Results are presented for approximated solutions with p ∈ {1, 2, 3, 4}
. Monte Carlo estimates of expected value and variance for cases (a) and (b) where obtained,
respectively, as:

• µ̂u( 1
2)

= −0.0157871470471983 m;

σ̂2
u( 1

2)
= 2.40357009946749× 10−5 m2 ;

and

• µ̂u( 1
2)

= −0.0195763835699485 m;

• σ̂2
u( 1

2)
= 19.8054679939951× 10−5 m2.

Comparing the expected value and variance obtained by approximated solutions with simu-
lation results, one notes that both are smaller than the corresponding Monte Carlo estimates.
Table 3 also shows that, for case (a), the expected value and variance of random variable u

(
1
2 , ·)

is smaller than for case (b). The same behavior is observed for the Monte Carlo estimates of
expected value and variance for this random variable.

For cases (a) and (b) in this example, the relative error in variance was larger than the
relative error in expected values. In terms of expected value and variance, case (a) presented
the smallest relative error. The expected value of the displacement was expected to be the
same in both cases studied. In other words, the expected value of the displacement was not
expected to change with varying variance of beam height. This should be the consequence of
representing beam height as a deterministic term added to a random term with zero mean.
Hence, the (expected) correspondence between the deterministic part of beam height and the
mean displacement was not observed. This is observed in the approximated (Galerkin) and
in the Monte Carlo solutions. A final point to be noticed is that, in the comparison between
cases (a) and (b), the increase in displacement variance resulted larger than the increase in the
variance of Young’s modulus.

Summary of CPU processing time for both examples

Table 4 shows CPU processing time required in the Galerkin and Monte Carlo solutions of this
problem.

In general, it is observed that CPU processing time is smaller for example 1 than for example
2, for Monte Carlo and Galerkin solutions. This result exemplifies increase of computational costs
in terms of problem non-linearity. Processing time results show that the Galerkin approximation
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Table 3: Summary of numerical results for cases (a) and (b) of example 2: expected value,
variance, relative errors in expected value and variance for the random displacement response at
mid-spam

(
x = 1

2

)

p case (a)

µum( 1
2)

σ2
uM( 1

2)
εµu

(
1
2

)
εσ2

u

(
1
2

)

1 -0.0157021984852101 1.92334463809149×10−5 0.538086848334137 19.9796736314196
2 -0.0157665159932702 2.31288549995655×10−5 0.130682598105811 3.77291261573896
3 -0.0157688339676447 2.34208188684934×10−5 0.115999930189177 2.55820342546997
4 -0.0157689030893046 2.34354117559092×10−5 0.115562095159572 2.49749004157871

p case (b)

µum( 1
2)

σ2
uM( 1

2)
εµu

(
1
2

)
εσ2

u

(
1
2

)

1 -0.0181301418033707 7.62653395370197×10−5 7.38768609334911 61.492785951767
2 -0.0191855975545909 15.0243574516819×10−5 1.99621147573695 24.1403563084844
3 -0.0193566156021009 17.7217928733184×10−5 1.12261780661566 10.5207063085228
4 -0.0193795679216213 18.3519099119952×10−5 1.00537286482951 7.33917563796342

is advantageous over Monte Carlo simulation for all degrees of polynomial interpolation, for
problem 1.

Comparing the quality of results presented in figures 9 and 11 with CPU processing times,
it is observed that the Galerkin solution is only justified for interpolation order of up to p=3.
This result shows some drawbacks of the Galerkin solution and the Askey-Wiener scheme when
applied to problems involving strong non-linearity in the uncertain parameters.

7 Conclusions

In this paper, theoretical and practical results for bending of stochastic Euler-Bernoulli beams
have been presented. The Lax-Milgram lemma was used for a theoretical study about the
existence and uniqueness of the solution. A Galerkin solution of stochastic Euler-Bernoulli
beam bending problems was developed. The approximated solution space was constructed by
the tensorial product between measure spaces of finite dimensions. The family of Legendre
polynomials, derived from the Askey-Wiener scheme, was used to construct the solution space.

The proposed methodology was used to solve two numerical problems, one considering an
uncertain Young’s modulus and one assuming an uncertain cross-section height. In both exam-
ples, the uncertainty was represented by parameterized stochastic processes, using polynomials
of the Askey-Wiener scheme. From the approximated Galerkin solutions, statistical moments
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Table 4: CPU processing time for Galerkin and Monte Carlo, solutions of examples 1 and 2,
cases (a) and (b).

Example CPU time [s], Monte CPU time [s], Galerkin method
(case) Carlo simulation p = 1 p = 2 p = 3 p = 4
1 (a) 180.969 10.39 10.47 37.12 96.01
1 (b) 180.203 10.26 10.56 34.78 94.72
2 (a) 842.531 142.81 200.34 697.83 2452.20
2 (b) 858.797 138.74 187.06 672.03 2416.47

of first and second order of transversal beam displacements were evaluated. The performance
of Galerkin approximations was evaluated by comparing these moments with the corresponding
statistics obtained via Monte Carlo simulation.

For the problem considering an uncertain bending stiffness, the Askey-Wiener Galerkin solu-
tion presented very good convergence rates, and excellent accuracy. The approximated Galerkin
solution with polynomial order p = 2 resulted in very accurate results, for a fraction of the CPU
computation time required for the Monte Carlo simulation.

For the problem where uncertainty was considered on cross section height, convergence of
approximated Galerkin solutions was slower, and accuracy was not as good. This results from
the strong nonlinearity of the problem, which intensifies propagation of the uncertainty to the
random beam response. The Askey-Wiener Galerkin solution developed herein was not as ef-
ficient for this problem, as it was for the linear problem (with uncertain bending stiffness).
However, an accurate solution was still obtained, at smaller processing times when compared to
Monte Carlo, for polynomial interpolation of order p = 3. In general, it was observed that the
approximation looses quality as the order of the computed moment increases.

The Askey-Wiener Galerkin solution developed herein is a theoretically sound and efficient
method for the solution of stochastic problems in engineering. Use of the Askey-Wiener scheme
in representing parameter uncertainty and in the construction of approximated solution spaces
was shown to be an efficient strategy for the solution of stochastic beam bending problems.
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[2] J.M. Araújo and A.M. Awruch. On stochastic finite elements for structural analysis. Computers
and Structures, 52(3):461–469, 1994.

[3] R. Askey and J. Wilson. Some Basic Hypergeometric Polynomials that Generalize Jacobi Polynomi-
als. AMS, Mem. Amer. Math. Soc. 319 Providence, RI., 1985.

[4] I. Babuska, R. Tempone, and G. E. Zouraris. Solving elliptic boundary value problems with uncertain
coefficients by the finite element method: the stochastic formulation. Computer Methods in Applied
Mechanics and Engineering, 194(12-16):1251–1294, 2005.

Latin American Journal of Solids and Structures 6 (2009)
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[5] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer-
Verlag, 1994.

[6] R. H. Cameron and W. T. Martin. The orthogonal development of nonlinear functionals in series of
Fourier-Hermite functionals. Annals Mathematics, 48:385–392, 1947.

[7] S. Chakraborty and Sarkar S. K. Analysis of a curved beam on uncertain elastic foundation. Finite
Elements in Analysis and Design, 36(1):73–82, 2000.

[8] Xiu D. and Karniadakis G.E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equa-
tions. SIAM J. Sci. Comput., 24(2):619–644, 2002.

[9] P. J. Fernandez. Measure and Integration (in Portuguese), page 198. IMPA, 2002.

[10] R. Ghanem and P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Dover, NY, 1991.

[11] M. Grigoriu. Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random
Vibration, and Matlab Solutions. Prentice Hall, 1995.

[12] Elishakoff I., Ren Y. J., and Shinozuka M. Some exact solutions for the bending of beams with
spatially stochastic stiffness. International Journal of Solids and Structures, 32(16):2315–2327, 1995.

[13] S. Jason. Gaussian Hilbert Spaces. Cambridge University Press, 1997.

[14] Silva Jr. and C. R. A. Application of the Galerkin method to stochastic bending of Kirchhoff plates (in
Portuguese). Florianpolis, SC, Brazil, 2004. Doctoral Thesis, Department of Mechanical Engineering
Federal University of Santa Catarina.

[15] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and Their Appli-
cations, page 313. Society for Industrial Mathematics, 1987.

[16] H. G. Matthies and Keese A. Galerkin methods for linear and nonlinear elliptic stochastic partial
differential equations. Computer Methods in Applied Mechanics and Engineering, 194(12-16):1295–
1331, 2005.

[17] H. Ogura. Orthogonal functionals of the Poisson process. IEEE Trans. Inform. Theory, 18(4):473–
481, 1972.

[18] P. D. Spanos and R. Ghanem. Stochastic finite element expansion for media random. Journal
Engineering Mechanics, 125(1):26–40, 1989.

[19] E. H. Vanmarcke and M. Grigoriu. Stochastic finite element analysis of simple beams. Journal of
Engineering Mechanics, 109(5):1203–1214, 1983.

[20] N. Wiener. The homogeneous chaos. American Journal Mathematics, 60:897–936, 1938.

[21] K. Yoshida. Functional analysis. Springer, Berlin, 1978.

Latin American Journal of Solids and Structures 6 (2009)


